1
|
Thompson N, Ravagli E, Mastitskaya S, Challita R, Hadaya J, Iacoviello F, Idil AS, Shearing PR, Ajijola OA, Ardell JL, Shivkumar K, Holder D, Aristovich K. Towards spatially selective efferent neuromodulation: anatomical and functional organization of cardiac fibres in the porcine cervical vagus nerve. J Physiol 2025; 603:1983-2004. [PMID: 39183636 PMCID: PMC11955868 DOI: 10.1113/jp286494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
Spatially selective vagus nerve stimulation (sVNS) offers a promising approach for addressing heart disease with enhanced precision. Despite its therapeutic potential, VNS is limited by off-target effects and the need for time-consuming titration. Our research aimed to determine the spatial organization of cardiac afferent and efferent fibres within the vagus nerve of pigs to achieve targeted neuromodulation. Using trial-and-error sVNS in vivo and ex vivo micro-computed tomography fascicle tracing, we found significant spatial separation between cardiac afferent and cardiac efferent fibres at the mid-cervical level and they were localized on average on opposite sides of the nerve cross-section. This was consistent between both in vivo and ex vivo methods. Specifically, cardiac afferent fibres were located near pulmonary fibres, consistent with findings of cardiopulmonary convergent circuits and, notably, cardiac efferent fascicles were exclusive. These cardiac efferent regions were located in close proximity to the recurrent laryngeal regions. This is consistent with the roughly equitable spread across the nerve of the afferent and efferent fibres. Our study demonstrated that targeted neuromodulation via sVNS could achieve scalable heart rate decreases without eliciting cardiac afferent-related reflexes; this is desirable for reducing sympathetic overactivation associated with heart disease. These findings indicate that understanding the spatial organization of cardiac-related fibres within the vagus nerve can lead to more precise and effective VNS therapy, minimizing off-target effects and potentially mitigating the need for titration. KEY POINTS: Spatially selective vagus nerve stimulation (sVNS) presents a promising approach for addressing chronic heart disease with enhanced precision. Our study reveals significant spatial separation between cardiac afferent and efferent fibres in the vagus nerve, particularly at the mid-cervical level. Utilizing trial-and-error sVNS in vivo and micro-computed tomography fascicle tracing, we demonstrate the potential for targeted neuromodulation, achieving therapeutic effects such as scalable heart rate decrease without stimulating cardiac afferent-related reflexes. This spatial understanding opens avenues for more effective VNS therapy, minimizing off-target effects and potentially eliminating the need for titration, thereby expediting therapeutic outcomes in myocardial infarction and related conditions.
Collapse
Affiliation(s)
- Nicole Thompson
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Enrico Ravagli
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Svetlana Mastitskaya
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Ronald Challita
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of ExcellenceDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Joseph Hadaya
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of ExcellenceDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Francesco Iacoviello
- Electrochemical Innovation Lab, Department of Chemical EngineeringUniversity College LondonLondonUK
| | - Ahmad Shah Idil
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Paul R. Shearing
- Electrochemical Innovation Lab, Department of Chemical EngineeringUniversity College LondonLondonUK
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of ExcellenceDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Jeffrey L. Ardell
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of ExcellenceDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of ExcellenceDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - David Holder
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Kirill Aristovich
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
2
|
Lerman I, Bu Y, Singh R, Silverman HA, Bhardwaj A, Mann AJ, Widge A, Palin J, Puleo C, Lim H. Next generation bioelectronic medicine: making the case for non-invasive closed-loop autonomic neuromodulation. Bioelectron Med 2025; 11:1. [PMID: 39833963 PMCID: PMC11748337 DOI: 10.1186/s42234-024-00163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
The field of bioelectronic medicine has advanced rapidly from rudimentary electrical therapies to cutting-edge closed-loop systems that integrate real-time physiological monitoring with adaptive neuromodulation. Early innovations, such as cardiac pacemakers and deep brain stimulation, paved the way for these sophisticated technologies. This review traces the historical and technological progression of bioelectronic medicine, culminating in the emerging potential of closed-loop devices for multiple disorders of the brain and body. We emphasize both invasive techniques, such as implantable devices for brain, spinal cord and autonomic regulation, while we introduce new prospects for non-invasive neuromodulation, including focused ultrasound and newly developed autonomic neurography enabling precise detection and titration of inflammatory immune responses. The case for closed-loop non-invasive autonomic neuromodulation (incorporating autonomic neurography and splenic focused ultrasound stimulation) is presented through its applications in conditions such as sepsis and chronic inflammation, illustrating its capacity to revolutionize personalized healthcare. Today, invasive or non-invasive closed-loop systems have yet to be developed that dynamically modulate autonomic nervous system function by responding to real-time physiological and molecular signals; it represents a transformative approach to therapeutic interventions and major opportunity by which the bioelectronic field may advance. Knowledge gaps remain and likely contribute to the lack of available closed loop autonomic neuromodulation systems, namely, (1) significant exogenous and endogenous noise that must be filtered out, (2) potential drift in the signal due to temporal change in disease severity and/or therapy induced neuroplasticity, and (3) confounding effects of exogenous therapies (e.g., concurrent medications that dysregulate autonomic nervous system functions). Leveraging continuous feedback and real-time adjustments may overcome many of these barriers, and these next generation systems have the potential to stand at the forefront of precision medicine, offering new avenues for individualized and adaptive treatment.
Collapse
Affiliation(s)
- Imanuel Lerman
- Department of Electrical and Computer Engineering, University of California San Diego, Atkinson Hall, 3195 Voigt Dr., La Jolla, CA, 92093, USA.
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA.
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92093, USA.
