1
|
Shabani H, Zrenner E, Rathbun DL, Hosseinzadeh Z. Electrical Input Filters of Ganglion Cells in Wild Type and Degenerating rd10 Mouse Retina as a Template for Selective Electrical Stimulation. IEEE Trans Neural Syst Rehabil Eng 2024; 32:850-864. [PMID: 38294929 DOI: 10.1109/tnsre.2024.3360890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Bionic vision systems are currently limited by indiscriminate activation of all retinal ganglion cells (RGCs)- despite the dozens of known RGC types which each encode a different visual message. Here, we use spike-triggered averaging to explore how electrical responsiveness varies across RGC types toward the goal of using this variation to create type-selective electrical stimuli. A battery of visual stimuli and a randomly distributed sequence of electrical pulses were delivered to healthy and degenerating (4-week-old rd10) mouse retinas. Ganglion cell spike trains were recorded during stimulation using a 60-channel microelectrode array. Hierarchical clustering divided the recorded RGC populations according to their visual and electrical response patterns. Novel electrical stimuli were presented to assess type-specific selectivity. In healthy retinas, responses fell into 35 visual patterns and 14 electrical patterns. In degenerating retinas, responses fell into 12 visual and 23 electrical patterns. Few correspondences between electrical and visual response patterns were found except for the known correspondence of ON visual type with upward deflecting electrical type and OFF cells with downward electrical profiles. Further refinement of the approach presented here may yet yield the elusive nuances necessary for type-selective stimulation. This study greatly deepens our understanding of electrical input filters in the context of detailed visual response characterization and includes the most complete examination yet of degenerating electrical input filters.
Collapse
|
2
|
Zha M, Muralidharan M, Ly K, Guo T, Von Wegner F, Shabani H, Hosseinzadeh Z, Lovell NH, Rathbun DL, Shivdasani MN. Probing the Contribution of Vertical Processing Layers of the Retina to White-Noise Electrical Stimulation Responses. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083111 DOI: 10.1109/embc40787.2023.10340816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Optimal stimulus parameters for epiretinal prostheses have been investigated by analyzing retinal ganglion cell (RGC) spiking responses to white-noise electrical stimulation, through a spike-triggered average (STA) analysis technique. However, it is currently unknown as to activation of which retinal cells contribute to features of the STA. We conducted whole-cell patch clamping recordings in ON and OFF RGCs in response to white-noise epiretinal electrical stimulation by using different inhibitors of synaptic transmission in a healthy retina. An mGluR6 agonist, L-AP4, was firstly used to selectively block the output of photoreceptors (PRs) to ON bipolar cells (BCs). We subsequently fully blocked all synaptic inputs to RGCs using a combination of pharmacological agents. Our data shows that PRs dominate the ability of ON RGCs to integrate electrical pulses and form a unique STA shape, while BCs do not contribute in any way. In addition, our results demonstrate that the ability of OFF RGCs to integrate pulses is consistently impaired after blocking the PR to ON BC pathway. We hypothesise that the mechanisms underlying this co-effect are related to the narrow field AII amacrine cells connecting ON and OFF pathways.Clinical Relevance-Recent retinal studies recorded mirror-inverted STAs in ON and OFF retinal pathways, thus raising the possibility of designing a stimulation approach that can differentially activate ON and OFF pathways with electrical stimulation. However, the detailed contribution of three major retinal cell layers in forming characteristic STAs is still unclear. It is of great clinical relevance to investigate the isolated contribution of PRs to the electrically driven STA since PRs progressively degenerate in the course of retinal disease.
