1
|
Zennifer A, Praveenn Kumar S, Bagewadi S, Unnamalai S, Chellappan D, Abdulmalik S, Yu X, Sethuraman S, Sundaramurthi D, Kumbar SG. Innovative spiral nerve conduits: Addressing nutrient transport and cellular activity for critical-sized nerve defects. Bioact Mater 2025; 44:544-557. [PMID: 39584067 PMCID: PMC11583721 DOI: 10.1016/j.bioactmat.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Large-gap nerve defects require nerve guide conduits (NGCs) for complete regeneration and muscle innervation. Many NGCs have been developed using various scaffold designs and tissue engineering strategies to promote axon regeneration. Still, most are tubular with inadequate pore sizes and lack surface cues for nutrient transport, cell attachment, and tissue infiltration. This study developed a porous spiral NGC to address these issues using a 3D-printed thermoplastic polyurethane (TPU) fiber lattice. The lattice was functionalized with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun aligned (aPHBV) and randomly (rPHBV) oriented nanofibers to enhance cellular activity. TPU lattices were made with 25 %, 35 %, and 50 % infill densities to create scaffolds with varied mechanical compliance. The fabricated TPU/PHBV spiral conduits had significantly higher surface areas (25 % TPU/PHBV: 698.97 mm2, 35 % TPU/PHBV: 500.06 mm2, 50 % TPU/PHBV: 327.61 mm2) compared to commercially available nerve conduits like Neurolac™ (205.26 mm2). Aligned PHBV nanofibers showed excellent Schwann cell (RSC96) adhesion, proliferation, and neurogenic gene expression for all infill densities. Spiral TPU/PHBV conduits with 25 % and 35 % infill densities exhibited Young's modulus values comparable to Neurotube® and ultimate tensile strength like acellular cadaveric human nerves. A 10 mm sciatic nerve defect in Wistar rats treated with TPU/aPHBV NGCs demonstrated muscle innervation and axon healing comparable to autografts over 4 months, as evaluated by gait analysis, functional recovery, and histology. The TPU/PHBV NGC developed in this study shows promise as a treatment for large-gap nerve defects.
Collapse
Affiliation(s)
- Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu, India
- Department of Orthopedic Surgery, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030-4037, USA
| | - S.K. Praveenn Kumar
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu, India
| | - Shambhavi Bagewadi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu, India
| | - Swathi Unnamalai
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu, India
| | - Davidraj Chellappan
- Central Animal Facility (CAF), School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu, India
| | - Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030-4037, USA
| | - Xiaojun Yu
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on Hudson Hoboken, New Jersey, 07030, USA
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu, India
| | - Sangamesh G. Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030-4037, USA
| |
Collapse
|
2
|
Sánchez-Machado DI, Maldonado-Cabrera A, López-Cervantes J, Maldonado-Cabrera B, Chávez-Almanza AF. Therapeutic effects of electrospun chitosan nanofibers on animal skin wounds: A systematic review and meta-analysis. Int J Pharm X 2023; 5:100175. [PMID: 36950662 PMCID: PMC10025980 DOI: 10.1016/j.ijpx.2023.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Electrospun chitosan nanofibers (QSNFs) enhance the healing process by mimicking skin structure and function. The aim of this study was to analyze the therapeutic effects of QSNFs application on animal skin wounds to identify a potential direction for translational research in dermatology. The PRISMA methodology and the PICO scheme were used. A random effects model and mean difference analysis were applied for the meta-analysis. A meta-regression model was constructed, risk of bias was determined, and methodological quality assessment was performed. Of the 2370 articles collected, 54 studies were selected based on the inclusion and exclusion criteria. The wound healing area was used for building models on the 3rd, 7th, and 14th days of follow-up; the results were - 10.4% (95% CI, -18.2% to -2.6%, p = 0.001), -21.0% (95% CI, -27.3% to -14.7%, p = 0.001), and - 14.0% (95% CI, -19.1 to -8.8%, p = 0.001), respectively. Antioxidants and synthetic polymers combined with QSNFs further reduced skin wound areas (p < 0.05). The results show a more efficient reduction in wound area percentages in experimental groups than in control groups, so QSNFs could potentially be applied in translational human medicine research.
Collapse
Affiliation(s)
| | - Anahí Maldonado-Cabrera
- Technologic Institute of Sonora (ITSON), Ciudad Obregon MX-85000, Sonora, Mexico
- Mexican Social Security Institute (IMSS), Hermosillo MX-83000, Sonora, Mexico
| | - Jaime López-Cervantes
- Technologic Institute of Sonora (ITSON), Ciudad Obregon MX-85000, Sonora, Mexico
- Corresponding author.
| | | | | |
Collapse
|
3
|
Nissi JS, Vyaishnavi S, Sivaranjanee R, Sekar MP, Sundaramurthi D, Vadivel V. Development and characterization of Morinda tinctoria incorporated electrospun PHBV fiber mat for wound healing application. Macromol Res 2023. [DOI: 10.1007/s13233-023-00149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
A novel transdermal delivery route for energy supplements: Electrospun chitosan/polyvinyl alcohol nanofiber patches loaded with vitamin B 12. Int J Biol Macromol 2023; 230:123187. [PMID: 36627031 DOI: 10.1016/j.ijbiomac.2023.123187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Nanofibrous patches have attracted much attention as a solution to resolve drug delivery challenges. In this study, vitamin B12- loaded polyvinyl alcohol (PVA)/chitosan (Cs) nanofiber patch (NFP) was electrospun and cross-linked by glutaraldehyde (GA). The physicochemical properties of the nanofiber patches were assessed by morphological studies, FTIR analysis, hydrophilicity test, mechanical tests, and in-vitro evaluations including biodegradability, MTT assay, and cumulative release test of vitamin. In-vivo studies were also carried out by measuring vitamin B12 levels in the bloodstream and conducting histopathology studies on the animal models. The results showed that the mean diameter of Cs/PVA/B12 and cross-linked patch were approximately 207 and 256 nm, respectively. Cross-linking of NFP led to the lower, slower, and more continuous release of the vitamin with a slight decrease in biodegradability, and an increase in the mechanical properties of the nanofiber patches. Furthermore, the cytocompatibility assay, MTT, and in vivo results revealed no cytotoxicity of Cs/PVA/B12 NFP towards L929 cell line. No lesion or tissue damage was observed in the skin tissue of the animal models wearing these skin patches. Therefore, B12-loaded NFP can be introduced as a potential candidate for commercial transdermal routes.