- InflammaSense Incorporated Head Quarters, La Jolla, CA, 92093, USA.
| | - Yifeng Bu
- InflammaSense Incorporated Head Quarters, La Jolla, CA, 92093, USA
| | - Rahul Singh
- InflammaSense Incorporated Head Quarters, La Jolla, CA, 92093, USA
| | | | - Anuj Bhardwaj
- SecondWave Systems Incorporated, Head Quarters, Minneapolis-Saint Paul, MN, 55104, USA
| | - Alex J Mann
- hVIVO Limited, Head Quarters, London, E14 5NR, UK
| | - Alik Widge
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Joseph Palin
- Convergent Research Inc, Head Quarters, Cambridge, MA, 02138-1121, USA
| | - Christopher Puleo
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Rensselaer, NY, 12180, USA
| | - Hubert Lim
- SecondWave Systems Incorporated, Head Quarters, Minneapolis-Saint Paul, MN, 55104, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
3
|
Kumar A, Ashawat MS, Pandit V, Kumar P. Bioelectronic Medicines-A Novel Approach of Therapeutics in Current Epoch. Curr Pharm Des 2025; 31:163-178. [PMID: 39313906 DOI: 10.2174/0113816128326489240827100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/19/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Bioelectronic medicines aim to diagnose and treat a wide range of illnesses and ailments, including cancer, rheumatoid arthritis, inflammatory bowel disease, obesity, diabetes, asthma, paralysis, blindness, bleeding, ischemia, organ transplantation, cardiovascular disease, and neurodegenerative diseases. The focus of bioelectronic medicine is on electrical signaling of the nervous system. Understanding the nervous system's regulatory roles and developing technologies that record, activate, or inhibit neural signaling to influence particular biological pathways. OBJECTIVE Bioelectronic medicine is an emerging therapeutic option with the interconnection between molecular medicine, neuroscience, and bioengineering. The creation of nerve stimulating devices that communicate with both the central and peripheral nervous systems has the potential to completely transform how we treat disorders. Although early clinical applications have been largely effective across entire nerves, the ultimate goal is to create implantable, miniature closed-loop systems that can precisely identify and modulate individual nerve fibers to treat a wide range of disorders. METHODOLOGY The data bases such as PubMed, and Clinicaltrial.gov.in were searched for scientific research, review and clinical trials on bioelectronic medicine. CONCLUSION The field of bioelectronic medicine is trending at present. In recent years, researchers have extended the field's applications, undertaken promising clinical trials, and begun delivering therapies to patients, thus creating the groundwork for significant future advancements. Countries and organizations must collaborate across industries and regions to establish an atmosphere and guidelines that foster the advancement of the field and the fulfillment of its prospective advantages.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, Jwalamukhi, H.P., India
| | - Mahendra Singh Ashawat
- Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, Jwalamukhi, H.P., India
| | - Vinay Pandit
- Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, Jwalamukhi, H.P., India
| | - Pravin Kumar
- Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, Jwalamukhi, H.P., India
| |
Collapse
|
4
|
Koh RGL, Ribeiro M, Jabban L, Fang B, Nesovic K, Bayat S, Metcalfe BW. A Scoping Review of Machine Learning Applied to Peripheral Nerve Interfaces. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3689-3698. [PMID: 39325602 DOI: 10.1109/tnsre.2024.3468995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Peripheral nerve interfaces (PNIs) can enable communication with the peripheral nervous system and have a broad range of applications including in bioelectronic medicine and neuroprostheses. They can modulate neural activity through stimulation or monitor conditions by recording from the peripheral nerves. The recent growth of Machine Learning (ML) has led to the application of a wide variety of ML techniques to PNIs, especially in circumstances where the goal is classification or regression. However, the extent to which ML has been applied to PNIs or the range of suitable ML techniques has not been documented. Therefore, a scoping review was conducted to determine and understand the state of ML in the PNI field. The review searched five databases and included 63 studies after full-text review. Most studies incorporated a supervised learning approach to classify activity, with the most common algorithms being some form of neural network (artificial neural network, convolutional neural network or recurrent neural network). Unsupervised, semi-supervised and reinforcement learning (RL) approaches are currently underutilized and could be better leveraged to improve performance in this domain.
Collapse
|
5
|
Habibollahi M, Jiang D, Lancashire HT, Demosthenous A. Active Neural Interface Circuits and Systems for Selective Control of Peripheral Nerves: A Review. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:954-975. [PMID: 39018210 DOI: 10.1109/tbcas.2024.3430038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Interfaces with peripheral nerves have been widely developed to enable bioelectronic control of neural activity. Peripheral nerve neuromodulation shows great potential in addressing motor dysfunctions, neurological disorders, and psychiatric conditions. The integration of high-density neural electrodes with stimulation and recording circuits poses a challenge in the design of neural interfaces. Recent advances in active electrode strategies have achieved improved reliability and performance by implementing in-situ control, stimulation, and recording of neural fibers. This paper presents an overview of state-of-the-art neural interface systems that comprise a range of neural electrodes, neurostimulators, and bio-amplifier circuits, with a special focus on interfaces for the peripheral nerves. A discussion on the efficacy of active electrode systems and recommendations for future directions conclude this paper.