Collapse
|
3
|
Yunzab M, Soto-Breceda A, Maturana M, Kirkby S, Slattery M, Newgreen A, Meffin H, Kameneva T, Burkitt AN, Ibbotson M, Tong W. Preferential modulation of individual retinal ganglion cells by electrical stimulation. J Neural Eng 2022; 19. [PMID: 35917811 DOI: 10.1088/1741-2552/ac861f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Retinal prostheses have been able to recover partial vision in blind patients with retinal degeneration by electrically stimulating surviving cells in the retina, such as retinal ganglion cells (RGCs), but the restored vision is limited. This is partly due to non-preferential stimulation of all RGCs near a single stimulating electrode, which include cells that conflict in their response properties and their contribution to the vision process. Our study proposes a stimulation strategy to preferentially stimulate individual RGCs based on their temporal electrical receptive fields (tERFs). APPROACH We recorded the responses of RGCs using whole-cell current-clamp and demonstrated the stimulation strategy, first using intracellular stimulation, then via extracellular stimulation. MAIN RESULTS We successfully reconstructed the tERFs according to the RGC response to Gaussian white noise current stimulation. The characteristics of the tERFs were extracted and compared according to the morphological and light response types of the cells. By re-delivering stimulation trains that are composed of the tERFs obtained from different cells, we could target individual RGCs as the cells showed lower activation thresholds to their own tERFs. SIGNIFICANCE This proposed stimulation strategy implemented in the next generation of recording and stimulating retinal prostheses may improve the quality of artificial vision.
Collapse
Affiliation(s)
- Molis Yunzab
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Artemio Soto-Breceda
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Matias Maturana
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Stephanie Kirkby
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Maximilian Slattery
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Anton Newgreen
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Hamish Meffin
- Biomedical Engineering, The University of Melbourne, Grattan Street, Melbourne, Victoria, 3010, AUSTRALIA
| | - Tatiana Kameneva
- School of Science, Engineering, and Computing Technologies, Swinburne University of Technology, School of Science, Engineering, and Computing Technologies, Swinburne University of Technology, Hawthorn, Victoria, 3122, AUSTRALIA
| | - Anthony N Burkitt
- Department of Biomedical Engineering, University of Melbourne, University of Melbourne, Parkville, Victoria, 3010, AUSTRALIA
| | - Michael Ibbotson
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Wei Tong
- University of Melbourne, School of Physics, University of Melbourne, Parkville, Melbourne, Victoria, 3010, AUSTRALIA
| |
Collapse
|
4
|
Shabani H, Sadeghi M, Zrenner E, Rathbun DL, Hosseinzadeh Z. Classification of pseudocalcium visual responses from mouse retinal ganglion cells. Vis Neurosci 2021; 38:E016. [PMID: 35548862 DOI: 10.1017/s0952523821000158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, a detailed catalog of 32 retinal ganglion cell (RGC) visual response patterns in mouse has emerged. However, the 10,000 samples required for this catalog-based on fluorescent signals from a calcium indicator dye-are much harder to acquire from the extracellular spike train recordings underlying our bionic vision research. Therefore, we sought to convert spike trains into pseudocalcium signals so that our data could be directly matched to the 32 predefined, calcium signal-based groups. A microelectrode array (MEA) was used to record spike trains from mouse RGCs of 29 retinas. Visual stimuli were adapted from the Baden et al. study; including moving bars, full-field contrast and temporal frequency chirps, and black-white and UV-green color flashes. Spike train histograms were converted into pseudocalcium traces with an OGB-1 convolution kernel. Response features were extracted using sparse principal components analysis to match each RGC to one of the 32 RGC groups. These responses mapped onto of the 32 previously described groups; however, some of the groups remained unmatched. Thus, adaptation of the Baden et al. methodology for MEA recordings of spike trains instead of calcium recordings was partially successful. Different classification methods, however, will be needed to define clear RGC groups from MEA data for our bionic vision research. Nevertheless, others may pursue a pseudocalcium approach to reconcile spike trains with calcium signals. This work will help to guide them on the limitations and potential pitfalls of such an approach.