Collapse
|
5
|
Yadav S, Arya DK, Pandey P, Anand S, Gautam AK, Ranjan S, Saraf SA, Mahalingam Rajamanickam V, Singh S, Chidambaram K, Alqahtani T, Rajinikanth PS. ECM Mimicking Biodegradable Nanofibrous Scaffold Enriched with Curcumin/ZnO to Accelerate Diabetic Wound Healing via Multifunctional Bioactivity. Int J Nanomedicine 2022; 17:6843-6859. [PMID: 36605559 PMCID: PMC9809174 DOI: 10.2147/ijn.s388264] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/23/2022] [Indexed: 01/01/2023] Open
Abstract
Introduction Foot ulceration is one of the most severe and debilitating complications of diabetes, which leads to the cause of non-traumatic lower-extremity amputation in 15-24% of affected individuals. The healing of diabetic foot (DF) is a significant therapeutic problem due to complications from the multifactorial healing process. Electrospun nanofibrous scaffold loaded with various wound dressing materials has excellent wound healing properties due to its multifunctional action. Purpose This work aimed to develop and characterize chitosan (CS)-polyvinyl alcohol (PVA) blended electrospun multifunctional nanofiber loaded with curcumin (CUR) and zinc oxide (ZnO) to accelerate diabetic wound healing in STZ-induced diabetic rats. Results In-vitro characterization results revealed that nanofiber was fabricated successfully using the electrospinning technique. SEM results confirmed the smooth surface with web-like fiber nanostructure diameter ranging from 200 - 250 nm. An in-vitro release study confirmed the sustained release of CUR and ZnO for a prolonged time. In-vitro cell-line studies demonstrated significantly low cytotoxicity of nanofiber in HaCaT cells. Anti-bacterial studies demonstrated good anti-bacterial and anti-biofilm activities of nanofiber. In-vivo animal studies demonstrated an excellent wound-healing efficiency of the nanofibers in STZ-induced diabetic rats. Furthermore, the ELISA assay revealed that the optimized nanofiber membrane terminated the inflammatory phases successfully by downregulating the pro-inflammatory cytokines (TNF-α, MMP-2, and MMP-9) in wound healing. In-vitro and in-vivo studies conclude that the developed nanofiber loaded with bioactive material can promote diabetic wound healing efficiently via multifunction action such as the sustained release of bioactive molecules for a prolonged time of duration, proving anti-bacterial/anti-biofilm properties and acceleration of cell migration and proliferation process during the wound healing. Discussion CUR-ZnO electrospun nanofibers could be a promising drug delivery platform with the potential to be scaled up to treat diabetic foot ulcers effectively.
Collapse
Affiliation(s)
- Sachin Yadav
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sneha Anand
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Anurag Kumar Gautam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Shivendu Ranjan
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | | | - Sanjay Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | | | - Taha Alqahtani
- Department of Pharmacology and Toxicology, King Khalid University, Abha, Saudi Arabia
| | - Paruvathanahalli Siddalingam Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India,Department of Pharmaceutical Technology, School of Pharmacy, Taylor’s University Lakeside Campus, Kuala LumpurMalaysia,Correspondence: Paruvathanahalli Siddalingam Rajinikanth, Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India, Email
| |
Collapse
|
6
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
7
|
Kaniuk Ł, Berniak K, Lichawska-Cieślar A, Jura J, Karbowniczek JE, Stachewicz U. Accelerated wound closure rate by hyaluronic acid release from coated PHBV electrospun fiber scaffolds. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Lamarra J, Rivero S, Pinotti A. Functionalized biomaterials based on poly(vinyl alcohol) and chitosan as a vehicle for controlled release of cabreuva essential oil. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Javier Lamarra
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT‐CONICET La Plata, CIC, UNLP) La Plata Argentina
- Facultad de Ciencias Exactas UNLP La Plata Argentina
| | - Sandra Rivero
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT‐CONICET La Plata, CIC, UNLP) La Plata Argentina
- Facultad de Ciencias Exactas UNLP La Plata Argentina
| | - Adriana Pinotti
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT‐CONICET La Plata, CIC, UNLP) La Plata Argentina
- Facultad de Ingeniería UNLP La Plata Argentina
| |
Collapse
|
9
|
Zhu S, He Z, Ji L, Zhang W, Tong Y, Luo J, Zhang Y, Li Y, Meng X, Bi Q. Advanced Nanofiber-Based Scaffolds for Achilles Tendon Regenerative Engineering. Front Bioeng Biotechnol 2022; 10:897010. [PMID: 35845401 PMCID: PMC9280267 DOI: 10.3389/fbioe.2022.897010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
The Achilles tendon (AT) is responsible for running, jumping, and standing. The AT injuries are very common in the population. In the adult population (21–60 years), the incidence of AT injuries is approximately 2.35 per 1,000 people. It negatively impacts people’s quality of life and increases the medical burden. Due to its low cellularity and vascular deficiency, AT has a poor healing ability. Therefore, AT injury healing has attracted a lot of attention from researchers. Current AT injury treatment options cannot effectively restore the mechanical structure and function of AT, which promotes the development of AT regenerative tissue engineering. Various nanofiber-based scaffolds are currently being explored due to their structural similarity to natural tendon and their ability to promote tissue regeneration. This review discusses current methods of AT regeneration, recent advances in the fabrication and enhancement of nanofiber-based scaffolds, and the development and use of multiscale nanofiber-based scaffolds for AT regeneration.
Collapse
Affiliation(s)
- Senbo Zhu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeju He
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lichen Ji
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu Tong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junchao Luo
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yin Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yong Li
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiang Meng
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Bi,
| |
Collapse
|
10
|
The Effect of Strontium-Substituted Hydroxyapatite Nanofibrous Matrix on Osteoblast Proliferation and Differentiation. MEMBRANES 2021; 11:membranes11080624. [PMID: 34436387 PMCID: PMC8401295 DOI: 10.3390/membranes11080624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022]
Abstract
Natural bone tissue consists primarily of bioapatite and collagen. Synthetic hydroxyapatite (HA) possesses good biocompatibility, bioactivity, and osteoconductivity due to its chemical and biological similarity to bioapatite. Hence, HA has been widely used as a bone graft, cell carrier and drug/gene delivery carrier. Moreover, strontium-substituted hydroxyapatite (SrHA) can enhance osteogenic differentiation and inhibit adipogenic differentiation of mesenchymal stem cells. Hence, SrHA has the potential to be used as a bone graft for bone regeneration. It is widely accepted that cell adhesion and most cellular activities are sensitive to the topography and molecular composition of the matrix. Electrospun polymer or polymer-bioceramic composite nanofibers have been demonstrated to enhance osteoblast differentiation. However, to date, no studies have investigated the effect of nanofibrous bioceramic matrices on osteoblasts. In this study, hydroxyapatite nanofiber (HANF) and strontium-substituted hydroxyapatite nanofiber (SrHANF) matrices were fabricated by electrospinning. The effect of the HANF components on MG63 osteoblast-like cells was evaluated by cell morphology, proliferation, alkaline phosphatase activity (ALP) and gene expression levels of RUNX2, COLI, OCN and BSP. The results showed that MG63 osteoblast-like cells exhibited higher ALP and gene expression levels of RUNX2, COLI, BSP and OCN on the SrHANF matrix than the HANF matrix. Hence, SrHANFs could enhance the differentiation of MG63 osteoblast-like cells.
Collapse
|
11
|
Fabrication of Hybrid Nanofibers from Biopolymers and Poly (Vinyl Alcohol)/Poly (ε-Caprolactone) for Wound Dressing Applications. Polymers (Basel) 2021; 13:polym13132104. [PMID: 34206747 PMCID: PMC8271691 DOI: 10.3390/polym13132104] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
The management of chronic wounds is challenging. The factors that impede wound healing include malnutrition, diseases (such as diabetes, cancer), and bacterial infection. Most of the presently utilized wound dressing materials suffer from severe limitations, including poor antibacterial and mechanical properties. Wound dressings formulated from the combination of biopolymers and synthetic polymers (i.e., poly (vinyl alcohol) or poly (ε-caprolactone) display interesting properties, including good biocompatibility, improved biodegradation, good mechanical properties and antimicrobial effects, promote tissue regeneration, etc. Formulation of these wound dressings via electrospinning technique is cost-effective, useful for uniform and continuous nanofibers with controllable pore structure, high porosity, excellent swelling capacity, good gaseous exchange, excellent cellular adhesion, and show a good capability to provide moisture and warmth environment for the accelerated wound healing process. Based on the above-mentioned outstanding properties of nanofibers and the unique properties of hybrid wound dressings prepared from poly (vinyl alcohol) and poly (ε-caprolactone), this review reports the in vitro and in vivo outcomes of the reported hybrid nanofibers.