Collapse
|
6
|
Liu F, Habibollahi M, Wu Y, Neshatvar N, Zhang J, Zinno C, Akouissi O, Bernini F, Alibrandi L, Gabisonia K, Lionetti V, Carpaneto J, Lancashire H, Jiang D, Micera S, Demosthenous A. A multi-channel stimulator with an active electrode array implant for vagal-cardiac neuromodulation studies. Bioelectron Med 2024; 10:16. [PMID: 38970083 PMCID: PMC11227238 DOI: 10.1186/s42234-024-00148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Implantable vagus nerve stimulation is a promising approach for restoring autonomic cardiovascular functions after heart transplantation. For successful treatment a system should have multiple electrodes to deliver precise stimulation and complex neuromodulation patterns. METHODS This paper presents an implantable multi-channel stimulation system for vagal-cardiac neuromodulation studies in swine species. The system comprises an active electrode array implant percutaneously connected to an external wearable controller. The active electrode array implant has an integrated stimulator ASIC mounted on a ceramic substrate connected to an intraneural electrode array via micro-rivet bonding. The implant is silicone encapsulated for biocompatibility and implanted lifetime. The stimulation parameters are remotely transmitted via a Bluetooth telemetry link. RESULTS The size of the encapsulated active electrode array implant is 8 mm × 10 mm × 3 mm. The stimulator ASIC has 10-bit current amplitude resolution and 16 independent output channels, each capable of delivering up to 550 µA stimulus current and a maximum voltage of 20 V. The active electrode array implant was subjected to in vitro accelerated lifetime testing at 70 °C for 7 days with no degradation in performance. After over 2 h continuous stimulation, the surface temperature change of the implant was less than 0.5 °C. In addition, in vivo testing on the sciatic nerve of a male Göttingen minipig demonstrated that the implant could effectively elicit an EMG response that grew progressively stronger on increasing the amplitude of the stimulation. CONCLUSIONS The multi-channel stimulator is suitable for long term implantation. It shows potential as a useful tool in vagal-cardiac neuromodulation studies in animal models for restoring autonomic cardiovascular functions after heart transplantation.
Collapse
Affiliation(s)
- Fangqi Liu
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Maryam Habibollahi
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Yu Wu
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Nazanin Neshatvar
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Jiaxing Zhang
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Ciro Zinno
- BioRobotics Institute, Scuola Superiore Sant'Anna (SSSA), 56025, Pisa, Italy
| | | | - Fabio Bernini
- BioMedLab, Scuola Superiore Sant'Anna (SSSA), Pisa, Italy
| | - Lisa Alibrandi
- BioMedLab, Scuola Superiore Sant'Anna (SSSA), Pisa, Italy
| | | | | | - Jacopo Carpaneto
- BioRobotics Institute, Scuola Superiore Sant'Anna (SSSA), 56025, Pisa, Italy
| | - Henry Lancashire
- Department of Medical Physics and Bioengineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Dai Jiang
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Silvestro Micera
- BioRobotics Institute, Scuola Superiore Sant'Anna (SSSA), 56025, Pisa, Italy
| | - Andreas Demosthenous
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
7
|
Conde SV, Sacramento JF, Zinno C, Mazzoni A, Micera S, Guarino MP. Bioelectronic modulation of carotid sinus nerve to treat type 2 diabetes: current knowledge and future perspectives. Front Neurosci 2024; 18:1378473. [PMID: 38646610 PMCID: PMC11026613 DOI: 10.3389/fnins.2024.1378473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Bioelectronic medicine are an emerging class of treatments aiming to modulate body nervous activity to correct pathological conditions and restore health. Recently, it was shown that the high frequency electrical neuromodulation of the carotid sinus nerve (CSN), a small branch of the glossopharyngeal nerve that connects the carotid body (CB) to the brain, restores metabolic function in type 2 diabetes (T2D) animal models highlighting its potential as a new therapeutic modality to treat metabolic diseases in humans. In this manuscript, we review the current knowledge supporting the use of neuromodulation of the CSN to treat T2D and discuss the future perspectives for its clinical application. Firstly, we review in a concise manner the role of CB chemoreceptors and of CSN in the pathogenesis of metabolic diseases. Secondly, we describe the findings supporting the potential therapeutic use of the neuromodulation of CSN to treat T2D, as well as the feasibility and reversibility of this approach. A third section is devoted to point up the advances in the neural decoding of CSN activity, in particular in metabolic disease states, that will allow the development of closed-loop approaches to deliver personalized and adjustable treatments with minimal side effects. And finally, we discuss the findings supporting the assessment of CB activity in metabolic disease patients to screen the individuals that will benefit therapeutically from this bioelectronic approach in the future.
Collapse
Affiliation(s)
- Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Joana F. Sacramento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ciro Zinno
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Silvestro Micera
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Maria P. Guarino
- ciTechCare, School of Health Sciences Polytechnic of Leiria, Leiria, Portugal
| |
Collapse
|
8
|
Das S, Ghosh B, Sahoo RN, Nayak AK. Recent Advancements in Bioelectronic Medicine: A Review. Curr Drug Deliv 2024; 21:1445-1459. [PMID: 38173212 DOI: 10.2174/0115672018286832231218112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Bioelectronic medicine is a multidisciplinary field that combines molecular medicine, neurology, engineering, and computer science to design devices for diagnosing and treating diseases. The advancements in bioelectronic medicine can improve the precision and personalization of illness treatment. Bioelectronic medicine can produce, suppress, and measure electrical activity in excitable tissue. Bioelectronic devices modify specific neural circuits using electrons rather than pharmaceuticals and uses of bioelectronic processes to regulate the biological processes underlining various diseases. This promotes the potential to address the underlying causes of illnesses, reduce adverse effects, and lower costs compared to conventional medication. The current review presents different important aspects of bioelectronic medicines with recent advancements. The area of bioelectronic medicine has a lot of potential for treating diseases, enabling non-invasive therapeutic intervention by regulating brain impulses. Bioelectronic medicine uses electricity to control biological processes, treat illnesses, or regain lost capability. These new classes of medicines are designed by the technological developments in the detection and regulation of electrical signaling methods in the nervous system. Peripheral nervous system regulates a wide range of processes in chronic diseases; it involves implanting small devices onto specific peripheral nerves, which read and regulate the brain signaling patterns to achieve therapeutic effects specific to the signal capacity of a particular organ. The potential for bioelectronic medicine field is vast, as it investigates for treatment of various diseases, including rheumatoid arthritis, diabetes, hypertension, paralysis, chronic illnesses, blindness, etc.
