1
|
Tabatabaei M, Williams LN. Heterogeneity in cranial dura mater at the microscale: An In-situ and ex-vivo structural and mechanical investigation of sulcus and gyrus Dura. Acta Biomater 2025; 196:222-232. [PMID: 40015354 DOI: 10.1016/j.actbio.2025.02.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
This study examines cranial dura mater's structural and mechanical heterogeneity, focusing on the distinct properties between the sulcus and gyrus regions. Microscale analyses using two-photon microscopy and atomic force microscopy (AFM) revealed significant regional differences in thickness (p < 0.05), with sulcus dura being 1.34 times thicker than gyrus dura. Differences in effective Young's modulus were observed, with values of 6.75 ± 5.12 kPa in the sulcus and 10.48 ± 7.13 kPa in the gyrus. These findings highlight the dura mater's pronounced variability in stiffness and anisotropy, with the periosteal layer being substantially stiffer than the meningeal layer. These results underscore the critical role of collagenous architecture in determining dura's mechanical behavior, particularly in the transfer of loads across the brain. This study provides valuable insights into the functional heterogeneity of the dura mater and emphasizes the importance of these variations in the design of biomimetic dural grafts. The quantitative data generated in this study has significant implications for enhancing the biofidelity of computational models used in brain biomechanics and advancing tissue engineering strategies to develop dural substitutes. STATEMENT OF SIGNIFICANCE: This study presents a comprehensive analysis of the structural and mechanical heterogeneity of cranial dura mater at the nanoscale, focusing on the differences between sulcus and gyrus regions. By employing advanced techniques such as atomic force microscopy (AFM) and two photon microscopies, the findings are crucial for understanding the dura's protective functions and its role in load transfer across the brain. The implications of this study are significant for the development of biomimetic dural grafts, as it offers detailed quantitative data necessary for designing grafts that closely mimic the native dura's structural and mechanical. Additionally, this research could help develop more accurate finite element models (FEM) to study traumatic brain injuries (TBI) and brain dynamics.
Collapse
Affiliation(s)
- Mohammad Tabatabaei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.
| | - Lakiesha N Williams
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Chen X, Zhang X, Sun J, Zhang R, Liang X, Long J, Yao J, Chen X, Wang H, Zhang Y, Leng J, Lu R. Near-Field Direct Writing Based on Piezoelectric Micromotion for the Programmable Manufacturing of Serpentine Structures. MICROMACHINES 2024; 15:1478. [PMID: 39770231 PMCID: PMC11727834 DOI: 10.3390/mi15121478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Serpentine microstructures offer excellent physical properties, making them highly promising in applications in stretchable electronics and tissue engineering. However, existing fabrication methods, such as electrospinning and lithography, face significant challenges in producing microscale serpentine structures that are cost-effective, efficient, and controllable. These methods often struggle with achieving precise control over fiber morphology and scalability. In this study, we developed a near-field direct writing (NFDW) technique incorporating piezoelectric micromotion to enable the precise fabrication of serpentine micro-/nanofibers by incorporating micromotion control with macroscopic movement. Modifying the fiber structure allowed for adjustments to the mechanical properties, including tunable extensibility and distinct characteristics. Through the control of the frequency and amplitude of the piezoelectric signal, the printing errors were reduced to below 9.48% in the cycle length direction and 6.33% in the peak height direction. A predictive model for the geometrical extensibility of serpentine structures was derived from Legendre's incomplete elliptic integral of the second kind and incorporated an error correction factor, which significantly reduced the calculation errors in predicting geometric elongation, by 95.85%. The relationship between microstructure bending and biomimetic non-linear mechanical behavior was explored through tensile testing. By controlling the input electrical signals, highly ordered serpentine microstructures were successfully fabricated, demonstrating potential for use in biomimetic mechanical scaffolds.
Collapse
Affiliation(s)
- Xun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Xuanzhi Zhang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Jianfeng Sun
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Rongguang Zhang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Xuanyang Liang
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Jiecai Long
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Jingsong Yao
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Xin Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Han Wang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Yu Zhang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Jiewu Leng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (X.C.); (X.Z.); (J.S.); (R.Z.); (J.Y.); (X.C.); (H.W.); (Y.Z.); (J.L.)