Collapse
Affiliation(s)
- H Shabani
- Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University, Tübingen, Germany
| | - Mahdi Sadeghi
- Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University, Tübingen, Germany
| | - E Zrenner
- Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - D L Rathbun
- Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University, Tübingen, Germany
- Department of Ophthalmology, Detroit Institute of Ophthalmology, Henry Ford Health System, Detroit, Michigan
| | - Z Hosseinzadeh
- Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
5
|
Corna A, Ramesh P, Jetter F, Lee MJ, Macke JH, Zeck G. Discrimination of simple objects decoded from the output of retinal ganglion cells upon sinusoidal electrical stimulation. J Neural Eng 2021; 18. [PMID: 34049288 DOI: 10.1088/1741-2552/ac0679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/28/2021] [Indexed: 11/12/2022]
Abstract
Objective. Most neuroprosthetic implants employ pulsatile square-wave electrical stimuli, which are significantly different from physiological inter-neuronal communication. In case of retinal neuroprosthetics, which use a certain type of pulsatile stimuli, reliable object and contrast discrimination by implanted blind patients remained challenging. Here we investigated to what extent simple objects can be discriminated from the output of retinal ganglion cells (RGCs) upon sinusoidal stimulation.Approach. Spatially confined objects were formed by different combinations of 1024 stimulating microelectrodes. The RGC activity in theex vivoretina of photoreceptor-degenerated mouse, of healthy mouse or of primate was recorded simultaneously using an interleaved recording microelectrode array implemented in a CMOS-based chip.Main results. We report that application of sinusoidal electrical stimuli (40 Hz) in epiretinal configuration instantaneously and reliably modulates the RGC activity in spatially confined areas at low stimulation threshold charge densities (40 nC mm-2). Classification of overlapping but spatially displaced objects (1° separation) was achieved by distinct spiking activity of selected RGCs. A classifier (regularized logistic regression) discriminated spatially displaced objects (size: 5.5° or 3.5°) with high accuracy (90% or 62%). Stimulation with low artificial contrast (10%) encoded by different stimulus amplitudes generated RGC activity, which was classified with an accuracy of 80% for large objects (5.5°).Significance. We conclude that time-continuous smooth-wave stimulation provides robust, localized neuronal activation in photoreceptor-degenerated retina, which may enable future artificial vision at high temporal, spatial and contrast resolution.
Collapse
Affiliation(s)
- Andrea Corna
- Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany.,Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Graduate School of Neural Information Processing/International Max Planck Research School, Tübingen, Germany.,Biomedical Electronics and Systems, EMCE Institute, TU Wien, Wien, Austria
| | - Poornima Ramesh
- Computational Neuroengineering, Technical University München, München, Germany.,Machine Learning in Science, University of Tübingen, Tübingen, Germany
| | - Florian Jetter
- Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany.,Graduate School of Neural Information Processing/International Max Planck Research School, Tübingen, Germany
| | - Meng-Jung Lee
- Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany.,Graduate School of Neural Information Processing/International Max Planck Research School, Tübingen, Germany
| | - Jakob H Macke
- Computational Neuroengineering, Technical University München, München, Germany.,Machine Learning in Science, University of Tübingen, Tübingen, Germany.,MPI for Intelligent Systems, Tübingen, Germany
| | - Günther Zeck
- Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany.,Biomedical Electronics and Systems, EMCE Institute, TU Wien, Wien, Austria
| |
Collapse
|
6
|
Thorn JT, Migliorini E, Ghezzi D. Virtual reality simulation of epiretinal stimulation highlights the relevance of the visual angle in prosthetic vision. J Neural Eng 2020; 17:056019. [DOI: 10.1088/1741-2552/abb5bc] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Shah NP, Chichilnisky EJ. Computational challenges and opportunities for a bi-directional artificial retina. J Neural Eng 2020; 17:055002. [PMID: 33089827 DOI: 10.1088/1741-2552/aba8b1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A future artificial retina that can restore high acuity vision in blind people will rely on the capability to both read (observe) and write (control) the spiking activity of neurons using an adaptive, bi-directional and high-resolution device. Although current research is focused on overcoming the technical challenges of building and implanting such a device, exploiting its capabilities to achieve more acute visual perception will also require substantial computational advances. Using high-density large-scale recording and stimulation in the primate retina with an ex vivo multi-electrode array lab prototype, we frame several of the major computational problems, and describe current progress and future opportunities in solving them. First, we identify cell types and locations from spontaneous activity in the blind retina, and then efficiently estimate their visual response properties by using a low-dimensional manifold of inter-retina variability learned from a large experimental dataset. Second, we estimate retinal responses to a large collection of relevant electrical stimuli by passing current patterns through an electrode array, spike sorting the resulting recordings and using the results to develop a model of evoked responses. Third, we reproduce the desired responses for a given visual target by temporally dithering a diverse collection of electrical stimuli within the integration time of the visual system. Together, these novel approaches may substantially enhance artificial vision in a next-generation device.