Collapse
Affiliation(s)
- Sudipta Das
- Department of Pharmaceutics, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia - 741222, West Bengal, India
| | - Baishali Ghosh
- Department of Pharmaceutics, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia - 741222, West Bengal, India
| | - Rudra Narayan Sahoo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
9
|
de Faria GM, Lopes EG, Tobaldini E, Montano N, Cunha TS, Casali KR, de Amorim HA. Advances in Non-Invasive Neuromodulation: Designing Closed-Loop Devices for Respiratory-Controlled Transcutaneous Vagus Nerve Stimulation. Healthcare (Basel) 2023; 12:31. [PMID: 38200937 PMCID: PMC10778699 DOI: 10.3390/healthcare12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Studies suggest non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) as a potential therapeutic option for various pathological conditions, such as epilepsy and depression. Exhalation-controlled taVNS, which synchronizes stimulation with internal body rhythms, holds promise for enhanced neuromodulation, but there is no closed-loop system in the literature capable of performing such integration in real time. In this context, the objective was to develop real-time signal processing techniques and an integrated closed-loop device with sensors to acquire physiological data. After a conditioning stage, the signal is processed and delivers synchronized electrical stimulation during the patient's expiratory phase. Additional modules were designed for processing, software-controlled selectors, remote and autonomous operation, improved analysis, and graphical visualization. The signal processing method effectively extracted respiratory cycles and successfully attenuated signal noise. Heart rate variability was assessed in real time, using linear statistical evaluation. The prototype feedback stimulator device was physically constructed. Respiratory peak detection achieved an accuracy of 90%, and the real-time processing resulted in a small delay of up to 150 ms in the detection of the expiratory phase. Thus, preliminary results show promising accuracy, indicating the need for additional tests to optimize real-time processing and the application of the prototype in clinical studies.
Collapse
Affiliation(s)
- Gabriella Maria de Faria
- Institute of Science and Technology, Universidade Federal de São Paulo, São José dos Campos 12231-280, Brazil; (G.M.d.F.); (E.G.L.); (T.S.C.); (H.A.d.A.)
| | - Eugênia Gonzales Lopes
- Institute of Science and Technology, Universidade Federal de São Paulo, São José dos Campos 12231-280, Brazil; (G.M.d.F.); (E.G.L.); (T.S.C.); (H.A.d.A.)
| | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (E.T.); (N.M.)
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (E.T.); (N.M.)
| | - Tatiana Sousa Cunha
- Institute of Science and Technology, Universidade Federal de São Paulo, São José dos Campos 12231-280, Brazil; (G.M.d.F.); (E.G.L.); (T.S.C.); (H.A.d.A.)
| | - Karina Rabello Casali
- Institute of Science and Technology, Universidade Federal de São Paulo, São José dos Campos 12231-280, Brazil; (G.M.d.F.); (E.G.L.); (T.S.C.); (H.A.d.A.)
| | - Henrique Alves de Amorim
- Institute of Science and Technology, Universidade Federal de São Paulo, São José dos Campos 12231-280, Brazil; (G.M.d.F.); (E.G.L.); (T.S.C.); (H.A.d.A.)
| |
Collapse
|
10
|
Giannotti A, Lo Vecchio S, Musco S, Pollina L, Vallone F, Strauss I, Paggi V, Bernini F, Gabisonia K, Carlucci L, Lenzi C, Pirone A, Giannessi E, Miragliotta V, Lacour S, Del Popolo G, Moccia S, Micera S. Decoding bladder state from pudendal intraneural signals in pigs. APL Bioeng 2023; 7:046101. [PMID: 37811476 PMCID: PMC10558243 DOI: 10.1063/5.0156484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Neuroprosthetic devices used for the treatment of lower urinary tract dysfunction, such as incontinence or urinary retention, apply a pre-set continuous, open-loop stimulation paradigm, which can cause voiding dysfunctions due to neural adaptation. In the literature, conditional, closed-loop stimulation paradigms have been shown to increase bladder capacity and voiding efficacy compared to continuous stimulation. Current limitations to the implementation of the closed-loop stimulation paradigm include the lack of robust and real-time decoding strategies for the bladder fullness state. We recorded intraneural pudendal nerve signals in five anesthetized pigs. Three bladder-filling states, corresponding to empty, full, and micturition, were decoded using the Random Forest classifier. The decoding algorithm showed a mean balanced accuracy above 86.67% among the three classes for all five animals. Our approach could represent an important step toward the implementation of an adaptive real-time closed-loop stimulation protocol for pudendal nerve modulation, paving the way for the design of an assisted-as-needed neuroprosthesis.
