1
|
Xu W, Huang W, Cai X, Dang Z, Hao L, Wang L. Dexamethasone Long-Term Controlled Release from Injectable Dual-Network Hydrogels with Porous Microspheres Immunomodulation Promotes Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40581-40601. [PMID: 39074361 PMCID: PMC11311136 DOI: 10.1021/acsami.4c06661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Long-lasting, controlled-release, and minimally invasive injectable platforms that provide a stable blood concentration to promote bone regeneration are less well developed. Using hexagonal mesoporous silica (HMS) loaded with dexamethasone (DEX) and poly(lactic-co-glycolic acid) (PLGA), we prepared porous DEX/HMS/PLGA microspheres (PDHP). In contrast to HMS/PLGA microspheres (HP), porous HMS/PLGA microspheres (PHP), DEX/PLGA microspheres (DP), and DEX/HMS/PLGA microspheres (DHP), PDHP showed notable immuno-coordinated osteogenic capabilities and were best at promoting bone mesenchymal stem cell proliferation and osteogenic differentiation. PDHP were combined with methacrylated silk (SilMA) and sodium alginate (SA) to form an injectable photocurable dual-network hydrogel platform that could continuously release the drug for more than 4 months. By adjusting the content of the microspheres in the hydrogel, a zero-order release hydrogel platform was obtained in vitro for 48 days. When the microsphere content was 1%, the hydrogel platform exhibited the best biocompatibility and osteogenic effects. The expression levels of the osteogenic gene alkaline phosphatases, BMP-2 and OPN were 10 to 15 times higher in the 1% group than in the 0% group, respectively. In addition, the 1% microsphere hydrogel strongly stimulated macrophage polarization to the M2 phenotype, establishing an immunological milieu that supports bone regrowth. The aforementioned outcomes were also observed in vivo. The most successful method for correcting cranial bone abnormalities in SD rats was to use a hydrogel called SilMA/SA containing 1% drug-loaded porous microspheres (PDHP/SS). The angiogenic and osteogenic effects of this treatment were also noticeably greater in the PDHP/SS group than in the control and blank groups. In addition, PDHP/SS polarized M2 macrophages and suppressed M1 macrophages in vivo, which reduced the local immune-inflammatory response, promoted angiogenesis, and cooperatively aided in situ bone healing. This work highlights the potential application of an advanced hydrogel platform for long-term, on-demand, controlled release for bone tissue engineering.
Collapse
Affiliation(s)
- Weikang Xu
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, No. 10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou 510316, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
- Guangdong
Chinese Medicine Intelligent Diagnosis and Treatment Engineering Technology
Research Centre, No.
10 Shiliugang Road, Jianghai Avenue Central, Haizhu
District, Guangzhou 510316, China
| | - Weihua Huang
- Affiliated
Qingyuan Hospital, Guangzhou Medical University,
Qingyuan People’s Hospital, No. 35, Yinquan North Road, Qingcheng District, Qingyuan 511518, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
- Department
of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou
Medical University, the Second Clinical
Medicine School of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu
District, Guangzhou 510260, China
| | - Xiayu Cai
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, No. 10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou 510316, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
| | - Zhaohui Dang
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, No. 10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou 510316, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
- National
Engineering Research Centre for Human Tissue Restoration and Function
Reconstruction, South China University of
Technology, No. 381 Wushan Road, Guangzhou 510275, China
| | - Lijing Hao
- National
Engineering Research Centre for Human Tissue Restoration and Function
Reconstruction, South China University of
Technology, No. 381 Wushan Road, Guangzhou 510275, China
| | - Liyan Wang
- Department
of Stomatology, Foshan Women’s and Children’s Hospital, No. 11 Renmin Xi Road, Chancheng
District, Foshan 528000, China
| |
Collapse
|
2
|