- School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Renquan Lu
- Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control, School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
| |
Collapse
|
3
|
Long Z, Nakagawa K, Wang Z, Shi G, Sanchez-Sotelo J, Steinmann SP, Zhao C. Engineered Tendon-Fibrocartilage-Bone Composite With Mechanical Stimulation for Augmentation of Rotator Cuff Repair: A Study Using an In Vivo Canine Model With a 6-Month Follow-up. Am J Sports Med 2024; 52:3376-3387. [PMID: 39370691 DOI: 10.1177/03635465241282668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
BACKGROUND Rotator cuff repair augmentation using biological materials has become popular in clinical practice to reduce the high retear rates associated with traditional repair techniques. Tissue engineering approaches, such as engineered tendon-fibrocartilage-bone composite (TFBC), have shown promise in enhancing the biological healing of rotator cuff tears in animals. However, previous studies have provided limited long-term data on TFBC repair outcomes. The effect of mechanical stimulation on TFBC has not been explored extensively. PURPOSE To evaluate functional outcomes after rotator cuff repair with engineered TFBC subjected to mechanical stimulation in a 6-month follow-up using a canine in vivo model. STUDY DESIGN Controlled laboratory study. METHODS A total of 40 canines with an acute infraspinatus (ISP) tendon transection model were randomly allocated to 4 groups (n =10): (1) unilateral ISP tendon undergoing suture repair only (control surgery); (2) augmentation with engineered TFBC alone (TFBC); (3) augmentation with engineered TFBC and bone marrow-derived stem cells (BMSCs) (TFBC+C); and (4) augmentation with engineered TFBC and BMSCs, as well as mechanical stimulation (TFBC+C+M). Outcome measures-including biomechanical evaluations such as failure strength, stiffness, failure mode, gross appearance, ISP tendon and muscle morphological assessment, and histological analysis-were performed 6 months after surgery. RESULTS As shown in the mechanical test, the TFBC+C+M group exhibited higher failure strength compared with other repair techniques. The most common failure mode was avulsion fracture in the TFBC+C+M group, but tendon-bone junction rupture was observed predominantly in different groups. Engineered TFBC with mechanical stimulation showed over 70% relative failure strength compared with normal ISP, and the other groups showed about 50% relative failure strength. Histological analysis revealed less fat infiltration and closer-to-normal muscle fiber structure in the mechanical stimulation group. CONCLUSION This study provides evidence that mechanical stimulation of engineered TFBC promotes rotator cuff regeneration, thus supporting its potential for rotator cuff repair augmentation. CLINICAL RELEVANCE This study provides valuable evidence supporting the use of a novel tissue-engineered material (TFBC) in rotator cuff repair and paves the way for advancements in the field of rotator cuff regeneration.
Collapse
Affiliation(s)
- Zeling Long
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Sports Medicine, The First Affiliate Hospital of Shenzhen University (The Second People's Hospital of Shenzhen), Shenzhen, Guangdong, China
| | - Koichi Nakagawa
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Zhanwen Wang
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Guidong Shi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Scott P Steinmann
- Department of Orthopedic Surgery, University of Tennessee Health Science Center College of Medicine, Chattanooga, Tennessee, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Tu T, Shi Y, Zhou B, Wang X, Zhang W, Zhou G, Mo X, Wang W, Wu J, Liu W. Type I collagen and fibromodulin enhance the tenogenic phenotype of hASCs and their potential for tendon regeneration. NPJ Regen Med 2023; 8:67. [PMID: 38092758 PMCID: PMC10719373 DOI: 10.1038/s41536-023-00341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Our previous work demonstrated the tendon-derived extracellular matrix (ECM) extracts as vital niches to specifically direct mesenchymal stem cells towards tenogenic differentiation. This study aims to further define the effective ECM molecules capable of teno-lineage induction on human adipose-derived stem cells (hASCs) and test their function for tendon engineering. By detecting the teno-markers expression levels in hASCs exposed to various substrate coatings, collagen I (COL1) and fibromodulin (FMOD) were identified to be the key molecules as a combination and further employed to the modification of poly(L-lactide-co-ε-caprolactone) electrospun nanoyarns, which showed advantages in inducting seeded hASCs for teno-lineage specific differentiation. Under dynamic mechanical loading, modified scaffold seeded with hASCs formed neo-tendon in vitro at the histological level and formed better tendon tissue in vivo with mature histology and enhanced mechanical properties. Primary mechanistic investigation with RNA sequencing demonstrated that the inductive mechanism of these two molecules for hASCs tenogenic differentiation was directly correlated with positive regulation of peptidase activity, regulation of cell-substrate adhesion and regulation of cytoskeletal organization. These biological processes were potentially affected by LOC101929398/has-miR-197-3p/TENM4 ceRNA regulation axis. In summary, COL1 and FMOD in combination are the major bioactive molecules in tendon ECM for likely directing tenogenic phenotype of hASCs and certainly valuable for hASCs-based tendon engineering.
