1
|
Spatio-temporal characteristics of population responses evoked by microstimulation in the barrel cortex. Sci Rep 2018; 8:13913. [PMID: 30224723 PMCID: PMC6141467 DOI: 10.1038/s41598-018-32148-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022] Open
Abstract
Intra-cortical microstimulation (ICMS) is a widely used technique to artificially stimulate cortical tissue. This method revealed functional maps and provided causal links between neuronal activity and cognitive, sensory or motor functions. The effects of ICMS on neural activity depend on stimulation parameters. Past studies investigated the effects of stimulation frequency mainly at the behavioral or motor level. Therefore the direct effect of frequency stimulation on the evoked spatio-temporal patterns of cortical activity is largely unknown. To study this question we used voltage-sensitive dye imaging to measure the population response in the barrel cortex of anesthetized rats evoked by high frequency stimulation (HFS), a lower frequency stimulation (LFS) of the same duration or a single pulse stimulation. We found that single pulse and short trains of ICMS induced cortical activity extending over few mm. HFS evoked a lower population response during the sustained response and showed a smaller activation across time and space compared with LFS. Finally the evoked population response started near the electrode site and spread horizontally at a propagation velocity in accordance with horizontal connections. In summary, HFS was less effective in cortical activation compared to LFS although HFS had 5 fold more energy than LFS.
Collapse
|
2
|
Morone KA, Neimat JS, Roe AW, Friedman RM. Review of functional and clinical relevance of intrinsic signal optical imaging in human brain mapping. NEUROPHOTONICS 2017; 4:031220. [PMID: 28630881 PMCID: PMC5466092 DOI: 10.1117/1.nph.4.3.031220] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/12/2017] [Indexed: 05/30/2023]
Abstract
Intrinsic signal optical imaging (ISOI) within the first decade of its use in humans showed its capacity as a precise functional mapping tool. It is a powerful tool that can be used intraoperatively to help a surgeon to directly identify functional areas of the cerebral cortex. Its use is limited to the intraoperative setting as it requires a craniotomy and durotomy for direct visualization of the brain. It has been applied in humans to study language, somatosensory and visual cortices, cortical hemodynamics, epileptiform activity, and lesion delineation. Despite studies showing clear evidence of its usefulness in clinical care, its clinical use in humans has not grown. Impediments imposed by imaging in a human operating room setting have hindered such work. However, recent studies have been aimed at overcoming obstacles in clinical studies establishing the benefits of its use to patients. This review provides a description of ISOI and its use in human studies with an emphasis on the challenges that have hindered its widespread use and the recent studies that aim to overcome these hurdles. Clinical studies establishing the benefits of its use to patients would serve as the impetus for continued development and use in humans.
Collapse
Affiliation(s)
- Katherine A. Morone
- Vanderbilt University Medical Center, Department of Neurology, Nashville, Tennessee, United States
| | - Joseph S. Neimat
- University of Louisville School of Medicine, Department of Neurosurgery, Louisville, Kentucky, United States
| | - Anna W. Roe
- Oregon Health and Science University, Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, United States
- Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, HuaJiaChi Campus, Hangzhou, China
| | - Robert M. Friedman
- Oregon Health and Science University, Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, United States
| |
Collapse
|
3
|
Chernov MM, Chen G, Torre-Healy LA, Friedman RM, Roe AW. Microelectrode array stimulation combined with intrinsic optical imaging: A novel tool for functional brain mapping. J Neurosci Methods 2016; 263:7-14. [PMID: 26820903 DOI: 10.1016/j.jneumeth.2016.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/24/2015] [Accepted: 01/16/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND Functional brain mapping via cortical microstimulation is a widely used clinical and experimental tool. However, data are traditionally collected point by point, making the technique very time consuming. Moreover, even in skilled hands, consistent penetration depths are difficult to achieve. Finally, the effects of microstimulation are assessed behaviorally, with no attempt to capture the activity of the local cortical circuits being stimulated. NEW METHOD We propose a novel method for functional brain mapping, which combines the use of a microelectrode array with intrinsic optical imaging. The precise spacing of electrodes allows for fast, accurate mapping of the area of interest in a regular grid. At the same time, the optical window allows for visualization of local neural connections when stimulation is combined with intrinsic optical imaging. RESULTS We demonstrate the efficacy of our technique using the primate motor cortex as a sample application, using a combination of microstimulation, imaging and electrophysiological recordings during wakefulness and under anesthesia. Comparison with current method: We find the data collected with our method is consistent with previous data published by others. We believe that our approach enables data to be collected faster and in a more consistent fashion and makes possible a number of studies that would be difficult to carry out with the traditional approach. CONCLUSIONS Our technique allows for simultaneous modulation and imaging of cortical sensorimotor networks in wakeful subjects over multiple sessions which is highly desirable for both the study of cortical organization and the design of brain machine interfaces.