Collapse
Affiliation(s)
- A. Giannotti
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - S. Lo Vecchio
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - S. Musco
- Neuro-Urology Department, Careggi University Hospital, Firenze, Italy
| | - L. Pollina
- Bertarelli Foundation Chair in Translational NeuroEngineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Vallone
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - I. Strauss
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering–IMTEK, IMBIT//NeuroProbes BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - V. Paggi
- Bertarelli Foundation Chair in Microengineering and Bioengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Bernini
- BioMedLab, Scuola Superiore Sant'Anna, Pisa, Italy
| | - K. Gabisonia
- BioMedLab, Scuola Superiore Sant'Anna, Pisa, Italy
| | - L. Carlucci
- BioMedLab, Scuola Superiore Sant'Anna, Pisa, Italy
| | - C. Lenzi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - A. Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - E. Giannessi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - V. Miragliotta
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - S. Lacour
- Bertarelli Foundation Chair in Microengineering and Bioengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - G. Del Popolo
- Neuro-Urology Department, Careggi University Hospital, Firenze, Italy
| | - S. Moccia
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - S. Micera
- Author to whom correspondence should be addressed:
| |
Collapse
|
11
|
Güemes Gonzalez A, Carnicer-Lombarte A, Hilton S, Malliaras G. A multivariate physiological model of vagus nerve signalling during metabolic challenges in anaesthetised rats for diabetes treatment. J Neural Eng 2023; 20:056033. [PMID: 37757803 DOI: 10.1088/1741-2552/acfdcd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Objective.This study aims to develop a comprehensive decoding framework to create a multivariate physiological model of vagus nerve transmission that reveals the complex interactions between the nervous and metabolic systems.Approach.Vagus nerve activity was recorded in female Sprague-Dawley rats using gold hook microwires implanted around the left cervical vagus nerve. The rats were divided into three experimental cohorts (intact nerve, ligation nerve for recording afferent activation, and ligation for recording efferent activation) and metabolic challenges were administered to change glucose levels while recording the nerve activity. The decoding methodology involved various techniques, including continuous wavelet transformation, extraction of breathing rate (BR), and correlation of neural metrics with physiological signals.Main results.Decrease in glucose level was consistently negatively correlated with an increase in the firing activity of the intact vagus nerve that was found to be conveyed by both afferent and efferent pathways, with the afferent response being more similar to the one on the intact nerve. A larger variability was observed in the sensory and motor responses to hyperglycaemia. A novel strategy to extract the BR over time based on inter-burst-interval is also presented. The vagus afferent was found to encode breathing information through amplitude and firing rate modulation. Modulations of the signal amplitude were also observed due to changes in heart rate in the intact and efferent recordings, highlighting the parasympathetic control of the heart.Significance.The analytical framework presented in this study provides an integrative understanding that considers the relationship between metabolic, cardiac, and breathing signals and contributes to the development of a multivariable physiological model for the transmission of vagus nerve signals. This work progresses toward the development of closed-loop neuro-metabolic therapeutic systems for diabetes.
Collapse
Affiliation(s)
- Amparo Güemes Gonzalez
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| | - Alejandro Carnicer-Lombarte
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| | - Sam Hilton
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| | - George Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| |
Collapse
|
12
|
Huerta TS, Haider B, Adamovich-Zeitlin R, Chen AC, Chaudhry S, Zanos TP, Chavan SS, Tracey KJ, Chang EH. Calcium imaging and analysis of the jugular-nodose ganglia enables identification of distinct vagal sensory neuron subsets. J Neural Eng 2023; 20:10.1088/1741-2552/acbe1e. [PMID: 36920156 PMCID: PMC10790314 DOI: 10.1088/1741-2552/acbe1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023]
Abstract
Objective.Sensory nerves of the peripheral nervous system (PNS) transmit afferent signals from the body to the brain. These peripheral nerves are composed of distinct subsets of fibers and associated cell bodies, which reside in peripheral ganglia distributed throughout the viscera and along the spinal cord. The vagus nerve (cranial nerve X) is a complex polymodal nerve that transmits a wide array of sensory information, including signals related to mechanical, chemical, and noxious stimuli. To understand how stimuli applied to the vagus nerve are encoded by vagal sensory neurons in the jugular-nodose ganglia, we developed a framework for micro-endoscopic calcium imaging and analysis.Approach.We developed novel methods forin vivoimaging of the intact jugular-nodose ganglion using a miniature microscope (Miniscope) in transgenic mice with the genetically-encoded calcium indicator GCaMP6f. We adapted the Python-based analysis package Calcium Imaging Analysis (CaImAn) to process the resulting one-photon fluorescence data into calcium transients for subsequent analysis. Random forest classification was then used to identify specific types of neuronal responders.Results.We demonstrate that recordings from the jugular-nodose ganglia can be accomplished through careful surgical dissection and ganglia stabilization. Using a customized acquisition and analysis pipeline, we show that subsets of vagal sensory neurons respond to different chemical stimuli applied to the vagus nerve. Successful classification of the responses with a random forest model indicates that certain calcium transient features, such as amplitude and duration, are important for encoding these stimuli by sensory neurons.Significance.This experimental approach presents a new framework for investigating how individual vagal sensory neurons encode various stimuli on the vagus nerve. Our surgical and analytical approach can be applied to other PNS ganglia in rodents and other small animal species to elucidate previously unexplored roles for peripheral neurons in a diverse set of physiological functions.
Collapse
Affiliation(s)
- Tomás S Huerta
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States of America
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
| | - Bilal Haider
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Richard Adamovich-Zeitlin
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States of America
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
| | - Adrian C Chen
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States of America
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
| | - Saher Chaudhry
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Theodoros P Zanos
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States of America
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States of America
| | - Sangeeta S Chavan
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States of America
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States of America
| | - Kevin J Tracey
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States of America
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States of America
| | - Eric H Chang
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States of America
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States of America
| |
Collapse
|
13
|
Bu Y, Kurniawan JF, Prince J, Nguyen AKL, Ho B, Sit NLJ, Pham T, Wu VM, Tjhia B, Shin AJ, Wu TC, Tu XM, Rao R, Coleman TP, Lerman I. A flexible adhesive surface electrode array capable of cervical electroneurography during a sequential autonomic stress challenge. Sci Rep 2022; 12:19467. [PMID: 36376365 PMCID: PMC9663551 DOI: 10.1038/s41598-022-21817-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
This study introduces a flexible, adhesive-integrated electrode array that was developed to enable non-invasive monitoring of cervical nerve activity. The device uses silver-silver chloride as the electrode material of choice and combines it with an electrode array consisting of a customized biopotential data acquisition unit and integrated graphical user interface (GUI) for visualization of real-time monitoring. Preliminary testing demonstrated this electrode design can achieve a high signal to noise ratio during cervical neural recordings. To demonstrate the capability of the surface electrodes to detect changes in cervical neuronal activity, the cold-pressor test (CPT) and a timed respiratory challenge were employed as stressors to the autonomic nervous system. This sensor system recording, a new technique, was termed Cervical Electroneurography (CEN). By applying a custom spike sorting algorithm to the electrode measurements, neural activity was classified in two ways: (1) pre-to-post CPT, and (2) during a timed respiratory challenge. Unique to this work: (1) rostral to caudal channel position-specific (cephalad to caudal) firing patterns and (2) cross challenge biotype-specific change in average CEN firing, were observed with both CPT and the timed respiratory challenge. Future work is planned to develop an ambulatory CEN recording device that could provide immediate notification of autonomic nervous system activity changes that might indicate autonomic dysregulation in healthy subjects and clinical disease states.