Collapse
Affiliation(s)
- Tian Tu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Plastic and Aesthetic Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yuan Shi
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215000, China
| | - Boya Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoyu Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China.
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- National Tissue Engineering Center of China, Shanghai, 200241, China.
| |
Collapse
|
5
|
Tawonsawatruk T, Panaksri A, Hemstapat R, Praenet P, Rattanapinyopituk K, Boonyagul S, Tanadchangsaeng N. Fabrication and biological properties of artificial tendon composite from medium chain length polyhydroxyalkanoate. Sci Rep 2023; 13:20973. [PMID: 38017019 PMCID: PMC10684518 DOI: 10.1038/s41598-023-48075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
Medium chain length polyhydroxyalkanoate (MCL-PHA), a biodegradable and biocompatible material, has a mechanical characteristic of hyper-elasticity, comparable to elastomeric material with similar properties to human tendon flexibility. These MCL-PHA properties gave rise to applying this material as an artificial tendon or ligament implant. In this study, the material was solution-casted in cylinder and rectangular shapes in the molds with the designated small holes. A portion of the torn human tendon was threaded into the holes as a suture to generate a composite tendon graft. The tensile testing of the three types of MCL-PHA/tendon composite shows that the cylinder material shape with the zigzag threaded three holes has the highest value of maximum tensile strength at 56 MPa, closing to the ultimate tendon tensile stress (50-100 MPa). Fibroblast cells collected from patients were employed as primary tendon cells for growing to attach to the surface of the MCL-PHA material to prove the concept of the composite tendon graft. The cells could attach and proliferate with substantial viability and generate collagen, leading to chondrogenic induction of tendon cells. An in vivo biocompatibility was also conducted in a rat subcutaneous model in comparison with medical-grade silicone. The MCL-PHA material was found to be biocompatible with the surrounding tissues. For surgical application, after the MCL-PHA material is decomposed, tendon cells should develop into an attached tendon and co-generated as a tendon graft.
Collapse
Affiliation(s)
- Tulyapruek Tawonsawatruk
- Department of Orthopaedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thung Phaya Thai, Ratchathewi, Bangkok, Thailand
| | - Anuchan Panaksri
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Ruedee Hemstapat
- Department of Pharmacology, Faculty of Science, Mahidol University, Thung Phaya Thai, Ratchathewi, Bangkok, Thailand
| | - Passavee Praenet
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Kasem Rattanapinyopituk
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | - Sani Boonyagul
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | | |
Collapse
|
6
|
High-Performance Polarization Microscopy Reveals Structural Remodeling in Rat Calcaneal Tendons Cultivated In Vitro. Cells 2023; 12:cells12040566. [PMID: 36831234 PMCID: PMC9953949 DOI: 10.3390/cells12040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 02/12/2023] Open
Abstract
