1
|
Gaweł M, Domalik-Pyzik P, Douglas TEL, Reczyńska-Kolman K, Pamuła E, Pielichowska K. The Effect of Chitosan on Physicochemical Properties of Whey Protein Isolate Scaffolds for Tissue Engineering Applications. Polymers (Basel) 2023; 15:3867. [PMID: 37835916 PMCID: PMC10575415 DOI: 10.3390/polym15193867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
New scaffolds, based on whey protein isolate (WPI) and chitosan (CS), have been proposed and investigated as possible materials for use in osteochondral tissue repair. Two types of WPI-based hydrogels modified by CS were prepared: CS powder was incorporated into WPI in either dissolved or suspended powder form. The optimal chemical composition of the resulting WPI/CS hydrogels was chosen based on the morphology, structural properties, chemical stability, swelling ratio, wettability, mechanical properties, bioactivity, and cytotoxicity evaluation. The hydrogels with CS incorporated in powder form exhibited superior mechanical properties and higher porosity, whereas those with CS incorporated after dissolution showed enhanced wettability, which decreased with increasing CS content. The introduction of CS powder into the WPI matrix promoted apatite formation, as confirmed by energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) analyses. In vitro cytotoxicity results confirmed the cytocompatibility of CS powder modified WPI hydrogels, suggesting their suitability as cell scaffolds. These findings demonstrate the promising potential of WPI/CS scaffolds for osteochondral tissue repair.
Collapse
Affiliation(s)
- Martyna Gaweł
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Kraków, Poland; (M.G.); (P.D.-P.); (K.R.-K.); (E.P.)
| | - Patrycja Domalik-Pyzik
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Kraków, Poland; (M.G.); (P.D.-P.); (K.R.-K.); (E.P.)
| | | | - Katarzyna Reczyńska-Kolman
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Kraków, Poland; (M.G.); (P.D.-P.); (K.R.-K.); (E.P.)
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Kraków, Poland; (M.G.); (P.D.-P.); (K.R.-K.); (E.P.)
| | - Kinga Pielichowska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Kraków, Poland; (M.G.); (P.D.-P.); (K.R.-K.); (E.P.)
| |
Collapse
|
2
|
WPI Hydrogels with a Prolonged Drug-Release Profile for Antimicrobial Therapy. Pharmaceutics 2022; 14:pharmaceutics14061199. [PMID: 35745772 PMCID: PMC9231275 DOI: 10.3390/pharmaceutics14061199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Infectious sequelae caused by surgery are a significant problem in modern medicine due to their reduction of therapeutic effectiveness and the patients’ quality of life.Recently, new methods of local antimicrobial prophylaxis of postoperative sequelae have been actively developed. They allow high local concentrations of drugs to be achieved, increasing the antibiotic therapy’s effectiveness while reducing its side effects. We have developed and characterized antimicrobial hydrogels based on an inexpensive and biocompatible natural substance from the dairy industry—whey protein isolate—as matrices for drug delivery. The release of cefazolin from the pores of hydrogel structures directly depends on the amount of the loaded drug and occurs in a prolonged manner for three days. Simultaneously with the antibiotic release, hydrogel swelling and partial degradation occurs. The WPI hydrogels absorb solvent, doubling in size in three days and retaining cefazolin throughout the duration of the experiment. The antimicrobial activity of cefazolin-loaded WPI hydrogels against Staphylococcus aureus growth is prolonged in comparison to that of the free cefazolin. The overall cytotoxic effect of cefazolin-containing WPI hydrogels is lower than that of free antibiotics. Thus, our work shows that antimicrobial WPI hydrogels are suitable candidates for local antibiotic therapy of infectious surgical sequelae.
Collapse
|
3
|
Phloroglucinol-enhanced whey protein isolate hydrogels with antimicrobial activity for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112412. [PMID: 34579921 DOI: 10.1016/j.msec.2021.112412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022]
Abstract
Aging populations in developed countries will increase the demand for implantable materials to support tissue regeneration. Whey Protein Isolate (WPI), derived from dairy industry by-products, can be processed into hydrogels with the following desirable properties for applications in tissue engineering: (i) ability to support adhesion and growth of cells; (ii) ease of sterilization by autoclaving and (iii) ease of incorporation of poorly water-soluble drugs with antimicrobial activity, such as phloroglucinol (PG), the fundamental phenolic subunit of marine polyphenols. In this study, WPI hydrogels were enriched with PG at concentrations between 0 and 20% w/v. PG solubilization in WPI hydrogels is far higher than in water. Enrichment with PG did not adversely affect mechanical properties, and endowed antimicrobial activity against a range of bacteria which occur in healthcare-associated infections (HAI). WPI-PG hydrogels supported the growth of, and collagen production by human dental pulp stem cells and - to a lesser extent - of osteosarcoma-derived MG-63 cells. In summary, enrichment of WPI with PG may be a promising strategy to prevent microbial contamination while still promoting stem cell attachment and growth.