Collapse
|
12
|
Amirsadeghi A, Khorram M, Hashemi SS. Preparation of multilayer electrospun nanofibrous scaffolds containing soluble eggshell membrane as potential dermal substitute. J Biomed Mater Res A 2021; 109:1812-1827. [PMID: 33763964 DOI: 10.1002/jbm.a.37174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/24/2020] [Accepted: 03/12/2021] [Indexed: 12/31/2022]
Abstract
Electrospinning of natural and synthetic polymers has shown to be a great candidate for the fabrication of tissue engineering scaffolds due to their similarity to the nanofibrous structure of natural extracellular matrix (ECM). Moreover, the addition of ECM-like proteins could enhance the biocompatibility of these scaffolds. In this study, soluble eggshell protein (SEP) was first extracted and synthesized from the raw eggshell membrane. The characteristics and biocompatibility of the extracted SEP were evaluated using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) analysis and 3-(4,5- dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide) (MTT) assay. For scaffolds fabrication, a three-layer nanofibrous composite structure was produced using the electrospinning technique. The outer layers composed of polyvinyl alcohol, chitosan, and extracted SEP while the middle layer composed of polyethylene oxide, gelatin, and zinc oxide nanoparticles (ZnO-NPs). For each layer, the electrospinning parameters were adjusted to form bead-free fibers. To improve fibers' stability against body fluids, the produced fibers were crosslinked using glutaraldehyde vapor. Several techniques such as scanning electron microscopy (SEM), energy dispersive X-ray, ATR-FTIR, swelling, tensile test, in vitro biodegradation, and MTT assay were implemented to evaluate the physical, chemical, and biological characterization of the fabricated fibers. The results showed that crosslinked fibers have adequate stability in water, suitable mechanical properties, and promising water uptake capacity. The MTT results also revealed that SEP and ZnO-NPs could increase scaffolds biocompatibility. Moreover, SEM photographs of cultured fibroblasts cells on the scaffolds showed that cells were well attached on the scaffolds and preserve their natural spindle shapes. Altogether, our findings demonstrated that the produced three-layer composite scaffolds are potential candidates for skin tissue engineering.
Collapse
Affiliation(s)
- Armin Amirsadeghi
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Mohammad Khorram
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Seyeddeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Tripathi S, Singh BN, Divakar S, Kumar G, Mallick SP, Srivastava P. Design and evaluation of ciprofloxacin loaded collagen chitosan oxygenating scaffold for skin tissue engineering. Biomed Mater 2021; 16:025021. [PMID: 33291087 DOI: 10.1088/1748-605x/abd1b8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypoxia and sepsis are key concerns towards modern regenerative medicine. Oxygen generating biomaterials having antibacterial property aims to answer these concerns. Hypoxia promotes reactive oxygen species at the implant site that delays wound healing. Sepsis in wound also contributes to delay in wound healing. Therefore, scaffold with antibacterial property and oxygen-producing capacities have shown ability to promote wound healing. In the present study oxygen releasing, ciprofloxacin loaded collagen chitosan scaffold was fabricated for sustained oxygen delivery. Calcium peroxide (CPO) acted as a chemical oxygen source. Oxygen release pattern exhibited a sustained release of oxygen with uniform deposition of CPO on the scaffold. The drug release study shows a prolonged, continuous, and sustained release of ciprofloxacin. Cell culture studies depict that scaffold has suitable cell attachment and migration properties for fibroblasts. In vivo studies performed in the skin flip model visually shows better wound healing and less necrosis. Histological studies show the maintenance of tissue architecture and the deposition of collagen. The results demonstrate that the proposed CPO coated ciprofloxacin loaded collagen-chitosan scaffold can be a promising candidate for skin tissue engineering.
Collapse
Affiliation(s)
- Satyavrat Tripathi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Bhisham Narayan Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
- Department of Ageing, School of Life Sciences, Manipal Academy of Higher Education, Manipal University, Manipal, Karnataka 576104, India
| | - Singh Divakar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gaurav Kumar
- Department of Clinical Research, School of Biosciences and Biomedical Engineering, Galgotias University, Greater Noida 203201, India
| | | | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
14
|
Zhang T, Wang W, Cheng R, Tang Z, Chen Z, Cui W, Lian B, Zheng H, Tang H. Postoperative placement of an anti-fibrotic poly L-lactide electrospun fibrous membrane after sinus surgery. Int Forum Allergy Rhinol 2020; 10:1285-1294. [PMID: 33029955 DOI: 10.1002/alr.22666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/11/2020] [Accepted: 07/12/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Endoscopic sinus surgery (ESS) is used to treat chronic rhinosinusitis. However, nasal adhesions often develop postoperatively, triggered by chronic inflammation and local fibrosis. A poly L-lactide (PLLA) electrospun microfibrous membrane is a functional biodegradable material that can be placed on the wound surface to protect the wound and prevent adhesions. METHODS We divided 24 rabbits randomly into 2 groups, a control operation group (group A) and an operation+PLLA placement group (group B). We investigated the anti-fibrotic effects of the topical biomaterial after sinus surgery. We placed PLLA fibrous membranes in the sinus cavity of group B rabbits after sinus surgery, and then evaluated changes in the mucosa and in the levels of collagen fibers, interleukin 4 (IL-4), IL-8, tumor necrosis factor α (TNF-α), transforming growth factor β1 (TGF-β1), α-smooth muscle actin (α-SMA), and collagen I (Col I), using morphological and molecular biological methods. RESULTS PLLA fibrous membranes did not inhibit the synthesis of messenger RNAs (mRNAs) encoding IL-4, IL-8, or TNF-α, or the protein levels, indicating that the membrane did not have an anti-inflammatory effect. However, the membrane inhibited the synthesis of mRNAs encoding TGF-β1, α-SMA, and Col I, and reduced collagen production. Thus, the nanostructured membrane inhibited fibroblast proliferation. CONCLUSION The PLLA membrane had anti-fibrotic effects, and may be used to prevent fibrosis and adhesions after ESS in human patients.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Nanjing 4th Retired Cadres Retreat, Jiangsu Military Region, Jiangsu, China
| | - Wei Wang
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Ruoyu Cheng
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziying Tang
- MCD biology, University of California, Santa Cruz, Santa Cruz, CA
| | - Zhengming Chen
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bijun Lian
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Hongliang Zheng
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Haihong Tang
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
15
|
Madruga LYC, Balaban RC, Popat KC, Kipper MJ. Biocompatible Crosslinked Nanofibers of Poly(Vinyl Alcohol)/Carboxymethyl-Kappa-Carrageenan Produced by a Green Process. Macromol Biosci 2020; 21:e2000292. [PMID: 33021064 DOI: 10.1002/mabi.202000292] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/19/2020] [Indexed: 12/26/2022]
Abstract
This study presents a new type of biocompatible nanofiber based on poly(vinyl alcohol) (PVA) and carboxymethyl-kappa-carrageenan (CMKC) blends, produced with no generation of hazardous waste. The nanofibers are produced by electrospinning using PVA:CMKC blends with ratios of 1:0, 1:0.25, 1:0.4, 1:0.5, and 1:0.75 (w/w PVA:CMKC) in aqueous solution, followed by thermal crosslinking. The diameter of the fibers is in the nanometer scale and below 300 nm. Fourier transform infrared spectroscopy shows the presence of the carboxyl and sulfate groups in all the fibers with CMKC. The nanofibers from water-soluble polymers are stabilized by thermal crosslinking. The incorporation of CMKC improves cytocompatibility, biodegradability, cell growth, and cell adhesion, compared to PVA nanofibers. Furthermore, the incorporation of CMKC modulates phenotype of human adipose-derived stem cells (ADSCs). PVA/CMKC nanofibers enhance ADSC response to osteogenic differentiation signals and are therefore good candidates for application in tissue engineering to support stem cells.