Toledano-Osorio M, de Luna-Bertos E, Toledano M, Manzano-Moreno FJ, García-Recio E, Ruiz C, Osorio R, Sanz M. Doxycycline-doped collagen membranes accelerate in vitro osteoblast proliferation and differentiation. J Periodontal Res 2023; 58:296-307. [PMID: 36585537 DOI: 10.1111/jre.13091] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of the study was to evaluate the effect of doxycycline- and dexamethasone-doped collagen membranes on the proliferation and differentiation of osteoblasts. BACKGROUND Collagen barrier membranes are frequently used to promote bone regeneration and to boost this biological activity their functionalization with antibacterial and immunomodulatory substances has been suggested. METHODS The design included commercially available collagen membranes doped with doxycycline (Dox-Col-M) or dexamethasone (Dex-Col-M), as well as undoped membranes (Col-M) as controls, which were placed in contact with cultured MG63 osteoblast-like cells (ATCC). Cell proliferation was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay and differentiation by measuring the alkaline phosphatase (ALP) activity using spectrophotometry. Real-time quantitative polymerase chain reaction was used to study the expression of the genes: Runx-2, OSX, ALP, OSC, OPG, RANKL, Col-I, BMP-2, BMP-7, TGF-β1, VEGF, TGF-βR1, TGF-βR2, and TGF-βR3. Scanning electron microscopy was used to study osteoblast morphology. Data were assessed using one-way analysis of variance or Kruskal-Wallis tests, once their distribution normality was assessed by Kolmogorov-Smirnov tests (p > .05). Bonferroni for multiple comparisons were carried out (p < .05). RESULTS Osteoblast proliferation was significantly enhanced in the functionalized membranes as follows: (Col-M < Dex-Col-M < Dox-Col-M). ALP activity was significantly higher on cultured osteoblasts on Dox-Col-M. Runx-2, OSX, ALP, OSC, BMP-2, BMP-7, TGF-β1, VEGF, TGF-βR1, TGF-βR2, and TGF-βR3 were overexpressed, and RANKL was down-regulated in osteoblasts cultured on Dox-Col-M. The osteoblasts cultured in contact with the functionalized membranes demonstrated an elongated spindle-shaped morphology. CONCLUSION The functionalization of collagen membranes with Dox promoted an increase in the proliferation and differentiation of osteoblasts.
Collapse
Affiliation(s)
- Manuel Toledano-Osorio
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, Granada, Spain.,Medicina Clínica y Salud Pública PhD Programme, Granada, Spain
| | - Elvira de Luna-Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria, IBS, Granada, Spain
| | - Manuel Toledano
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, Granada, Spain
| | - Francisco Javier Manzano-Moreno
- Instituto Investigación Biosanitaria, IBS, Granada, Spain.,Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, Granada, Spain
| | - Enrique García-Recio
- Instituto Investigación Biosanitaria, IBS, Granada, Spain.,Biomedical Group (BIO277), Department of Nursing, Faculty of Nursing, Campus de Melilla, University of Granada, Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria, IBS, Granada, Spain.,Institute of Neuroscience, Centro de Investigación Biomédica (CIBM), Parque de Tecnológico de la Salud (PTS), University of Granada, Granada, Spain
| | - Raquel Osorio
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, Granada, Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense, Madrid, Spain
| |
Collapse
|
3
|
Xiao T, Fan L, Liu R, Huang X, Wang S, Xiao L, Pang Y, Li D, Liu J, Min Y. Fabrication of Dexamethasone-Loaded Dual-Metal-Organic Frameworks on Polyetheretherketone Implants with Bacteriostasis and Angiogenesis Properties for Promoting Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50836-50850. [PMID: 34689546 DOI: 10.1021/acsami.1c18088] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyetheretherketone (PEEK) is a biocompatible polymer, but its clinical application is largely limited due to its inert surface. To solve this problem, a multifunctional PEEK implant is urgently fabricated. In this work, a dual-metal-organic framework (Zn-Mg-MOF74) coating is bonded to PEEK using a mussel-inspired polydopamine interlayer to prepare the coating, and then, dexamethasone (DEX) is loaded on the coating surface. The PEEK surface with the multifunctional coating provides superior hydrophilicity and favorable stability and forms an alkaline microenvironment when Mg2+, Zn2+, 2,5-dihydroxyterephthalic acid, and DEX are released due to the coating degradation. In vitro results showed that the multifunctional coating has strong antibacterial ability against both Escherichia coli and Staphylococcus aureus; it also improves human umbilical vein endothelial cell angiogenic ability and enhances rat bone marrow mesenchymal stem cell osteogenic differentiation activity. Furthermore, the in vivo rat subcutaneous infection model, chicken chorioallantoic membrane model, and rat femoral drilling model verify that the PEEK implant coated with the multifunctional coating has strong antibacterial and angiogenic ability and promotes the formation of new bone around the implant with a stronger bone-implant interface. Our findings indicate that DEX loaded on the Zn-Mg-MOF74 coating-modified PEEK implant with bacteriostasis, angiogenesis, and osteogenesis properties has great clinical application potential as bone graft materials.