Collagenous tissues exhibit anisotropic optical properties such as birefringence and linear dichroism (LD) as a result of their structurally oriented supraorganization from the nanometer level to the collagen bundle scale. Changes in macromolecular order and in aggregational states can be evaluated in tendon collagen bundles using polarization microscopy. Because there are no reports on the status of the macromolecular organization in tendon explants, the objective of this work was to evaluate the birefringence and LD characteristics of collagen bundles in rat calcaneal tendons cultivated in vitro on substrates that differ in their mechanical stiffness (plastic vs. glass) while accompanying the expected occurrence of cell migration from these structures. Tendon explants from adult male Wistar rats were cultivated for 8 and 12 days on borosilicate glass coverslips (n = 3) and on nonpyrogenic polystyrene plastic dishes (n = 4) and were compared with tendons not cultivated in vitro (n = 3). Birefringence was investigated in unstained tendon sections using high-performance polarization microscopy and image analysis. LD was studied under polarized light in tendon sections stained with the dichroic dyes Ponceau SS and toluidine blue at pH 4.0 to evaluate the orientation of proteins and acid glycosaminoglycans (GAG) macromolecules, respectively. Structural remodeling characterized by the reduction in the macromolecular orientation, aggregation and alignment of collagen bundles, based on decreased average gray values concerned with birefringence intensity, LD and morphological changes, was detected especially in the tendon explants cultivated on the plastic substrate. These changes may have facilitated cell migration from the lateral regions of the explants to the substrates, an event that was observed earlier and more intensely upon tissue cultivation on the plastic substrate. The axial alignment of the migrating cells relative to the explant, which occurred with increased cultivation times, may be due to the mechanosensitive nature of the tenocytes. Collagen fibers possibly played a role as a signal source to cells, a hypothesis that requires further investigation, including studies on the dynamics of cell membrane receptors and cytoskeletal organization, and collagen shearing electrical properties.
Collapse
|
7
|
Micropattern Silk Fibroin Film Facilitates Tendon Repair In Vivo and Promotes Tenogenic Differentiation of Tendon Stem/Progenitor Cells through the α2 β1/FAK/PI3K/AKT Signaling Pathway In Vitro. Stem Cells Int 2023; 2023:2915826. [PMID: 36684388 PMCID: PMC9859702 DOI: 10.1155/2023/2915826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023] Open
Abstract
Background Tendon injuries are common clinical disorders. Due to the limited regeneration ability of tendons, tissue engineering technology is often used as an adjuvant treatment. This study explored the molecular pathways underlying micropattern SF film-regulated TSPC propensity and their repairing effects to highlight the application value of micropattern SF films. Methods First, we characterized the physical properties of the micropattern SF films and explored their repairing effects on the injured tendons in vivo. Then, we seeded TSPCs on SF films in vitro and determined the micropattern SF film-induced gene expression and activation of signaling pathways in TSPCs through high-throughput RNA sequencing and proteomics assays. Results The results of in vivo studies suggested that micropattern SF films can promote remodeling of the injured tendon. In addition, immunohistochemistry (IHC) results showed that tendon marker genes were significantly increased in the micropattern SF film repair group. Transcriptomic and proteomic analyses demonstrated that micropattern SF film-induced genes and proteins in TSPCs were mainly enriched in the focal adhesion kinase (FAK)/actin and phosphoinositide 3-kinase (PI3K)/AKT pathways. Western blot analysis showed that the expression of integrins α2β1, tenascin-C (TNC), and tenomodulin (TNMD) and the phosphorylation of AKT were significantly increased in the micropattern SF film group, which could be abrogated by applying PI3K/AKT inhibitors. Conclusion Micropattern SF films modified by water annealing can promote remodeling of the injured tendon in vivo and regulate the tendon differentiation of TSPCs through the α2β1/FAK/PI3K/AKT signaling pathway in vitro. Therefore, they have great medical value in tendon repair.