Collapse
Affiliation(s)
- Liszt Y C Madruga
- Institute of Chemistry, Federal University of Rio Grande do Norte (UFRN), Natal, RN, 59078-970, Brazil.,Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Rosangela C Balaban
- Institute of Chemistry, Federal University of Rio Grande do Norte (UFRN), Natal, RN, 59078-970, Brazil
| | - Ketul C Popat
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO, 80523, USA.,School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA.,Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Matt J Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA.,School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO, 80523, USA.,School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
16
|
Huang Z, Wang W, Wang Q, Hojnacki T, Wang Y, Fu Y, Wang W. Coaxial nanofiber scaffold with super-active platelet lysate to accelerate the repair of bone defects. RSC Adv 2020; 10:35776-35786. [PMID: 35517109 PMCID: PMC9056889 DOI: 10.1039/d0ra06305c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/21/2020] [Indexed: 01/02/2023] Open
Abstract
To develop biocomposite materials with the local sustained-release function of biological factors to promote bone defect repair, coaxial electrospinning technology was performed to prepare a coaxial nanofiber scaffold with super-active platelet lysate (sPL), containing gelatin/PCL/PLLA. The nanofibers exhibited a uniform bead-free round morphology, observed by a scanning electron microscope (SEM), and the core/shell structure was confirmed by a transmission electron microscope (TEM). A mixture of polycaprolactone and sPL encapsulated by hydrophilic gelatin and hydrophobic l-polylactic acid can continuously release bioactive factors for up to 40 days. Encapsulation of sPL resulted in enhanced cell adhesion and proliferation, and sPL loading can increase the osteogenesis of osteoblasts. Besides, in vivo studies demonstrated that sPL-loaded biocomposites promoted the repair of skull defects in rats. Therefore, these results indicate that core-shell nanofibers loaded with sPL can add enormous potential to the clinical application of this scaffold in bone tissue engineering.
Collapse
Affiliation(s)
- Zhipeng Huang
- The First Affiliated Hospital of Harbin Medical University 23 You Zheng Street Harbin 150001 China
| | - Wantao Wang
- The First Affiliated Hospital of Harbin Medical University 23 You Zheng Street Harbin 150001 China
| | - Qinglong Wang
- The First Affiliated Hospital of Harbin Medical University 23 You Zheng Street Harbin 150001 China
| | - Taylor Hojnacki
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania 421 Curie Blvd. Philadelphia PA 19014 USA
| | - Yanli Wang
- The First Affiliated Hospital of Harbin Medical University 23 You Zheng Street Harbin 150001 China
| | - Yansheng Fu
- Tianqing Stem Cell Co., Ltd. Jubao Second Road, Science and Technology Innovation City, Songbei District Harbin 150000 China
| | - Wenbo Wang
- The First Affiliated Hospital of Harbin Medical University 23 You Zheng Street Harbin 150001 China
| |
Collapse
|
17
|
Keirouz A, Chung M, Kwon J, Fortunato G, Radacsi N. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1626. [DOI: 10.1002/wnan.1626] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Antonios Keirouz
- School of Engineering, Institute for Materials and Processes The University of Edinburgh Edinburgh UK
- Empa, Swiss Federal Laboratories for Materials Science and Technology Laboratory for Biomimetic Membranes and Textiles St. Gallen Switzerland
| | - Michael Chung
- School of Engineering, Institute for Materials and Processes The University of Edinburgh Edinburgh UK
- Empa, Swiss Federal Laboratories for Materials Science and Technology Laboratory for Biomimetic Membranes and Textiles St. Gallen Switzerland
| | - Jaehoon Kwon
- School of Engineering, Institute for Materials and Processes The University of Edinburgh Edinburgh UK
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Materials Science and Technology Laboratory for Biomimetic Membranes and Textiles St. Gallen Switzerland
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes The University of Edinburgh Edinburgh UK
| |
Collapse
|
18
|
Fabrication of electrospun hydrogels loaded with Ipomoea pes-caprae (L.) R. Br extract for infected wound. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Abd Elhaleem MB, Farghali AA, El-Shahawy AAG, Abo El-Ela FI, Eldine ZE, Mahmoud RK. Chemisorption and sustained release of cefotaxime between a layered double hydroxide and polyvinyl alcohol nanofibers for enhanced efficacy against second degree burn wound infection. RSC Adv 2020; 10:13196-13214. [PMID: 35492140 PMCID: PMC9051420 DOI: 10.1039/c9ra08355c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Zn–Al layered double hydroxides (LDHs) were synthesized by a chemical method, while polyvinyl alcohol (PVA) nanofibers were fabricated by an electrospinning approach; we also synthesized Zn–Al LDH/cefotaxime (cefotax), Zn–Al LDH@PVA, and Zn–Al LDH/cefotax@PVA (LCP). Characterizations were performed by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, Brunauer–Emmett–Teller analysis, thermogravimetric-differential thermal analysis techniques, dynamic light scattering, X ray-florescence, and carbon, hydrogen, and nitrogen (CHN) analyses. The adsorption isotherm of cefotax and its entrapment percentage, release, and kinetics were also investigated. The results confirmed the elemental constituents of the mentioned formulas, which exhibited different degrees of crystallinity and different morphologies. Besides, these formulas were tested in vitro as antimicrobial agents and applied in vivo against second-degree wound burns induced in rats' skin. The adsorption of cefotax occurred chemically, and the experimental data were fitted with different isotherm models, where the Freundlich and Toth models gave the best fits. The entrapment percentage in LDH/cefotax was 77.41% and in LDH/cefotax@PVA, it was 67.83%. The sustained release of cefotax from LDH and LCP was attainable; the release percentages were 89.31% and 81.55% in up to 12 h, respectively. The release kinetics of cefotax from LDH fitted well with first-order kinetics, while that for LCP was parabolic. The formulas showed uneven antimicrobial effects against Gram-positive and Gram-negative bacteria; the best effect was exhibited by Zn–Al LDH/cefotax@PVA due to its sustained release. Finally, investigating the possibility of using these formulas in the clinical setting should be considered. This study succeeded to formulate, characterize, and investigate cefotax release and kinetics, and to compare cetofax with other known antibacterial agents.![]()
Collapse
Affiliation(s)
| | - Ahmed A. Farghali
- Materials Science and Nanotechnology Dept
- Faculty of Postgraduate Studies for Advanced Sciences (PSAS)
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Ahmed. A. G. El-Shahawy
- Materials Science and Nanotechnology Dept
- Faculty of Postgraduate Studies for Advanced Sciences (PSAS)
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Fatma I. Abo El-Ela
- Pharmacology Department
- Faculty of Veterinary Medicine
- Beni-Suef University
- 62511 Beni-Suef
- Egypt
| | - Zienab E. Eldine
- Materials Science and Nanotechnology Dept
- Faculty of Postgraduate Studies for Advanced Sciences (PSAS)
- Beni-Suef University
- Beni-Suef
- Egypt
| | | |
Collapse
|
20
|
Abazari MF, Nejati F, Nasiri N, Khazeni ZAS, Nazari B, Enderami SE, Mohajerani H. Platelet-rich plasma incorporated electrospun PVA-chitosan-HA nanofibers accelerates osteogenic differentiation and bone reconstruction. Gene 2019; 720:144096. [DOI: 10.1016/j.gene.2019.144096] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