Collapse
Affiliation(s)
- Nishal P Shah
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, United States of America. Department of Neurosurgery, Stanford University, Stanford, CA, United States of America. Author to whom any correspondence should be addressed
| | | |
Collapse
|
8
|
Nowik K, Langwińska-Wośko E, Skopiński P, Nowik KE, Szaflik JP. Bionic eye review – An update. J Clin Neurosci 2020; 78:8-19. [DOI: 10.1016/j.jocn.2020.05.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/03/2020] [Indexed: 01/26/2023]
|
9
|
Im M, Kim SW. Neurophysiological and medical considerations for better-performing microelectronic retinal prostheses. J Neural Eng 2020; 17:033001. [PMID: 32329755 DOI: 10.1088/1741-2552/ab8ca9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Maesoon Im
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | | |
Collapse
|
10
|
Sekhar S, Ramesh P, Bassetto G, Zrenner E, Macke JH, Rathbun DL. Characterizing Retinal Ganglion Cell Responses to Electrical Stimulation Using Generalized Linear Models. Front Neurosci 2020; 14:378. [PMID: 32477044 PMCID: PMC7235533 DOI: 10.3389/fnins.2020.00378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/27/2020] [Indexed: 11/26/2022] Open
Abstract
The ability to preferentially stimulate different retinal pathways is an important area of research for improving visual prosthetics. Recent work has shown that different classes of retinal ganglion cells (RGCs) have distinct linear electrical input filters for low-amplitude white noise stimulation. The aim of this study is to provide a statistical framework for characterizing how RGCs respond to white-noise electrical stimulation. We used a nested family of Generalized Linear Models (GLMs) to partition neural responses into different components—progressively adding covariates to the GLM which captured non-stationarity in neural activity, a linear dependence on the stimulus, and any remaining non-linear interactions. We found that each of these components resulted in increased model performance, but that even the non-linear model left a substantial fraction of neural variability unexplained. The broad goal of this paper is to provide a much-needed theoretical framework to objectively quantify stimulus paradigms in terms of the types of neural responses that they elicit (linear vs. non-linear vs. stimulus-independent variability). In turn, this aids the prosthetic community in the search for optimal stimulus parameters that avoid indiscriminate retinal activation and adaptation caused by excessively large stimulus pulses, and avoid low fidelity responses (low signal-to-noise ratio) caused by excessively weak stimulus pulses.
Collapse
Affiliation(s)
- Sudarshan Sekhar
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany.,Graduate Training Center of Neuroscience, International Max Planck Research School, Tübingen, Germany.,Systems Neuroscience Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States
| | - Poornima Ramesh
- Computational Neuroengineering, Department for Electrical and Computer Engineering, Technische Universität München, Munich, Germany
| | - Giacomo Bassetto
- Computational Neuroengineering, Department for Electrical and Computer Engineering, Technische Universität München, Munich, Germany.,Neural System Analysis, Research Center Caesar, Bonn, Germany
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Jakob H Macke
- Computational Neuroengineering, Department for Electrical and Computer Engineering, Technische Universität München, Munich, Germany.,Neural System Analysis, Research Center Caesar, Bonn, Germany
| | - Daniel L Rathbun
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.,Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany.,Department of Ophthalmology, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
11
|
Tong W, Meffin H, Garrett DJ, Ibbotson MR. Stimulation Strategies for Improving the Resolution of Retinal Prostheses. Front Neurosci 2020; 14:262. [PMID: 32292328 PMCID: PMC7135883 DOI: 10.3389/fnins.2020.00262] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
Electrical stimulation using implantable devices with arrays of stimulating electrodes is an emerging therapy for neurological diseases. The performance of these devices depends greatly on their ability to activate populations of neurons with high spatiotemporal resolution. To study electrical stimulation of populations of neurons, retina serves as a useful model because the neural network is arranged in a planar array that is easy to access. Moreover, retinal prostheses are under development to restore vision by replacing the function of damaged light sensitive photoreceptors, which makes retinal research directly relevant for curing blindness. Here we provide a progress review on stimulation strategies developed in recent years to improve the resolution of electrical stimulation in retinal prostheses. We focus on studies performed with explanted retinas, in which electrophysiological techniques are the most advanced. We summarize achievements in improving the spatial and temporal resolution of electrical stimulation of the retina and methods to selectively stimulate neurons with different visual functions. Future directions for retinal prostheses development are also discussed, which could provide insights for other types of neuromodulatory devices in which high-resolution electrical stimulation is required.