Collapse
|
8
|
Wang H, Tenkumo T, Nemoto E, Kanda Y, Ogawa T, Sasaki K. Introduction of tenomodulin by gene transfection vectors for rat bone tissue regeneration. Regen Ther 2023; 22:99-108. [PMID: 36712960 PMCID: PMC9842804 DOI: 10.1016/j.reth.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Periodontal ligament is regenerated in association with hard tissue regeneration. Tenomodulin (Tnmd) expression has been confirmed in periodontal ligament and it reportedly inhibits angiogenesis or is involved in collagen fibril maturation. The introduction of Tnmd by gene transfection in bone tissue regeneration therapy might inhibit topical hard tissue formation and induce the formation of dense fibrous tissue. Therefore, the effect of Tnmd introduction by gene transfection technique in vitro and in vivo was investigated in this study. Methods Osteogenesis- and chondrogenesis-related gene expression levels in osteoblastic cells (MC3T3E1) and rat bone marrow derived cells were detected using qPCR three days after gene transfection with plasmid DNA (Tnmd) using non-viral gene transfection vectors: a calcium phosphate-based gene transfection vector (CaP(Tnmd)) or a cationic polymer-based reagent (JetPEI (Tnmd)). Next, an atelocollagen scaffold with or without CaP (Tnmd) or JetPEI (Tnmd) was implanted into a rat calvaria bone defect, and the remaining bone defect volume and the tissue reaction at 28 days after surgery were evaluated. Results Runx 2 and SP7 mRNA was reduced by JetPEI (Tnmd) in both cells, but not in CaP(Tnmd). The volume of expressed Tnmd was at 9 ng/mL in both gene transfection vector. The remaining bone defect volume of JetPEI (Tnmd) was significantly bigger than that of the other groups and CaP (EGFP), and that of CaP (Tnmd) was significantly bigger than that of CaP (EGFP). Conclusions Tnmd introduction treatment inhibits bone formation in artificial bone defect, however, the effect of that was dependent on non-viral gene transfection vector.
Collapse
Affiliation(s)
- Han Wang
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Taichi Tenkumo
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Corresponding author. Fax.: (+81)(022)717-8371.
| | - Eiji Nemoto
- Division of Periodontology, Department of Oral Biology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yoshiaki Kanda
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
9
|
Untethered: using remote magnetic fields for regenerative medicine. Trends Biotechnol 2022; 41:615-631. [PMID: 36220708 DOI: 10.1016/j.tibtech.2022.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
Magnetic fields are increasingly being used for the remote, noncontact manipulation of cells and biomaterials for a wide range of regenerative medical (RM) applications. They have been deployed for their direct effects on biological systems or in conjunction with magnetic materials or magnetically tagged cells for a targeted therapeutic effect. In this work, we highlight the recent trends on the broad use of magnetic fields for the homing of therapeutic cells and particles at targeted tissue sites, biomimetic tissue fabrication, and control of cell fate and proliferation. We also survey the design and control principles of magnetic manipulation systems, including their capabilities and limitations, which can guide future research into developing more effective magnetic field-based regenerative strategies.
Collapse
|
10
|
Makuku R, Werthel JD, Zanjani LO, Nabian MH, Tantuoyir MM. New frontiers of tendon augmentation technology in tissue engineering and regenerative medicine: a concise literature review. J Int Med Res 2022; 50:3000605221117212. [PMID: 35983666 PMCID: PMC9393707 DOI: 10.1177/03000605221117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tissue banking programs fail to meet the demand for human organs and tissues for
transplantation into patients with congenital defects, injuries, chronic
diseases, and end-stage organ failure. Tendons and ligaments are among the most
frequently ruptured and/or worn-out body tissues owing to their frequent use,
especially in athletes and the elderly population. Surgical repair has remained
the mainstay management approach, regardless of scarring and adhesion formation
during healing, which then compromises the gliding motion of the joint and
reduces the quality of life for patients. Tissue engineering and regenerative
medicine approaches, such as tendon augmentation, are promising as they may
provide superior outcomes by inducing host-tissue ingrowth and tendon
regeneration during degradation, thereby decreasing failure rates and morbidity.
However, to date, tendon tissue engineering and regeneration research has been
limited and lacks the much-needed human clinical evidence to translate most
laboratory augmentation approaches to therapeutics. This narrative review
summarizes the current treatment options for various tendon pathologies, future
of tendon augmentation, cell therapy, gene therapy, 3D/4D bioprinting,
scaffolding, and cell signals.