Collapse
|
4
|
Dziadek M, Kudlackova R, Zima A, Slosarczyk A, Ziabka M, Jelen P, Shkarina S, Cecilia A, Zuber M, Baumbach T, Surmeneva MA, Surmenev RA, Bacakova L, Cholewa‐Kowalska K, Douglas TEL. Novel multicomponent organic–inorganic WPI/gelatin/CaP hydrogel composites for bone tissue engineering. J Biomed Mater Res A 2019; 107:2479-2491. [DOI: 10.1002/jbm.a.36754] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Michal Dziadek
- Department of Glass Technology and Amorphous CoatingsAGH University of Science and Technology Krakow Poland
- Department of Ceramics and RefractoriesAGH University of Science and Technology Krakow Poland
- Engineering DepartmentLancaster University Lancaster UK
| | - Radmila Kudlackova
- Engineering DepartmentLancaster University Lancaster UK
- Institute of PhysiologyCzech Academy of Sciences Prague Czech Republic
| | - Aneta Zima
- Department of Ceramics and RefractoriesAGH University of Science and Technology Krakow Poland
| | - Anna Slosarczyk
- Department of Ceramics and RefractoriesAGH University of Science and Technology Krakow Poland
| | - Magdalena Ziabka
- Department of Ceramics and RefractoriesAGH University of Science and Technology Krakow Poland
| | - Piotr Jelen
- Department of Silicate Chemistry and Macromolecular CompoundsAGH University of Science and Technology Krakow Poland
| | - Svetlana Shkarina
- Research Center Physical Materials Science and Composite MaterialsNational Research Tomsk Polytechnic University Tomsk Russian Federation
| | - Angelica Cecilia
- Institute for Photon Science and Synchrotron RadiationKarlsruhe Institute of Technology Eggenstein‐Leopoldshafen Germany
| | - Marcus Zuber
- Institute for Photon Science and Synchrotron RadiationKarlsruhe Institute of Technology Eggenstein‐Leopoldshafen Germany
- Laboratory for Applications of Synchrotron RadiationKarlsruhe Institute of Technology Eggenstein‐Leopoldshafen Germany
| | - Tilo Baumbach
- Institute for Photon Science and Synchrotron RadiationKarlsruhe Institute of Technology Eggenstein‐Leopoldshafen Germany
- Laboratory for Applications of Synchrotron RadiationKarlsruhe Institute of Technology Eggenstein‐Leopoldshafen Germany
| | - Maria A. Surmeneva
- Research Center Physical Materials Science and Composite MaterialsNational Research Tomsk Polytechnic University Tomsk Russian Federation
| | - Roman A. Surmenev
- Research Center Physical Materials Science and Composite MaterialsNational Research Tomsk Polytechnic University Tomsk Russian Federation
| | - Lucie Bacakova
- Institute of PhysiologyCzech Academy of Sciences Prague Czech Republic
| | - Katarzyna Cholewa‐Kowalska
- Department of Glass Technology and Amorphous CoatingsAGH University of Science and Technology Krakow Poland
| | - Timothy E. L. Douglas
- Engineering DepartmentLancaster University Lancaster UK
- Materials Science Institute (MSI)Lancaster University Lancaster UK
| |
Collapse
|
5
|
Demir M, Ramos-Rivera L, Silva R, Nazhat SN, Boccaccini AR. Zein-based composites in biomedical applications. J Biomed Mater Res A 2017; 105:1656-1665. [PMID: 28205372 DOI: 10.1002/jbm.a.36040] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/07/2017] [Indexed: 11/09/2022]
Abstract
Considerable research efforts have been devoted to zein-based biomaterials for tissue engineering and other biomedical applications over the past decade. The attention given to zein-based polymers is primarily attributed to their biocompatibility and biodegradability. However, due to the relatively low mechanical properties of these polymers, numerous inorganic compounds (e.g., hydroxyapatite, calcium phosphate, bioactive glasses, natural clays) have been considered in combination with zein to create composite materials in an attempt to enhance zein mechanical properties. Inorganic phases also positively impact on the hydrophilic properties of zein matrices inducing a suitable environment for cell attachment, spreading, and proliferation. This review covers available literature on zein and zein-based composite materials, with focus on the combination of zein with commonly used inorganic fillers for tissue engineering and drug delivery applications. An overview of the most recent advances in fabrication techniques for zein-based composites is presented and key applications areas and future developments in the field are highlighted. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1656-1665, 2017.