Collapse
Affiliation(s)
- Wei Tong
- National Vision Research Institute, Australian College of Optometry, Carlton, VIC, Australia
- Department of Optometry and Vision Sciences, Melbourne School of Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
- School of Physics, The University of Melbourne, Melbourne, VIC, Australia
| | - Hamish Meffin
- National Vision Research Institute, Australian College of Optometry, Carlton, VIC, Australia
- Department of Optometry and Vision Sciences, Melbourne School of Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - David J. Garrett
- School of Physics, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- National Vision Research Institute, Australian College of Optometry, Carlton, VIC, Australia
- Department of Optometry and Vision Sciences, Melbourne School of Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Ahn J, Rueckauer B, Yoo Y, Goo YS. New Features of Receptive Fields in Mouse Retina through Spike-triggered Covariance. Exp Neurobiol 2020; 29:38-49. [PMID: 32122107 PMCID: PMC7075653 DOI: 10.5607/en.2020.29.1.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Retinal ganglion cells (RGCs) encode various spatiotemporal features of visual information into spiking patterns. The receptive field (RF) of each RGC is usually calculated by spike-triggered average (STA), which is fast and easy to understand, but limited to simple and unimodal RFs. As an alternative, spike-triggered covariance (STC) has been proposed to characterize more complex patterns in RFs. This study compares STA and STC for the characterization of RFs and demonstrates that STC has an advantage over STA for identifying novel spatiotemporal features of RFs in mouse RGCs. We first classified mouse RGCs into ON, OFF, and ON/OFF cells according to their response to full-field light stimulus, and then investigated the spatiotemporal patterns of RFs with random checkerboard stimulation, using both STA and STC analysis. We propose five sub-types (T1–T5) in the STC of mouse RGCs together with their physiological implications. In particular, the relatively slow biphasic pattern (T1) could be related to excitatory inputs from bipolar cells. The transient biphasic pattern (T2) allows one to characterize complex patterns in RFs of ON/OFF cells. The other patterns (T3–T5), which are contrasting, alternating, and monophasic patterns, could be related to inhibitory inputs from amacrine cells. Thus, combining STA and STC and considering the proposed sub-types unveil novel characteristics of RFs in the mouse retina and offer a more holistic understanding of the neural coding mechanisms of mouse RGCs.
Collapse
Affiliation(s)
- Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Bodo Rueckauer
- Institute of Neuroinformatics, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon 22012, Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| |
Collapse
|
13
|
An update on retinal prostheses. Clin Neurophysiol 2019; 131:1383-1398. [PMID: 31866339 DOI: 10.1016/j.clinph.2019.11.029] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/23/2022]
Abstract
Retinal prostheses are designed to restore a basic sense of sight to people with profound vision loss. They require a relatively intact posterior visual pathway (optic nerve, lateral geniculate nucleus and visual cortex). Retinal implants are options for people with severe stages of retinal degenerative disease such as retinitis pigmentosa and age-related macular degeneration. There have now been three regulatory-approved retinal prostheses. Over five hundred patients have been implanted globally over the past 15 years. Devices generally provide an improved ability to localize high-contrast objects, navigate, and perform basic orientation tasks. Adverse events have included conjunctival erosion, retinal detachment, loss of light perception, and the need for revision surgery, but are rare. There are also specific device risks, including overstimulation (which could cause damage to the retina) or delamination of implanted components, but these are very unlikely. Current challenges include how to improve visual acuity, enlarge the field-of-view, and reduce a complex visual scene to its most salient components through image processing. This review encompasses the work of over 40 individual research groups who have built devices, developed stimulation strategies, or investigated the basic physiology underpinning retinal prostheses. Current technologies are summarized, along with future challenges that face the field.
Collapse
|
14
|
Chenais NAL, Leccardi MJIA, Ghezzi D. Capacitive-like photovoltaic epiretinal stimulation enhances and narrows the network-mediated activity of retinal ganglion cells by recruiting the lateral inhibitory network. J Neural Eng 2019; 16:066009. [DOI: 10.1088/1741-2552/ab3913] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Spencer MJ, Kameneva T, Grayden DB, Meffin H, Burkitt AN. Global activity shaping strategies for a retinal implant. J Neural Eng 2019; 16:026008. [DOI: 10.1088/1741-2552/aaf071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|