Collapse
Affiliation(s)
- Rangarirai Makuku
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Jean-David Werthel
- Department of Orthopedic and Trauma Surgery, Shariati Hospital, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Oryadi Zanjani
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Mohammad Hossein Nabian
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Marcarious M Tantuoyir
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France.,Biomedical Engineering Unit, University of Ghana Medical Centre, Accra, Ghana
| |
Collapse
|
11
|
Xu J, Han K, Ye Z, Wu C, Wu X, Li Z, Zhang T, Xu C, Su W, Zhao J. Biomechanical and Histological Results of Dual-Suspensory Reconstruction Using Banded Tendon Graft to Bridge Massive Rotator Cuff Tears in a Chronic Rabbit Model. Am J Sports Med 2022; 50:2767-2781. [PMID: 35853168 DOI: 10.1177/03635465221102744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bridging rotator cuff tendon defects with a patch is a reasonable treatment for massive rotator cuff tears (MRCTs). However, the poor outcomes associated with routine patch repair have prompted exploration into superior bridging techniques and graft structures. PURPOSE To detect whether dual-suspensory reconstruction using a banded graft would be superior to routine bridging using a patch graft to treat MRCTs and to detect the comparative effectiveness of patellar tendon (PT) and fascia lata (FL) grafts in dual-suspensory reconstruction. STUDY DESIGN Controlled laboratory study. METHODS Unilateral chronic MRCTs were created in 72 mature male New Zealand White rabbits, which were randomly divided into 3 groups: (1) patch bridging repair using rectangular FL autograft (PR-FL), (2) dual-suspensory bridging reconstruction using banded FL autograft (DSR-FL), and (3) dual-suspensory bridging reconstruction using banded PT autograft (DSR-PT). In each group, the mean failure load and stiffness of the cuff-graft-humerus (C-G-H) complexes of 6-week and 12-week specimens were recorded, with the failure modes and sites noted. Moreover, cuff-to-graft and graft-to-bone interface healing and graft substance remodeling of the complexes were histologically evaluated (via hematoxylin and eosin, Picrosirius red, Masson trichrome, and Safranin O/fast green staining) at 6 and 12 weeks to assess integrations between the bridging constructs and the native bone or rotator cuff tendons. RESULTS The DSR-PT group had the greatest mean failure loads and stiffness of the C-G-H complexes at 6 and 12 weeks (41.81 ± 7.00 N, 10.34 ± 2.68 N/mm; 87.62 ± 9.20 N, 17.98 ± 1.57 N/mm, respectively), followed by the DSR-FL group (32.04 ± 5.49 N, 8.20 ± 2.27 N/mm; 75.30 ± 7.31 N, 14.39 ± 3.29 N/mm, respectively). In the DSR-PT and DSR-FL groups, fewer specimens failed at the graft-to-bone junction and more failed at the cuff-to-graft junction, but both groups had higher median failure loads at 6 and 12 weeks (DSR-PT: cuff-to-graft junction, 37.80 and 83.76 N; graft-to-bone junction, 45.46 and 95.86 N) (DSR-FL: cuff-to-graft junction, 28.52 and 67.68 N; graft-to-bone junction, 37.92 and 82.18 N) compared with PR-FL (cuff-to-graft junction, 27.17 and 60.04 N; graft-to-bone junction, 30.12 and 55.95 N). At 12 weeks, the DSR-FL group had higher median failure loads at graft substance (72.26 N) than the PR-FL group (61.27 N). Moreover, the PR-FL group showed more inflammatory responses at the 2 healing interfaces and the graft substance in the 6-week specimens and subsequently displayed poorer interface healing (assessed via collagen organization, collagen maturity, and fibrocartilage regeneration) and graft substance remodeling (assessed via collagen organization and maturity) in 12-week specimens compared with the DSR-PT and DSR-FL groups. Superior interface healing and substance remodeling processes were observed in the DSR-PT group compared with the DSR-FL group. CONCLUSION When compared with routine patch repair, the dual-suspensory reconstructions optimized biomechanical properties and improved interface healing and graft substance remodeling for bridging MRCTs. Furthermore, the dual-suspensory technique using the PT graft presented superior histological and biomechanical characteristics than that using FL. CLINICAL RELEVANCE The dual-suspensory reconstruction technique using banded tendon grafts may enhance bridging constructs for MRCTs in humans, warranting further investigations of clinical outcomes.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kang Han
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zipeng Ye
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenliang Wu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiulin Wu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ziyun Li