|
21
|
Kooshki H, Ghollasi M, Halabian R, Kazemi NM. Osteogenic differentiation of preconditioned bone marrow mesenchymal stem cells with lipopolysaccharide on modified poly-l-lactic-acid nanofibers. J Cell Physiol 2018; 234:5343-5353. [PMID: 30515792 DOI: 10.1002/jcp.26567] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/27/2018] [Indexed: 11/10/2022]
Abstract
Tissue engineering is an interdisciplinary expertise that involves the use of nanoscaffolds for repairing, modifying, and removing tissue defects and formation of new tissues. Mesenchymal stem cells (MSCs) can differentiate into a variety of cell types, and they are attractive candidates for tissue engineering. In the current study, the electrospinning process was used for nanofiber preparation, based on a poly-l-lactic-acid (PLLA) polymer. The surface was treated with O 2 plasma to enhance hydrophilicity, cell attachment, growth, and differentiation potential. The nanoscaffolds were preconditioned with lipopolysaccharide (LPS) to enhance induction of differentiation. The nanoscaffolds were categorized by contact angle measurements and scanning electron microscopy. The MTT assay was used to analyze the rate of growth and proliferation of cells. Osteogenic differentiation of cultured MSCs was evaluated on nanofibers using common osteogenic markers, such as alkaline phosphatase activity, calcium mineral deposition, quantitative real-time polymerase chain reaction, and immunocytochemical analysis. Based on the in vitro results, primed MSCs with LPS on the PLLA nanoscaffold significantly enhanced the proliferation and osteogenesis of MSCs. Also, the combination of LPS and electrospun nanofibers can provide a new and suitable matrix to support stem cells' differentiation for bone tissue engineering.
Collapse
Affiliation(s)
- Hamideh Kooshki
- Department of Medical Nanotechnology, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Negar M Kazemi
- Department of Nanochemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| |
Collapse
|
22
|
Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol 2018; 120:385-393. [DOI: 10.1016/j.ijbiomac.2018.08.057] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
|
23
|
Im H, Kim SH, Kim SH, Jung Y. Skin Regeneration with a Scaffold of Predefined Shape and Bioactive Peptide Hydrogels. Tissue Eng Part A 2018; 24:1518-1530. [DOI: 10.1089/ten.tea.2017.0489] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Heejung Im
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Su Hee Kim
- Advanced Manufacturing Research Center Korea, Jeonju, Republic of Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Youngmee Jung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
24
|
Thomas MS, Pillai PKS, Faria M, Cordeiro N, Barud H, Thomas S, Pothen LA. Electrospun polylactic acid-chitosan composite: a bio-based alternative for inorganic composites for advanced application. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:137. [PMID: 30120580 DOI: 10.1007/s10856-018-6146-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Fabricating novel materials for biomedical applications mostly require the use of biodegradable materials. In this work biodegradable materials like polylactic acid (PLA) and chitosan (CHS) were used for designing electrospun mats. This work reports the physical and chemical characterization of the PLA-CHS composite, prepared by the electrospinning technique using a mixed solvent system. The addition of chitosan into PLA, offered decrease in fiber diameter in the composites with uniformity in the distribution of fibers with an optimum at 0.4wt% CHS. The fiber formation and the reduction in fiber diameter were confirmed by the SEM micrograph. The inverse gas chromatography and contact angle measurements supported the increase of hydrophobicity of the composite membrane with increase of filler concentration. The weak interaction between PLA and chitosan was confirmed by Fourier transform infrared spectroscopy and thermal analysis. The stability of the composite was established by zeta potential measurements. Cytotoxicity studies of the membranes were also carried out and found that up to 0.6% CHS the composite material was noncytotoxic. The current findings are very important for the design and development of new materials based on polylactic acid-chitosan composites for environmental and biomedical applications.
Collapse
Affiliation(s)
- Merin Sara Thomas
- International and Interuniversity Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686 560, India
- Department of Chemistry, Mar Thoma College, Kuttapuzha P.O., Tiruvalla, Kerala, 689103, India
- Department of Chemistry, C.M.S. College, Kottayam, Kerala, 686001, India
| | - Prasanth K S Pillai
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, S7N0W4, Canada
| | - Marisa Faria
- Faculty of Exact Science and Engineering, University of Madeira, 9000-390, Funchal, Portugal
- CIIMAR, University of Porto, 4450-208, Matosinhos, Portugal
| | - Nereida Cordeiro
- Faculty of Exact Science and Engineering, University of Madeira, 9000-390, Funchal, Portugal
- CIIMAR, University of Porto, 4450-208, Matosinhos, Portugal
| | - Hernane Barud
- Institute of Chemistry-UNESP, CP 355, Zip 14801-970, Araraquara, SP, 14801-970, Brazil
| | - Sabu Thomas
- International and Interuniversity Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686 560, India
| | - Laly A Pothen
- International and Interuniversity Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686 560, India.
- Department of Chemistry, C.M.S. College, Kottayam, Kerala, 686001, India.
| |
Collapse
|
25
|
Carboxymethyl konjac glucomannan - crosslinked chitosan sponges for wound dressing. Int J Biol Macromol 2018; 112:1225-1233. [DOI: 10.1016/j.ijbiomac.2018.02.075] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/31/2018] [Accepted: 02/11/2018] [Indexed: 02/08/2023]
|
26
|
Sheikholeslam M, Wright MEE, Jeschke MG, Amini-Nik S. Biomaterials for Skin Substitutes. Adv Healthc Mater 2018; 7:10.1002/adhm.201700897. [PMID: 29271580 PMCID: PMC7863571 DOI: 10.1002/adhm.201700897] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/13/2017] [Indexed: 12/13/2022]
Abstract
Patients with extensive burns rely on the use of tissue engineered skin due to a lack of sufficient donor tissue, but it is a challenge to identify reliable and economical scaffold materials and donor cell sources for the generation of a functional skin substitute. The current review attempts to evaluate the performance of the wide range of biomaterials available for generating skin substitutes, including both natural biopolymers and synthetic polymers, in terms of tissue response and potential for use in the operating room. Natural biopolymers display an improved cell response, while synthetic polymers provide better control over chemical composition and mechanical properties. It is suggested that not one material meets all the requirements for a skin substitute. Rather, a composite scaffold fabricated from both natural and synthetic biomaterials may allow for the generation of skin substitutes that meet all clinical requirements including a tailored wound size and type, the degree of burn, the patient age, and the available preparation technique. This review aims to be a valuable directory for researchers in the field to find the optimal material or combination of materials based on their specific application.