Collapse
Affiliation(s)
- Mykyta M Chernov
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States.
| | - Gang Chen
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States
| | - Luke A Torre-Healy
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States
| | - Robert M Friedman
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States
| | - Anna W Roe
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States
| |
Collapse
|
4
|
Spatiotemporal Profile of Voltage-Sensitive Dye Responses in the Visual Cortex of Tree Shrews Evoked by Electric Microstimulation of the Dorsal Lateral Geniculate and Pulvinar Nuclei. J Neurosci 2015; 35:11891-6. [PMID: 26311771 DOI: 10.1523/jneurosci.0717-15.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The primary visual cortex (V1) receives its main thalamic drive from the dorsal lateral geniculate nucleus (dLGN) through synaptic contacts terminating primarily in cortical layer IV. In contrast, the projections from the pulvinar nucleus to the cortex are less clearly defined. The pulvinar projects predominantly to layer I in V1, and layer IV in extrastriate areas. These projection patterns suggest that the pulvinar nucleus most strongly influences (drives) activity in cortical areas beyond V1. Should this hypothesis be true, one would expect the spatiotemporal responses evoked by pulvinar activation to be different in V1 and extrastriate areas, reflecting the different connectivity patterns. We investigated this issue by analyzing the spatiotemporal dynamics of cortical visual areas' activity following thalamic electrical microstimulation in tree shrews, using optical imaging and voltage-sensitive dyes. As expected, electrical stimulation of the dLGN induced fast and local responses in V1, as well as in extrastriate and contralateral cortical areas. In contrast, electrical stimulation of the pulvinar induced fast and local responses in extrastriate areas, followed by weak and diffuse activation in V1 and contralateral cortical areas. This study highlights spatiotemporal cortical activation characteristics induced by stimulation of first (dLGN) and high-order (pulvinar) thalamic nuclei. SIGNIFICANCE STATEMENT The pulvinar nucleus represents the main extrageniculate thalamic visual structure in higher-order mammals, but its exact role remains enigmatic. The pulvinar receive prominent inputs from virtually all visual cortical areas. Cortico-thalamo-cortical pathways through the pulvinar nuclei may then provide a complementary route for corticocortical information flow. One step toward the understanding of the role of transthalamic corticocortical pathways is to determine the nature of the signals transmitted between the cortex and the thalamus. By performing, for the first time, high spatiotemporal mesoscopic imaging on tree shrews (the primate's closest relative) through the combination of voltage-sensitive dye recordings and brain stimulation, we revealed clear evidence of distinct thalamocortical functional connectivity pattern originating from the geniculate nucleus and the pulvinar nuclei.
Collapse
|
5
|
Liao LD, Tsytsarev V, Delgado-Martínez I, Li ML, Erzurumlu R, Vipin A, Orellana J, Lin YR, Lai HY, Chen YY, Thakor NV. Neurovascular coupling: in vivo optical techniques for functional brain imaging. Biomed Eng Online 2013; 12:38. [PMID: 23631798 PMCID: PMC3655834 DOI: 10.1186/1475-925x-12-38] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/25/2013] [Indexed: 01/21/2023] Open
Abstract
Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology.
Collapse
Affiliation(s)
- Lun-De Liao
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn street, HSF-2, Baltimore, MD 21201, USA
| | - Ignacio Delgado-Martínez
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
| | - Meng-Lin Li
- Department of Electrical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd, Hsinchu 300, R.O.C, Taiwan
| | - Reha Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn street, HSF-2, Baltimore, MD 21201, USA
| | - Ashwati Vipin
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
| | - Josue Orellana
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
| | - Yan-Ren Lin
- Department of Emergency Medicine, Changhua Christian Hospital, 135 Nanshsiao Street, Changhua 500, R.O.C, Taiwan
| | - Hsin-Yi Lai
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, R.O.C, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming University, No.155, Sec.2, Linong St, Taipei 112, R.O.C, Taiwan
| | - Nitish V Thakor
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
- Department of Biomedical Engineering, Johns Hopkins University, Traylor 701/720 Rutland Ave, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Chavane F, Sharon D, Jancke D, Marre O, Frégnac Y, Grinvald A. Lateral Spread of Orientation Selectivity in V1 is Controlled by Intracortical Cooperativity. Front Syst Neurosci 2011; 5:4. [PMID: 21629708 PMCID: PMC3100672 DOI: 10.3389/fnsys.2011.00004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/14/2011] [Indexed: 11/13/2022] Open
Abstract
Neurons in the primary visual cortex receive subliminal information originating from the periphery of their receptive fields (RF) through a variety of cortical connections. In the cat primary visual cortex, long-range horizontal axons have been reported to preferentially bind to distant columns of similar orientation preferences, whereas feedback connections from higher visual areas provide a more diverse functional input. To understand the role of these lateral interactions, it is crucial to characterize their effective functional connectivity and tuning properties. However, the overall functional impact of cortical lateral connections, whatever their anatomical origin, is unknown since it has never been directly characterized. Using direct measurements of postsynaptic integration in cat areas 17 and 18, we performed multi-scale assessments of the functional impact of visually driven lateral networks. Voltage-sensitive dye imaging showed that local oriented stimuli evoke an orientation-selective activity that remains confined to the cortical feedforward imprint of the stimulus. Beyond a distance of one hypercolumn, the lateral spread of cortical activity gradually lost its orientation preference approximated as an exponential with a space constant of about 1 mm. Intracellular recordings showed that this loss of orientation selectivity arises from the diversity of converging synaptic input patterns originating from outside the classical RF. In contrast, when the stimulus size was increased, we observed orientation-selective spread of activation beyond the feedforward imprint. We conclude that stimulus-induced cooperativity enhances the long-range orientation-selective spread.
Collapse
Affiliation(s)
- Frédéric Chavane
- Department of Neurobiology, Weizmann Institute of Science Rehovot, Israel
| | | | | | | | | | | |
Collapse
|