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tianlun Zhang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Caiqi Xu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Su
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
12
|
Donderwinkel I, Tuan RS, Cameron NR, Frith JE. Tendon tissue engineering: Current progress towards an optimized tenogenic differentiation protocol for human stem cells. Acta Biomater 2022; 145:25-42. [PMID: 35470075 DOI: 10.1016/j.actbio.2022.04.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022]
Abstract
Tendons are integral to our daily lives by allowing movement and locomotion but are frequently injured, leading to patient discomfort and impaired mobility. Current clinical procedures are unable to fully restore the native structure of the tendon, resulting in loss of full functionality, and the weakened tissue following repair often re-ruptures. Tendon tissue engineering, involving the combination of cells with biomaterial scaffolds to form new tendon tissue, holds promise to improve patient outcomes. A key requirement for efficacy in promoting tendon tissue formation is the optimal differentiation of the starting cell populations, most commonly adult tissue-derived mesenchymal stem/stromal cells (MSCs), into tenocytes, the predominant cellular component of tendon tissue. Currently, a lack of consensus on the protocols for effective tenogenic differentiation is hampering progress in tendon tissue engineering. In this review, we discuss the current state of knowledge regarding human stem cell differentiation towards tenocytes and tendon tissue formation. Tendon development and healing mechanisms are described, followed by a comprehensive overview of the current protocols for tenogenic differentiation, including the effects of biochemical and biophysical cues, and their combination, on tenogenesis. Lastly, a synthesis of the key features of these protocols is used to design future approaches. The holistic evaluation of current knowledge should facilitate and expedite the development of efficacious stem cell tenogenic differentiation protocols with future impact in tendon tissue engineering. STATEMENT OF SIGNIFICANCE: The lack of a widely-adopted tenogenic differentiation protocol has been a major hurdle in the tendon tissue engineering field. Building on current knowledge on tendon development and tendon healing, this review surveys peer-reviewed protocols to present a holistic evaluation and propose a pathway to facilitate and expedite the development of a consensus protocol for stem cell tenogenic differentiation and tendon tissue engineering.
Collapse
|
13
|
Eisner LE, Rosario R, Andarawis-Puri N, Arruda EM. The Role of the Non-Collagenous Extracellular Matrix in Tendon and Ligament Mechanical Behavior: A Review. J Biomech Eng 2022; 144:1128818. [PMID: 34802057 PMCID: PMC8719050 DOI: 10.1115/1.4053086] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 12/26/2022]
Abstract
Tendon is a connective tissue that transmits loads from muscle to bone, while ligament is a similar tissue that stabilizes joint articulation by connecting bone to bone. The 70-90% of tendon and ligament's extracellular matrix (ECM) is composed of a hierarchical collagen structure that provides resistance to deformation primarily in the fiber direction, and the remaining fraction consists of a variety of non-collagenous proteins, proteoglycans, and glycosaminoglycans (GAGs) whose mechanical roles are not well characterized. ECM constituents such as elastin, the proteoglycans decorin, biglycan, lumican, fibromodulin, lubricin, and aggrecan and their associated GAGs, and cartilage oligomeric matrix protein (COMP) have been suggested to contribute to tendon and ligament's characteristic quasi-static and viscoelastic mechanical behavior in tension, shear, and compression. The purpose of this review is to summarize existing literature regarding the contribution of the non-collagenous ECM to tendon and ligament mechanics, and to highlight key gaps in knowledge that future studies may address. Using insights from theoretical mechanics and biology, we discuss the role of the non-collagenous ECM in quasi-static and viscoelastic tensile, compressive, and shear behavior in the fiber direction and orthogonal to the fiber direction. We also address the efficacy of tools that are commonly used to assess these relationships, including enzymatic degradation, mouse knockout models, and computational models. Further work in this field will foster a better understanding of tendon and ligament damage and healing as well as inform strategies for tissue repair and regeneration.