Collapse
Affiliation(s)
- Yifeng Bu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Jonas F Kurniawan
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jacob Prince
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrew K L Nguyen
- Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Brandon Ho
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nathan L J Sit
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Timothy Pham
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Vincent M Wu
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Boris Tjhia
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrew J Shin
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Tsung-Chin Wu
- Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xin M Tu
- Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Todd P Coleman
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Imanuel Lerman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Psychiatry, Center for Stress and Mental Health, VA San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
14
|
Pitzus A, Romeni S, Vallone F, Micera S. A method to establish functional vagus nerve topography from electro-neurographic spontaneous activity. PATTERNS 2022; 3:100615. [PMID: 36419448 PMCID: PMC9676541 DOI: 10.1016/j.patter.2022.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022]
Abstract
Bioelectronic medicine is an emerging approach to treat many types of diseases via electrical stimulation of the autonomic nervous system (ANS). Because the vagus nerve (VN) is one of the most important nerves controlling several ANS functions, stimulation protocols based on knowledge of the functional organization of the VN are particularly interesting. Here, we proposed a method to localize different physiological VN functions by exploiting electro-neurographic signals recorded during spontaneous VN fibers activity. We tested our method on a realistic human cervical VN model geometry implanted via epineural or intraneural electrodes. We considered in silico ground truth scenarios of functional topography generated via different functional neural fibers activities covered by background noise. Our method accurately estimated the underlying functional VN topography by outperforming state-of-the-art methods. Our work paves the way for development of spatially selective stimulation protocols targeting multiple VN bodily functions. A functional imaging method for peripheral nerves has been proposed Our method employs spontaneous physiological signals to perform function localization Anatomical information can be included in the method to obtain more accurate results Our method is data efficient and robust when considering several kinds of noise and artifacts
Electrical stimulation of the vagus nerve modulates the activity of internal organs and has the potential to treat many pathologies. Still, high selectivity is required because altering the functioning of off-target vital organs leads to severe adverse effects. Current steering can produce selective stimulation but requires knowing the functional organization of the target structure. Here, we introduce and test in silico a functional imaging method that allows localization in a nerve section of the fibers linked to several bodily functions. It employs spontaneous electroneurographic signals recorded from the implanted stimulation electrodes and a non-invasive physiological recording related to the target bodily function. The anatomy of the target structure is not required but can be incorporated to improve localization. The results are robust when considering different sources of noise and artifacts. Our method could be employed to determine personalized neuromodulation protocols.
Collapse
|
15
|
Pollina L, Vallone F, Ottaviani MM, Strauss I, Carlucci L, Recchia FA, Micera S, Moccia S. A lightweight learning-based decoding algorithm for intraneural vagus nerve activity classification in pigs. J Neural Eng 2022; 19. [PMID: 35896098 DOI: 10.1088/1741-2552/ac84ab] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Bioelectronic medicine is an emerging field that aims at developing closed-loop neuromodulation protocols for the autonomic nervous system (ANS) to treat a wide range of disorders. When designing a closed-loop protocol for real time modulation of the ANS, the computational execution time and the memory and power demands of the decoding step are important factors to consider. In the context of cardiovascular and respiratory diseases, these requirements may partially explain why closed-loop clinical neuromodulation protocols that adapt stimulation parameters on patient's clinical characteristics are currently missing. APPROACH Here, we developed a lightweight learning-based decoder for the classification of cardiovascular and respiratory functional challenges from neural signals acquired through intraneural electrodes implanted in the cervical vagus nerve (VN) of 5 anaesthetized pigs. Our algorithm is based on signal temporal windowing, 9 handcrafted features, and Random Forest (RF) model for classification. Temporal windowing ranging from 50 ms to 1 sec, compatible in duration with cardio-respiratory dynamics, was applied to the data in order to mimic a pseudo real-time scenario. MAIN RESULTS We were able to achieve high balanced accuracy (BA) values over the whole range of temporal windowing duration. We identified 500 ms as the optimal temporal windowing duration for both BA values and computational execution time processing, achieving more than 86% for BA and a computational execution time of only ∼6.8 ms. Our algorithm outperformed in terms of balanced accuracy and computational execution time a state of the art decoding algorithm tested on the same dataset [1]. We found that RF outperformed other machine learning models such as Support Vector Machines, K-Nearest Neighbors, and Multi-Layer Perceptrons. SIGNIFICANCE Our approach could represent an important step towards the implementation of a closed-loop neuromodulation protocol relying on a single intraneural interface able to perform real-time decoding tasks and selective modulation of the VN.