Collapse
Affiliation(s)
- Tianhua Xiao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Lei Fan
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rongtao Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingwen Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Shihuan Wang
- Child Developmental & Behavioral Center, Third Affiliated Hospital of Sun Yat-sen University, No.600, Tianhe Road, Guangzhou 510630, China
| | - Liangang Xiao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiyu Pang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Da Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jia Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yonggang Min
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Zhang Y, Fang C, Zhang S, Campbell RE, Serpe MJ. Controlled Osteogenic Differentiation of Human Mesenchymal Stem Cells Using Dexamethasone-Loaded Light-Responsive Microgels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7051-7059. [PMID: 33528987 DOI: 10.1021/acsami.0c17664] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Human mesenchymal stem cells (hMSCs), which have the ability to differentiate into osteoblasts, show promise for bone tissue engineering and bone defect treatment. While there are a number of approaches currently available to accomplish this, e.g., utilizing biodegradable materials loaded with the synthetic glucocorticoid osteogenic inducer dexamethasone (DEX), there are still many disadvantages with the current technologies. Here, we generated light-responsive microgels that we showed are capable of loading and releasing DEX in a light-triggered fashion, with the released DEX being able to induce hMSC differentiation into osteoblasts. Specifically, light-responsive poly(N-isopropylacrylamide-co-nitrobenzyl methacrylate) (pNIPAm-co-NBMA) microgels were synthesized via free radical precipitation polymerization and their size, morphology, and chemical composition were characterized. We then went on to show that the microgels could be loaded with DEX (via what we think are hydrophobic interactions) and released upon exposure to UV light. We went on to show that the DEX released from the microgels was still capable of inducing osteogenic differentiation of hMSCs using an alamarBlue assay and normalized alkaline phosphatase (ALP) activity assay. We also investigated how hMSC differentiation was impacted by intermittent DEX released from UV-exposed microgels. Finally, we confirmed that the microgels themselves were not cytotoxic to hMSCs. Taken together, the DEX-loaded light-responsive microgels reported here may find a use for niche clinical applications, e.g., bone tissue repair.
Collapse
Affiliation(s)
- Yingnan Zhang
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Changhao Fang
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Shuce Zhang
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
5
|
Zhang G, Yang Y, Shi J, Yao X, Chen W, Wei X, Zhang X, Chu PK. Near-infrared light II - assisted rapid biofilm elimination platform for bone implants at mild temperature. Biomaterials 2020; 269:120634. [PMID: 33421708 DOI: 10.1016/j.biomaterials.2020.120634] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
Light-triggered therapy is a prospective method to combat implant-associated infection but near-infrared I (NIR-I) light has insufficient penetrating ability in tissues and local hyperthermia induced by the photothermal treatment may destroy surrounding healthy tissues. Herein, a near-infrared II (NIR-II) phototherapy system composed of upconversion elements doped titanium dioxide nanorods (TiO2 NRs)/curcumin (Cur)/hyaluronic acid (HA)/bone morphogenetic protein-2 (BMP-2) is designed for biomedical titanium and demonstrated to overcome the above hurdles simultaneously. Incorporation of F, Yb, and Ho not only improves the photocatalytic ability, but also renders the implants with the upconversion capability, so that the NRs can generate enough reactive oxygen species (ROS) when irradiated by the NIR-II laser. Furthermore, the combined actions of quorum sensing inhibitors, ROS, and physical puncture by NRs eliminate Staphylococcus aureus biofilms on titanium rapidly at a mild temperature of 45 °C by only requiring irradiation with the 1060 nm laser for only 15 min in vitro and in vivo. The presence of Cur mitigates the immune response and BMP-2 improves osteogenic differentiation, thus accelerating new bone formation. This low-temperature NIR-II light-triggered antibacterial platform has large potential in combating deep-tissue infection in clinical applications.
Collapse
Affiliation(s)
- Guannan Zhang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yongqiang Yang
- Jiangsu Provinces Special Equipment Safety Supervision Inspection Institute, Branch of Wuxi, National Graphene Products Quality Supervision and Inspection Center, Jiangsu, Wuxi, 214174, PR China
| | - Jing Shi
- Analytical Instrumentation Center, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Xiaohong Yao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030024, China
| | - Xiangyu Zhang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 030024, China; College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030024, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, And Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
6
|
Narrow pH response multilayer films with controlled release of ibuprofen on magnesium alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111414. [PMID: 33255016 DOI: 10.1016/j.msec.2020.111414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 12/28/2022]
Abstract
An intelligent narrow pH-triggered multilayer film was prepared on magnesium alloys, aiming to solve the implant infections during the implantation period and improve the corrosion resistance of magnesium alloys. The encapsulation of ibuprofen by chitosan (IBU@CS) makes the release of IBU sensitive to narrow pH (pH 6.8-7.4). Positive charged IBU@CS was assembled with heparin (Hep) to fabricate (Hep/IBU@CS)10 film on AZ31 alloys using layer-by-layer method. The microstructure, composition and anticorrosion properties of the film were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and electrochemical experiments. Cellular activity was studied by MTT cell viability assay. The results showed that the Hep/IBU@CS multilayer films improved the corrosion resistance of magnesium alloys. The in vitro test demonstrated that the release of IBU in the film presented narrow pH sensitivity. The films showed no obvious signs of cytotoxicity conformed by the MTT assay and presented antibacterial properties. These preliminary results demonstrate the potential use of the Hep/IBU@CS multilayer films on magnesium-based implants.