Collapse
Affiliation(s)
- Merve Demir
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Laura Ramos-Rivera
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Raquel Silva
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0C5, Canada
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, 91058, Germany
| |
Collapse
|
6
|
Das B, Dadhich P, Pal P, Dhara S. Single step synthesized sulfur and nitrogen doped carbon nanodots from whey protein: nanoprobes for longterm cell tracking crossing the barrier of photo-toxicity. RSC Adv 2016. [DOI: 10.1039/c5ra25506f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Long-term cell tracking via whey protein derived carbon nanodots.
Collapse
Affiliation(s)
- Bodhisatwa Das
- School of Medical Science and Technology
- Indian Institute of Technology
- Kharagpur
- India
| | - Prabhash Dadhich
- School of Medical Science and Technology
- Indian Institute of Technology
- Kharagpur
- India
| | - Pallabi Pal
- School of Medical Science and Technology
- Indian Institute of Technology
- Kharagpur
- India
| | - Santanu Dhara
- School of Medical Science and Technology
- Indian Institute of Technology
- Kharagpur
- India
| |
Collapse
|
7
|
Guo B, Chen Y, Lei Y, Zhang L, Zhou WY, Rabie ABM, Zhao J. Biobased Poly(propylene sebacate) as Shape Memory Polymer with Tunable Switching Temperature for Potential Biomedical Applications. Biomacromolecules 2011; 12:1312-21. [PMID: 21381645 DOI: 10.1021/bm2000378] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Baochun Guo
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yongwen Chen
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanda Lei
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Liqun Zhang
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wen You Zhou
- Discipline of Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong
| | - A. Bakr M. Rabie
- Discipline of Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong
| | - Jianqing Zhao
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Ghosh A, Ali MA, Selvanesan L, Dias GJ. Structure–function characteristics of the biomaterials based on milk-derived proteins. Int J Biol Macromol 2010; 46:404-11. [DOI: 10.1016/j.ijbiomac.2010.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/23/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
|
9
|
Biocompatibility of injectable chitosan-phospholipid implant systems. Biomaterials 2009; 30:3818-24. [PMID: 19394688 DOI: 10.1016/j.biomaterials.2009.04.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/01/2009] [Indexed: 01/12/2023]
Abstract
Injectable biomaterials are desirable therapeutic platforms due to minimal invasiveness and improved patient compliance, and are applicable in such areas as compound delivery and tissue engineering. The present work examined the biocompatibility of injectable blends composed of chitosan, phospholipid and lauric aldehyde (PoLi(gel)-LA) or lauric chloride (PoLi(gel)-LCl). In vitro cytotoxicity was evaluated in L929 and HeLa cell lines. Both blends resulted in acceptable biocompatibility, although greater cell viability was seen with PoLi(gel)-LA. In vivo biocompatibility was investigated in healthy CD-1 mice. Subcutaneous injection of the PoLi(gel)-LA blend caused no local or systemic toxicities over a four-week period while the PoLi(gel)-LCl caused immediate local toxicity. Mice injected intraperitoneally with PoLi(gel)-LA did not show physical or behavioural alterations, and body weight changes did not differ from control animals. Furthermore, histological examination of spleen and liver showed unaltered morphology. Interleukin-6 levels in mice injected with PoLi(gel)-LA did not differ from levels of control animals (6.91+/-3.61 pg/mL versus 6.92+/-5.02 pg/mL, respectively). Biodegradation occurred progressively, with 7.4+/-5.02% of the original injected mass remaining after four weeks. Results obtained herein establish the biocompatibility of PoLi(gel)-LA and indicate its potential for use in various localized therapeutic applications.
Collapse
|