Collapse
Affiliation(s)
- Leonardo Pollina
- Sant'Anna School of Advanced Studies, P.za Martiri della Liberta', 33, Pisa, 56127, ITALY
| | - Fabio Vallone
- Sant'Anna School of Advanced Studies, P.za Martiri della Liberta', 33, Pisa, 56127, ITALY
| | - Matteo M Ottaviani
- Scuola Superiore Sant'Anna, Istituto di Scienze Della Vita (ISV), P.za Martiri della Liberta', 33, Pisa, 56127, ITALY
| | - Ivo Strauss
- Scuola Superiore Sant'Anna, P.za Martiri della Libertà 33, Pisa, 56127, ITALY
| | - Lucia Carlucci
- Scuola Superiore Sant'Anna, Istituto di Scienze Della Vita (ISV), P.zza Martiri della Libertà 33, Pisa, 56127, ITALY
| | - Fabio A Recchia
- Scuola Superiore Sant'Anna, Istituto di Scienze Della Vita (ISV), P.za Martiri della Libertà 33, Pisa, 56127, ITALY
| | - Silvestro Micera
- Scuola Superiore Sant'Anna, P.za Martiri della Liberta', 33, Pisa, Toscana, 56127, ITALY
| | - Sara Moccia
- Scuola Superiore Sant'Anna, P.za Martiri della Liberta', 33, Pisa, 56127, ITALY
| |
Collapse
|
16
|
Pollina L, Vallone F, Ottaviani MM, Strauss I, Recchia FA, Moccia S, Micera S. A fast and accurate learning-based decoding algorithm for the classification of cardiovascular and respiratory challenges using intraneural electrodes in the pig vagus nerve. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1757-1760. [PMID: 36085876 DOI: 10.1109/embc48229.2022.9871818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioelectronic medicine is a new approach for developing closed-loop neuromodulation protocols on the peripheral nervous system (PNS) to treat a wide range of disorders currently treated with pharmacological approaches. Algorithms need to have low computational cost in order to acquire, process and model data for the modulation of the PNS in real time. Here, we present a fast learning-based decoding algorithm for the classification of cardiovascular and respiratory functional alterations (i.e., challenges) by using neural signals recorded from intraneural electrodes implanted in the vagus nerve of 5 pigs. Our algorithm relies on 9 handcrafted features, extracted following signal temporal windowing, and a multi-layer perceptron (MLP) for feature classification. We achieved fast and accurate classification of the challenges, with a computational time for feature extraction and prediction lower than 1.5 ms. The MLP achieved a balanced accuracy higher than 80 % for all recordings. Our algorithm could represent a step towards the development of a closed-loop system based on a single intraneural interface with both the potential of real time classification and selective modulation of the PNS.
Collapse
|
17
|
Ahmed U, Chang YC, Zafeiropoulos S, Nassrallah Z, Miller L, Zanos S. Strategies for precision vagus neuromodulation. Bioelectron Med 2022; 8:9. [PMID: 35637543 PMCID: PMC9150383 DOI: 10.1186/s42234-022-00091-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
The vagus nerve is involved in the autonomic regulation of physiological homeostasis, through vast innervation of cervical, thoracic and abdominal visceral organs. Stimulation of the vagus with bioelectronic devices represents a therapeutic opportunity for several disorders implicating the autonomic nervous system and affecting different organs. During clinical translation, vagus stimulation therapies may benefit from a precision medicine approach, in which stimulation accommodates individual variability due to nerve anatomy, nerve-electrode interface or disease state and aims at eliciting therapeutic effects in targeted organs, while minimally affecting non-targeted organs. In this review, we discuss the anatomical and physiological basis for precision neuromodulation of the vagus at the level of nerve fibers, fascicles, branches and innervated organs. We then discuss different strategies for precision vagus neuromodulation, including fascicle- or fiber-selective cervical vagus nerve stimulation, stimulation of vagal branches near the end-organs, and ultrasound stimulation of vagus terminals at the end-organs themselves. Finally, we summarize targets for vagus neuromodulation in neurological, cardiovascular and gastrointestinal disorders and suggest potential precision neuromodulation strategies that could form the basis for effective and safe therapies.
Collapse
Affiliation(s)
- Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Stefanos Zafeiropoulos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Zeinab Nassrallah
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Larry Miller
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA.
| |
Collapse
|
18
|
Sevcencu C. Single-interface bioelectronic medicines - concept, clinical applications and preclinical data. J Neural Eng 2022; 19. [PMID: 35533654 DOI: 10.1088/1741-2552/ac6e08] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/08/2022] [Indexed: 11/12/2022]
Abstract
Presently, large groups of patients with various diseases are either intolerant, or irresponsive to drug therapies and also intractable by surgery. For several diseases, one option which is available for such patients is the implantable neurostimulation therapy. However, lacking closed-loop control and selective stimulation capabilities, the present neurostimulation therapies are not optimal and are therefore used as only "third" therapeutic options when a disease cannot be treated by drugs or surgery. Addressing those limitations, a next generation class of closed-loop controlled and selective neurostimulators generically named bioelectronic medicines seems within reach. A sub-class of such devices is meant to monitor and treat impaired functions by intercepting, analyzing and modulating neural signals involved in the regulation of such functions using just one neural interface for those purposes. The primary objective of this review is to provide a first broad perspective on this type of single-interface devices for bioelectronic therapies. For this purpose, the concept, clinical applications and preclinical studies for further developments with such devices are here analyzed in a narrative manner.
Collapse
Affiliation(s)
- Cristian Sevcencu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, Cluj-Napoca, 400293, ROMANIA
| |
Collapse
|
19
|
Borda E, Gaillet V, Airaghi Leccardi MJI, Zollinger EG, Moreira RC, Ghezzi D. Three-dimensional multilayer concentric bipolar electrodes restrict spatial activation in optic nerve stimulation. J Neural Eng 2022; 19. [PMID: 35523152 DOI: 10.1088/1741-2552/ac6d7e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/06/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Intraneural nerve interfaces often operate in a monopolar configuration with a common and distant ground electrode. This configuration leads to a wide spreading of the electric field. Therefore, this approach is suboptimal for intraneural nerve interfaces when selective stimulation is required. APPROACH We designed a multilayer electrode array embedding three-dimensional concentric bipolar electrodes. First, we validated the higher stimulation selectivity of this new electrode array compared to classical monopolar stimulation using simulations. Next, we compared them in-vivo by intraneural stimulation of the rabbit optic nerve and recording evoked potentials in the primary visual cortex. MAIN RESULTS Simulations showed that three-dimensional concentric bipolar electrodes provide a high localisation of the electric field in the tissue so that electrodes are electrically independent even for high electrode density. Experiments in-vivo highlighted that this configuration restricts spatial activation in the visual cortex due to the fewer fibres activated by the electric stimulus in the nerve. SIGNIFICANCE Highly focused electric stimulation is crucial to achieving high selectivity in fibre activation. The multilayer array embedding three-dimensional concentric bipolar electrodes improves selectivity in optic nerve stimulation. This approach is suitable for other neural applications, including bioelectronic medicine.