Collapse
|
7
|
Wang Y, Bian Y, Zhou L, Feng B, Weng X, Liang R. Biological evaluation of bone substitute. Clin Chim Acta 2020; 510:544-555. [PMID: 32798511 DOI: 10.1016/j.cca.2020.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 01/02/2023]
Abstract
Critical-sized defects (CSDs) caused by trauma, tumor resection, or skeletal abnormalities create a high demand for bone repair materials (BRMs). Over the years, scientists have been trying to develop BRMs and evaluate their efficacy using numerous developed methods. BRMs are characterized by osteogenesis and angiogenesis promoting properties, the latter of which has rarely been studied in vitro and in vivo. While blood vessels are required to provide nutrients. Bone mass maintains a dynamic balance under the joint action of osteolytic and osteogenic activity in which monocytes differentiate into osteolytic cells, and osteoprogenitor cells differentiate into osteogenic cells. This review would be helpful for inexperienced researchers as well as present a comprehensive overview of methods used to investigate the effect of BRMs on osteogenic cells, osteolytic cells, and blood vessels, as well as their biocompatibility and biological performance. This review is expected to facilitate further research and development of new BRMs.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yanyan Bian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lizhi Zhou
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Bin Feng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Xisheng Weng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Xu X, Li Y, Wang L, Li Y, Pan J, Fu X, Luo Z, Sui Y, Zhang S, Wang L, Ni Y, Zhang L, Wei S. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application. Biomaterials 2019; 212:98-114. [PMID: 31112825 DOI: 10.1016/j.biomaterials.2019.05.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022]
Abstract
Polyetheretherketone (PEEK) is considered a potential orthopedic/dental material because of its excellent mechanical and chemical properties (e.g., similar elastic modulus to that of human bone). However, the poor bacteriostasis and anti-inflammatory and osseointegrative properties of bioinert PEEK impede its clinical application. We previously developed a facile and versatile surface modification method using dexamethasone plus minocycline-loaded liposomes (Dex/Mino liposomes) bonded by a mussel-inspired polydopamine coating, which effectively modulated cell inflammatory response and discouraged bacterial colonization in vitro. Herein, we report the application of this multifunctional surface modification method to improve bioinert PEEK, aimed at further studying the in vitro osteogenesis and in vivo properties of Dex/Mino liposome-modified PEEK to prevent bacterial contamination, attenuate the inflammatory response, and enhance ossification for physiologic osseointegration. Our study established that the Dex/Mino liposome-modified PEEK surface presented favorable stability and cytocompatibility. Compared with bare PEEK, improved osteogenic differentiation of human mesenchymal stem cells under both osteoinductive and osteoconductive conditions was found on the functionalized surface due to the liposomal Dex releasing. In vivo bacteriostasis assay confirmed that Mino released from the functionalized surface provided an effective antibacterial effect. Moreover, the subcutaneous foreign body reaction and beagle femur implantation models corroborated the enhanced anti-inflammatory and osteointegrative properties of the functionalized PEEK. Our findings indicate that the developed Dex/Mino liposome-modified PEEK with enhanced antibacterial, anti-inflammatory, and osseointegrative capacity has great potential as an orthopedic/dental implant material for clinical application.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Yongliang Li
- Second Dental Center, School and Hospital of Stomatology, Peking University, Beijing 100081, PR China
| | - Lixin Wang
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China
| | - Yan Li
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Jijia Pan
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Xiaoming Fu
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Zuyuan Luo
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Yi Sui
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Siqi Zhang
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Liang Wang
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Yaofeng Ni
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China
| | - Lei Zhang
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China.