Collapse
Affiliation(s)
- Mohammadali Sheikholeslam
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
| | - Meghan E E Wright
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Saeid Amini-Nik
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Functional electrospun fibers for the treatment of human skin wounds. Eur J Pharm Biopharm 2017; 119:283-299. [PMID: 28690200 DOI: 10.1016/j.ejpb.2017.07.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
Wounds are trauma induced defects of the human skin involving a multitude of endogenous biochemical events and cellular reactions of the immune system. The healing process is extremely complex and affected by the patient's physiological conditions, potential implications like infectious pathogens and inflammation as well as external factors. Due to increasing incidence of chronic wounds and proceeding resistance of infection pathogens, there is a strong need for effective therapeutic wound care. In this context, electrospun fibers with diameters in the nano- to micrometer range gain increasing interest. While resembling the structure of the native human extracellular matrix, such fiber mats provide physical and mechanical protection (including protection against bacterial invasion). At the same time, the fibers allow for gas exchange and prevent occlusion of the wound bed, thus facilitating wound healing. In addition, drugs can be incorporated within such fiber mats and their release can be adjusted by the material and dimensions of the individual fibers. The review gives a comprehensive overview about the current state of electrospun fibers for therapeutic application on skin wounds. Different materials as well as fabrication techniques are introduced including approaches for incorporation of drugs into or drug attachment onto the fiber surface. Against the background of wound pathophysiology and established therapy approaches, the therapeutic potential of electrospun fiber systems is discussed. A specific focus is set on interactions of fibers with skin cells/tissues as well as wound pathogens and strategies to modify and control them as key aspects for developing effective wound therapeutics. Further, advantages and limitations of controlled drug delivery from fiber mats to skin wounds are discussed and a future perspective is provided.
Collapse
|
28
|
Skin Tissue Engineering: Biological Performance of Electrospun Polymer Scaffolds and Translational Challenges. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0035-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Preparation, characterization, antibacterial properties, and hemostatic evaluation of ibuprofen-loaded chitosan/gelatin composite films. J Appl Polym Sci 2017. [DOI: 10.1002/app.45441] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Photocrosslinked maleilated chitosan/methacrylated poly (vinyl alcohol) bicomponent nanofibrous scaffolds for use as potential wound dressings. Carbohydr Polym 2017; 168:220-226. [DOI: 10.1016/j.carbpol.2017.03.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 11/22/2022]
|
31
|
Yao CH, Lee CY, Huang CH, Chen YS, Chen KY. Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629050 DOI: 10.1016/j.msec.2017.05.076] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A bilayer membrane (GKU) with a commercial polyurethane wound dressing as an outer layer and electrospun gelatin/keratin nanofibrous mat as an inner layer was fabricated as a novel wound dressing. Scanning electron micrographs showed that gelatin/keratin nanofibers had a uniform morphology and bead-free structure with average fiber diameter of 160.4nm. 3-(4,5-Dimethylthiazolyl)-2,5-diphenyltetrazolium bromide assay using L929 fibroblast cells indicated that the residues released from the gelatin/keratin composite nanofibrous mat accelerated cell proliferation. Cell attachment experiments revealed that adhered cells spread better and migrated deeper into the gelatin/keratin nanofibrous mat than that into the gelatin nanofibrous mat. In animal studies, compared with the bilayer membrane without keratin, gauze and commercial wound dressing, Comfeel®, GKU membrane gave much more number of blood vessels and a greater reduction in wound area at 4days, and better wound repair at 14days with a thicker epidermis and larger number of newly formed hair follicles. GKU membrane, thus, could be a good candidate for wound dressing applications.
Collapse
Affiliation(s)
- Chun-Hsu Yao
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung 40202, Taiwan; Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40202, Taiwan; School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
| | - Chia-Yu Lee
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan
| | - Chiung-Hua Huang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Yueh-Sheng Chen
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
| | - Kuo-Yu Chen
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| |
Collapse
|
32
|
Versatility of Chitosan-Based Biomaterials and Their Use as Scaffolds for Tissue Regeneration. ScientificWorldJournal 2017; 2017:8639898. [PMID: 28567441 PMCID: PMC5439263 DOI: 10.1155/2017/8639898] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/10/2017] [Accepted: 04/03/2017] [Indexed: 01/05/2023] Open
Abstract
Chitosan is a naturally occurring polysaccharide obtained from chitin, present in abundance in the exoskeletons of crustaceans and insects. It has aroused great interest as a biomaterial for tissue engineering on account of its biocompatibility and biodegradation and its affinity for biomolecules. A significant number of research groups have investigated the application of chitosan as scaffolds for tissue regeneration. However, there is a wide variability in terms of physicochemical characteristics of chitosan used in some studies and its combinations with other biomaterials, making it difficult to compare results and standardize its properties. The current systematic review of literature on the use of chitosan for tissue regeneration consisted of a study of 478 articles in the PubMed database, which resulted, after applying inclusion criteria, in the selection of 61 catalogued, critically analysed works. The results demonstrated the effectiveness of chitosan-based biomaterials in 93.4% of the studies reviewed, whether or not combined with cells and growth factors, in the regeneration of various types of tissues in animals. However, the absence of clinical studies in humans, the inadequate experimental designs, and the lack of information concerning chitosan's characteristics limit the reproducibility and relevance of studies and the clinical applicability of chitosan.
Collapse
|
33
|
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
34
|
Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:271-281. [PMID: 28532030 DOI: 10.1016/j.msec.2017.03.199] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/21/2017] [Accepted: 03/21/2017] [Indexed: 01/29/2023]
Abstract
Fibrous mats built from biopolymer have been extensively explored for tissue engineering due mainly to their mimic structure to the extracellular matrix. The incorporation of drug in such scaffolds represents a growing interest for control drug delivery system in order to promote the tissue repair. In the present work, we present an experimental investigation of morphological, thermal, mechanical, drug release, antibacterial and cytotoxicity properties of electrospun PVA/Chitosan and PVA/Chitosan/Tetracycline hydrochloride (TCH) mats for wound dressing. Fibrous mats with cross-linked three-dimensional nanofibers were formed from the polymer blends. A uniform incorporation of drug was achieved along the nanofibers with not significant change on the morphological and thermal properties of the mats. Furthermore, the TCH release profile with a burst delivery during the first 2h allows an effective antibacterial activity on the Gram-negative Escherichia coli as well as on the Gram-positive Staphylococci epidermidis and Staphylococcus aureus. In vitro indirect MTT assay also showed that the developed drug-loaded nanofibrous scaffolds have good cytocompatibility, which was confirmed by scratch assay, indicating that the investigated scaffold may be used as antibacterial wound dressing for healing promotion.