Collapse
Affiliation(s)
- Eleonora Borda
- Medtronic Chair in Neuroengineering, Ecole Polytechnique Federale de Lausanne, EPFL STI IBI LNE, Geneva, 1012, SWITZERLAND
| | - Vivien Gaillet
- Medtronic Chair in Neuroengineering, Ecole Polytechnique Federale de Lausanne, EPFL STI IBI LNE, Geneva, 1012, SWITZERLAND
| | | | - Elodie Geneviève Zollinger
- Medtronic Chair in Neuroengineering, Ecole Polytechnique Federale de Lausanne, EPFL STI IBI LNE, Geneva, 1012, SWITZERLAND
| | | | - Diego Ghezzi
- École Polytechnique Fédérale de Lausanne, Chemin des Mines 9, Geneva, 1202, SWITZERLAND
| |
Collapse
|
20
|
Ottaviani MM, Vallone F, Micera S, Recchia FA. Closed-Loop Vagus Nerve Stimulation for the Treatment of Cardiovascular Diseases: State of the Art and Future Directions. Front Cardiovasc Med 2022; 9:866957. [PMID: 35463766 PMCID: PMC9021417 DOI: 10.3389/fcvm.2022.866957] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
The autonomic nervous system exerts a fine beat-to-beat regulation of cardiovascular functions and is consequently involved in the onset and progression of many cardiovascular diseases (CVDs). Selective neuromodulation of the brain-heart axis with advanced neurotechnologies is an emerging approach to corroborate CVDs treatment when classical pharmacological agents show limited effectiveness. The vagus nerve is a major component of the cardiac neuroaxis, and vagus nerve stimulation (VNS) is a promising application to restore autonomic function under various pathological conditions. VNS has led to encouraging results in animal models of CVDs, but its translation to clinical practice has not been equally successful, calling for more investigation to optimize this technique. Herein we reviewed the state of the art of VNS for CVDs and discuss avenues for therapeutic optimization. Firstly, we provided a succinct description of cardiac vagal innervation anatomy and physiology and principles of VNS. Then, we examined the main clinical applications of VNS in CVDs and the related open challenges. Finally, we presented preclinical studies that aim at overcoming VNS limitations through optimization of anatomical targets, development of novel neural interface technologies, and design of efficient VNS closed-loop protocols.
Collapse
Affiliation(s)
- Matteo Maria Ottaviani
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Fabio Vallone
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Silvestro Micera
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Fabio A. Recchia
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
21
|
Shulgach JA, Beam DW, Nanivadekar AC, Miller DM, Fulton S, Sciullo M, Ogren J, Wong L, McLaughlin BL, Yates BJ, Horn CC, Fisher LE. Selective stimulation of the ferret abdominal vagus nerve with multi-contact nerve cuff electrodes. Sci Rep 2021; 11:12925. [PMID: 34155231 PMCID: PMC8217223 DOI: 10.1038/s41598-021-91900-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Dysfunction and diseases of the gastrointestinal (GI) tract are a major driver of medical care. The vagus nerve innervates and controls multiple organs of the GI tract and vagus nerve stimulation (VNS) could provide a means for affecting GI function and treating disease. However, the vagus nerve also innervates many other organs throughout the body, and off-target effects of VNS could cause major side effects such as changes in blood pressure. In this study, we aimed to achieve selective stimulation of populations of vagal afferents using a multi-contact cuff electrode wrapped around the abdominal trunks of the vagus nerve. Four-contact nerve cuff electrodes were implanted around the dorsal (N = 3) or ventral (N = 3) abdominal vagus nerve in six ferrets, and the response to stimulation was measured via a 32-channel microelectrode array (MEA) inserted into the left or right nodose ganglion. Selectivity was characterized by the ability to evoke responses in MEA channels through one bipolar pair of cuff contacts but not through the other bipolar pair. We demonstrated that it was possible to selectively activate subpopulations of vagal neurons using abdominal VNS. Additionally, we quantified the conduction velocity of evoked responses to determine what types of nerve fibers (i.e., Aδ vs. C) responded to stimulation. We also quantified the spatial organization of evoked responses in the nodose MEA to determine if there is somatotopic organization of the neurons in that ganglion. Finally, we demonstrated in a separate set of three ferrets that stimulation of the abdominal vagus via a four-contact cuff could selectively alter gastric myoelectric activity, suggesting that abdominal VNS can potentially be used to control GI function.
Collapse
Affiliation(s)
- Jonathan A Shulgach
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.,Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dylan W Beam
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Center for Neural Basis of Cognition, Pittsburgh, PA, 15213, USA
| | - Ameya C Nanivadekar
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Center for Neural Basis of Cognition, Pittsburgh, PA, 15213, USA
| | - Derek M Miller
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Stephanie Fulton
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Michael Sciullo
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - John Ogren
- Micro-Leads Inc., Somerville, MA, 02144, USA
| | - Liane Wong
- Micro-Leads Inc., Somerville, MA, 02144, USA
| | | | - Bill J Yates
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Charles C Horn
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Lee E Fisher
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA. .,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Center for Neural Basis of Cognition, Pittsburgh, PA, 15213, USA. .,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|