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China; Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China.
| |
Collapse
|
9
|
Mastalska-Popławska J, Sikora M, Izak P, Góral Z. Applications of starch and its derivatives in bioceramics. J Biomater Appl 2019; 34:12-24. [DOI: 10.1177/0885328219844972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Marek Sikora
- Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | - Piotr Izak
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland
| | - Zuzanna Góral
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland
| |
Collapse
|
10
|
Influence of magnesium particles and Pluronic F127 on compressive strength and cytocompatibility of nanocomposite injectable and moldable beads for bone regeneration. J Mech Behav Biomed Mater 2018; 88:453-462. [PMID: 30218974 DOI: 10.1016/j.jmbbm.2018.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 11/22/2022]
Abstract
A novel one-step preparation of magnesium particles and Pluronic F127 incorporated with calcium sulfate hemihydrate (CSH) and nano-hydroxyapatite (nHA) ready to use injectable or moldable beads was developed for bone tissue regeneration applications. The nanocomposite showed setting time less than 15 min, very good injectability (75-85%) and good mechanical strength (52-80 MPa). Samples immersed in SBF showed controlled degradation (40-45% reduction in weight) in 28 days. The nanocomposite bone graft was cytocompatible against MG63 osteosarcoma cells and increased the osteogenic gene expression by 2-3 folds. These results indicate that it can be a potential defect filling biomaterial for bone tissue regeneration at the fracture site.
Collapse
|
11
|
Qi H, Chen Q, Ren H, Wu X, Liu X, Lu T. Electrophoretic deposition of dexamethasone-loaded gelatin nanospheres/chitosan coating and its dual function in anti-inflammation and osteogenesis. Colloids Surf B Biointerfaces 2018; 169:249-256. [PMID: 29783150 DOI: 10.1016/j.colsurfb.2018.05.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/08/2018] [Accepted: 05/13/2018] [Indexed: 12/16/2022]
Abstract
Surface modification of metallic implants with bioactive and biodegradable coatings could be a promising approach for bone regeneration. The objective of this study was to prepare chitosan/gelatin nanospheres (GNs) composite coating for the delivery of dexamethasone (DEX). GNs with narrow size distribution and negative surface charge were firstly prepared by a two-step desolvation method. Homogeneous and stable gelatin nanospheres/chitosan (GNs/CTS) composite coatings were formed by electrophoretic deposition (EPD). Drug loading, encapsulation efficiency and in vitro release of DEX were estimated using high performance liquid chromatography (HPLC). The anti-inflammatory effect of DEX-loaded coatings on macrophage RAW 264.7 cells was assessed by the secretion of tumour necrosis factor (TNF) and inducible nitric oxide synthase (iNOS). Osteogenic differentiation of MC3T3-E1 osteoblasts on DEX-loaded coatings was investigated by osteogenic gene expression and mineralization. The DEX in GNs/CTS composite coating showed a two-stage release pattern could not only suppress inflammation during the burst release period, but also promote osteogenic differentiation in the sustained release period. This study might offer a feasible method for modifying the surface of metallic implants in bone regeneration.
Collapse
Affiliation(s)
- Hongfei Qi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Qiang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Hailong Ren
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xianglong Wu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Tingli Lu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
12
|
Paracrine interactions between mesenchymal stem cells and macrophages are regulated by 1,25-dihydroxyvitamin D3. Sci Rep 2017; 7:14618. [PMID: 29097745 PMCID: PMC5668416 DOI: 10.1038/s41598-017-15217-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSC) modulate the macrophage-mediated inflammatory response through the secretion of soluble factors. In addition to its classical effects on calcium homeostasis, 1,25-dihydroxyvitamin D3 (1,25D3) has emerged as an important regulator of the immune system. The present study investigates whether 1,25D3 modulates the paracrine interactions between MSC and macrophages. 1,25D3 stimulated MSC to produce PGE2 and VEGF and regulated the interplay between macrophages and MSC toward reduced pro-inflammatory cytokine production. Conditioned media (CM) from co-cultures of macrophages and MSC impaired MSC osteogenesis. However, MSC cultured in CM from 1,25D3-treated co-cultures showed increased matrix maturation and mineralization. Co-culturing MSC with macrophages prevented the 1,25D3-induced increase in RANKL levels, which correlated with up-regulation of OPG secretion. MSC seeding in three-dimensional (3D) substrates potentiated their immunomodulatory effects on macrophages. Exposure of 3D co-cultures to 1,25D3 further reduced the levels of soluble factors related to inflammation and chemotaxis. As a consequence of 1,25D3 treatment, the recruitment of monocytes toward CM of 3D co-cultures decreased, while the osteogenic maturation of MSC increased. These data add new insights into the pleiotropic effects of 1,25D3 on the crosstalk between MSC and macrophages and highlight the role of the hormone in bone regeneration.
Collapse
|