Collapse
|
35
|
Mohammadi MH, Heidary Araghi B, Beydaghi V, Geraili A, Moradi F, Jafari P, Janmaleki M, Valente KP, Akbari M, Sanati-Nezhad A. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies. Adv Healthc Mater 2016; 5:2459-2480. [PMID: 27548388 DOI: 10.1002/adhm.201600439] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/30/2016] [Indexed: 12/19/2022]
Abstract
In recent years, both tissue engineering and microfluidics have significantly contributed in engineering of in vitro skin substitutes to test the penetration of chemicals or to replace damaged skins. Organ-on-chip platforms have been recently inspired by the integration of microfluidics and biomaterials in order to develop physiologically relevant disease models. However, the application of organ-on-chip on the development of skin disease models is still limited and needs to be further developed. The impact of tissue engineering, biomaterials and microfluidic platforms on the development of skin grafts and biomimetic in vitro skin models is reviewed. The integration of tissue engineering and microfluidics for the development of biomimetic skin-on-chip platforms is further discussed, not only to improve the performance of present skin models, but also for the development of novel skin disease platforms for drug screening processes.
Collapse
Affiliation(s)
- Mohammad Hossein Mohammadi
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Behnaz Heidary Araghi
- Department of Materials Science and Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Vahid Beydaghi
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Armin Geraili
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Farshid Moradi
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Parya Jafari
- Department of Electrical Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Mohsen Janmaleki
- Department of Mechanical and Manufacturing Engineering; Center for Bioengineering Research and Education; University of Calgary; 2500 University Drive NW Calgary AB Canada
| | - Karolina Papera Valente
- Department of Mechanical Engineering, and Center for Biomedical Research; University of Victoria; Victoria BC Canada
| | - Mohsen Akbari
- Department of Mechanical Engineering, and Center for Biomedical Research; University of Victoria; Victoria BC Canada
| | - Amir Sanati-Nezhad
- Department of Mechanical and Manufacturing Engineering; Center for Bioengineering Research and Education; University of Calgary; 2500 University Drive NW Calgary AB Canada
| |
Collapse
|
36
|
Wang X, Zhang D, Wang J, Tang R, Wei B, Jiang Q. Succinyl pullulan-crosslinked carboxymethyl chitosan sponges for potential wound dressing. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1182912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Kuppan P, Sethuraman S, Krishnan UM. Interaction of human smooth muscle cells on random and aligned nanofibrous scaffolds of PHBV and PHBV-gelatin. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1163562] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
PLGA nanofibers blended with designer self-assembling peptides for peripheral neural regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:329-37. [DOI: 10.1016/j.msec.2016.01.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/31/2015] [Accepted: 01/24/2016] [Indexed: 12/30/2022]
|
39
|
Torres-Giner S, Pérez-Masiá R, Lagaron JM. A review on electrospun polymer nanostructures as advanced bioactive platforms. POLYM ENG SCI 2016. [DOI: 10.1002/pen.24274] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Avenida Agustín Escardino 7; Paterna 46980 Spain
| | - Rocío Pérez-Masiá
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Avenida Agustín Escardino 7; Paterna 46980 Spain
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Avenida Agustín Escardino 7; Paterna 46980 Spain
| |
Collapse
|
40
|
Rath G, Hussain T, Chauhan G, Garg T, Goyal AK. Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:242-53. [DOI: 10.1016/j.msec.2015.08.050] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 02/02/2023]
|
41
|
Kuppan P, Sethuraman S, Krishnan UM. Fabrication and investigation of nanofibrous matrices as esophageal tissue scaffolds using human non-keratinized, stratified, squamous epithelial cells. RSC Adv 2016. [DOI: 10.1039/c5ra24303c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Clinical conditions of the esophagus are conventionally treated by autologous grafts and are generally associated with complications such as leakage, infection and stenosis necessitating an alternative synthetic graft with superior outcomes.
Collapse
Affiliation(s)
- Purushothaman Kuppan
- Departments of Chemistry, Bioengineering & Pharmacy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613 401
| | - Swaminathan Sethuraman
- Departments of Chemistry, Bioengineering & Pharmacy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613 401
| | - Uma Maheswari Krishnan
- Departments of Chemistry, Bioengineering & Pharmacy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613 401
| |
Collapse
|
42
|
Lakshmanan R, Krishnan UM, Sethuraman S. Multidimensional nanofibrous scaffolds of poly(lactide-co-caprolactone) and poly(ethyl oxazoline) with improved features for cardiac tissue engineering. Nanomedicine (Lond) 2015; 10:3451-67. [DOI: 10.2217/nnm.15.143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aim: The aim of the study is to develop scaffolds that mimic native tissue properties for effective regeneration of the myocardium, which is affected by the gradual thinning of left ventricular tissue after an infarction. Materials & methods: Heterogenous nanofibrous scaffolds made of poly(lactide-co-caprolactone) and poly(ethyl oxazoline) were characterized for physico-chemical properties. The biocompatibility of the scaffolds was evaluated by studying the adhesion, proliferation and differentiation of H9c2 cells. Results: The scaffolds mimic the cardiac extracellular matrix and showed enhanced tensile strength, improved cell compatibility along with the expression of cardiac marker proteins. Conclusion: Our experimental data confirmed the importance of native tissue architecture and mechanical strength for improved cell response in cardiac tissue engineering.
Collapse
Affiliation(s)
- Rajesh Lakshmanan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur – 613 401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur – 613 401, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur – 613 401, India
| |
Collapse
|
43
|
Rath G, Hussain T, Chauhan G, Garg T, Kumar Goyal A. Fabrication and characterization of cefazolin-loaded nanofibrous mats for the recovery of post-surgical wound. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1783-1792. [DOI: 10.3109/21691401.2015.1102741] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Rath G, Hussain T, Chauhan G, Garg T, Goyal AK. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J Drug Target 2015; 24:520-9. [PMID: 26487102 DOI: 10.3109/1061186x.2015.1095922] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Electrospun nanofibers showing great promise for fabricating nanostructured materials might help to improve the quality of wound care. The present study aimed to investigate the wound-healing potential of collagen nanofiber mats containing silver nanoparticles. Silver nanoparticles (AgNPs) synthesized by the chemical reduction method were incorporated in collagen nanofibers during the electrospinning process. Characterization of electrospun nanofiber mats revealed a mean fiber diameters in the range of 300-700 nm with a sustained release of silver ions shown to follow pseudo-order kinetics. MIC of AgNPs against Staphylococcus aureus and Pseudomonas aeruginosa were evaluated using micro-dilution assay and further antimicrobial activity of fabricated nanofibers was performed. Finally, in vivo studies were performed to demonstrate the wound-healing efficacy of composite nanofibers. In vitro results confirmed the potential antimicrobial efficacy provided by AgNPs and AgNPs composite nanofibers, essential to provide an aseptic environment at the wound site. In vivo study revealed that the rate of wound healing of the composite nanofiber mats was found to be accelerated compared with plain collagen nanofibers. Histology analysis revealed an accelerated re-epithelization, collagen production, and better wound contraction with AgNPs composite collagen nanofibers.
Collapse
Affiliation(s)
- Goutam Rath
- a Department of Pharmaceutics , ISF College of Pharmacy , Moga , Punjab , India and.,b Punjab Technical University , Jalandhar , Punjab , India
| | - Taqadus Hussain
- a Department of Pharmaceutics , ISF College of Pharmacy , Moga , Punjab , India and
| | - Gaurav Chauhan
- a Department of Pharmaceutics , ISF College of Pharmacy , Moga , Punjab , India and
| | - Tarun Garg
- a Department of Pharmaceutics , ISF College of Pharmacy , Moga , Punjab , India and
| | - Amit Kumar Goyal
- a Department of Pharmaceutics , ISF College of Pharmacy , Moga , Punjab , India and
| |
Collapse
|
45
|
Pilehvar-Soltanahmadi Y, Akbarzadeh A, Moazzez-Lalaklo N, Zarghami N. An update on clinical applications of electrospun nanofibers for skin bioengineering. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1350-64. [PMID: 25939744 DOI: 10.3109/21691401.2015.1036999] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mimicking morphological similarities of the natural extra cellular matrix (ECM), described by ultrafine continuous fibers, high surface to volume ratio, and high porosity is valuable for effective regeneration of injured skin tissue. Electrospun nanofibers, being one of the most favorable and fast developing products of technology today, display a tremendous potential in wound healing and skin tissue engineering. Under the remarkable attention being given to electrospun nanofibrous scaffolds in promoting wound healing and skin regeneration, this review focuses on the potential of the electrospinning technique as a promising tool for constructing polymeric nanofibrous scaffolds with the favorable physicochemical properties needed for skin bioengineering. In addition, current applications of electrospun nanofibrous matrices for skin bioengineering are detailed in this review.
Collapse
Affiliation(s)
- Yones Pilehvar-Soltanahmadi
- a Stem Cell Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Abolfazl Akbarzadeh
- a Stem Cell Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,d Department of Medical Biotechnology , and Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nasim Moazzez-Lalaklo
- d Department of Medical Biotechnology , and Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nosratollah Zarghami
- a Stem Cell Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,c Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
46
|
Zhang YQ, Ji SZ, Fang H, Zheng YJ, Luo PF, Wu HB, Wu MJ, Wang ZH, Xiao SC, Xia ZF. Use of Amniotic Microparticles Coated With Fibroblasts Overexpressing SDF-1α to Create an Environment Conducive to Neovascularization for Repair of Full-Thickness Skin Defects. Cell Transplant 2015; 25:365-76. [PMID: 25853481 DOI: 10.3727/096368915x687930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
As angiogenesis and vasculogenesis involve the complex network structures of various types of cells, extracellular matrix components, and cytokines, it is still difficult to exactly mimic the microenvironment of vascularization in vivo. In our study, we constructed a complex containing highly proliferative fibroblasts that can secrete extracellular matrix components and growth factors to chemotaxize endothelial progenitor cells (EPCs) in an attempt to create an ideal microenvironment for quick vascularization. Amniotic membrane microparticles (mAM) rich in type IV collagen (COL IV) and laminin (LN) were prepared, and human dermal fibroblasts (HDF) were infected with lentivirus (LV) of overexpression of SDF-1α to construct SDF-1α(ov)HDF. Using the rotary cell culture system (RCCS), mAM was loaded with HDF or SDF-1α(ov)HDF to construct HDF-mAM and SDF-1α(ov)HDF-mAM complexes. The complexes were able to secrete various types of active peptides (IL-6, IL-8, TGF-β, and bFGF) during in vitro culture. In addition, SDF-1α(ov)HDF-mAM complex highly expressed SDF-1α. Transwell assay showed SDF-1α(ov)HDF-mAM complex had an apparent chemotactic effect on EPCs. Transplantation of complexes onto full-thickness skin defects of C57BL mice further demonstrated that SDF-1α expression and the number of peripheral EPCs at days 3, 5, and 7 in the SDF-1α(ov)HDF-mAM group were significantly higher than that in other groups (p < 0.01). The local microvascular density at day 10 of transplantation showed that the microvascular density in the SDF-1α(ov)HDF-mAM group was significantly higher than that in HDF-mAM group (p < 0.01). In conclusion, HDF-mAM had a strong proliferative activity and could be used to create a sound microenvironment for quick vascularization by secreting multiple cytokines and extracellular matrix components. Overexpression of SDF-1α could chemotaxize EPCs to reach local wounds, thus further accelerating angiogenesis in the transplant site. The technique described may prove to be a new model for accelerating vascularization of tissue and organ transplants and chronic ischemic wounds.
Collapse
Affiliation(s)
- Yun-qing Zhang
- Burns Institute of People's Liberation Army, Changhai Hospital, the Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cheng F, Gao J, Wang L, Hu X. Composite chitosan/poly(ethylene oxide) electrospun nanofibrous mats as novel wound dressing matrixes for the controlled release of drugs. J Appl Polym Sci 2015. [DOI: 10.1002/app.42060] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Feng Cheng
- Key Laboratory of Textile Science and Technology (Ministry of Education); College of Textiles; Donghua University; Shanghai 201620 China
| | - Jing Gao
- Key Laboratory of Textile Science and Technology (Ministry of Education); College of Textiles; Donghua University; Shanghai 201620 China
| | - Lu Wang
- Key Laboratory of Textile Science and Technology (Ministry of Education); College of Textiles; Donghua University; Shanghai 201620 China
| | - Xingyou Hu
- Key Laboratory of Textile Science and Technology (Ministry of Education); College of Textiles; Donghua University; Shanghai 201620 China
| |
Collapse
|
48
|
Jing X, Mi HY, Peng J, Peng XF, Turng LS. Electrospun aligned poly(propylene carbonate) microfibers with chitosan nanofibers as tissue engineering scaffolds. Carbohydr Polym 2015; 117:941-949. [DOI: 10.1016/j.carbpol.2014.10.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/03/2014] [Accepted: 10/05/2014] [Indexed: 10/24/2022]
|
49
|
Carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. Carbohydr Polym 2015; 125:189-99. [PMID: 25857974 DOI: 10.1016/j.carbpol.2015.02.034] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/03/2015] [Accepted: 02/19/2015] [Indexed: 11/20/2022]
Abstract
The objective of this study was to develop a novel carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. To prepare the crosslinked hydrogels, poly(vinyl alcohol) (PVA) was grafted with succinate acid to yield carboxyl-modified poly(vinyl alcohol) (PVA-COOH). Hydrogel films based on PVA-COOH and chitosan (CS) at different concentrations were crosslinked through the formation of amide linkages. The mechanical properties of these crosslinked hydrogel films in dry and swollen state were greatly improved with high swelling ratio. Water vapor and oxygen permeability evaluations indicated that crosslinked hydrogel films could maintain a moist environment over wound bed. Biocompatibility test showed the crosslinked hydrogels had no cytotoxicity and hemolytic potential. Gentamicin sulfate-loaded crosslinked hydrogel films showed sustained drug release profile, and could effectively suppress bacterial proliferation and protect wound from infection.
Collapse
|
50
|
Sundaramurthi D, Jaidev LR, Ramana LN, Sethuraman S, Krishnan UM. Osteogenic differentiation of stem cells on mesoporous silica nanofibers. RSC Adv 2015. [DOI: 10.1039/c5ra07014g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mesoporous silica nanofibers promote osteogenic differentiation of bone marrow derived mesenchymal stem cells.
Collapse
Affiliation(s)
- Dhakshinamoorthy Sundaramurthi
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| | - L. R. Jaidev
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| | - Lakshmi Narashimhan Ramana
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| |
Collapse
|