Collapse
Affiliation(s)
- Lainie E Eisner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Ryan Rosario
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853
| | - Ellen M Arruda
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109; Professor Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109; Professor Program in Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
14
|
Mechanical activation drives tenogenic differentiation of human mesenchymal stem cells in aligned dense collagen hydrogels. Biomaterials 2022; 286:121606. [DOI: 10.1016/j.biomaterials.2022.121606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
|
15
|
Pentzold S, Wildemann B. Mechanical overload decreases tenogenic differentiation compared to physiological load in bioartificial tendons. J Biol Eng 2022; 16:5. [PMID: 35241113 PMCID: PMC8896085 DOI: 10.1186/s13036-022-00283-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/10/2022] [Indexed: 01/18/2023] Open
Abstract
Background Tenocytes as specialised fibroblasts and inherent cells of tendons require mechanical load for their homeostasis. However, how mechanical overload compared to physiological load impacts on the tenogenic differentiation potential of fibroblasts is largely unknown. Methods Three-dimensional bioartificial tendons (BATs) seeded with murine fibroblasts (cell line C3H10T1/2) were subjected to uniaxial sinusoidal elongation at either overload conditions (0–16%, Ø 8%) or physiological load (0–8%, Ø 4%). This regime was applied for 2 h a day at 0.1 Hz for 7 days. Controls were unloaded, but under static tension. Results Cell survival did not differ among overload, physiological load and control BATs. However, gene expression of tenogenic and extra-cellular matrix markers (Scx, Mkx, Tnmd, Col1a1 and Col3a1) was significantly decreased in overload versus physiological load and controls, respectively. In contrast, Mmp3 was significantly increased at overload compared to physiological load, and significantly decreased under physiological load compared to controls. Mkx and Tnmd were significantly increased in BATs subjected to physiological load compared to controls. Proinflammatory interleukin-6 showed increased protein levels comparing load (both over and physiological) versus unloaded controls. Alignment of the cytoskeleton in strain direction was decreased in overload compared to physiological load, while other parameters such as nuclear area, roundness or cell density were less affected. Conclusions Mechanical overload decreases tenogenic differentiation and increases ECM remodelling/inflammation in 3D-stimulated fibroblasts, whereas physiological load may induce opposite effects. Supplementary Information The online version contains supplementary material available at 10.1186/s13036-022-00283-y.
Collapse
Affiliation(s)
- Stefan Pentzold
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
16
|
Wu SY, Kim W, Kremen TJ. In Vitro Cellular Strain Models of Tendon Biology and Tenogenic Differentiation. Front Bioeng Biotechnol 2022; 10:826748. [PMID: 35242750 PMCID: PMC8886160 DOI: 10.3389/fbioe.2022.826748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Research has shown that the surrounding biomechanical environment plays a significant role in the development, differentiation, repair, and degradation of tendon, but the interactions between tendon cells and the forces they experience are complex. In vitro mechanical stimulation models attempt to understand the effects of mechanical load on tendon and connective tissue progenitor cells. This article reviews multiple mechanical stimulation models used to study tendon mechanobiology and provides an overview of the current progress in modelling the complex native biomechanical environment of tendon. Though great strides have been made in advancing the understanding of the role of mechanical stimulation in tendon development, damage, and repair, there exists no ideal in vitro model. Further comparative studies and careful consideration of loading parameters, cell populations, and biochemical additives may further offer new insight into an ideal model for the support of tendon regeneration studies.
Collapse
Affiliation(s)
- Shannon Y. Wu
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Won Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Thomas J. Kremen
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- *Correspondence: Thomas J. Kremen Jr,
| |
Collapse
|
17
|
Wu S, Liu J, Qi Y, Cai J, Zhao J, Duan B, Chen S. Tendon-bioinspired wavy nanofibrous scaffolds provide tunable anisotropy and promote tenogenesis for tendon tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112181. [PMID: 34082981 DOI: 10.1016/j.msec.2021.112181] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/23/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
The development of tendon-biomimetic nanofibrous scaffolds with mesenchymal stem cells may represent a promising strategy to improve the unsatisfactory outcomes of traditional treatments in tendon repair. In the present study, the nanofibrous scaffolds comprised of poly(p-dioxanone) (PPDO) and silk fibroin (SF) composites were fabricated by using electrospinning technique and subsequent thermal ethanol treatment. The PPDO/SF composite scaffolds presented parallel fiber arrangement with crimped features and nonlinear mechanical properties, which mimic the structure-function relationship of native tendon tissue mechanics. We demonstrated that the fiber crimp degree and mechanical properties of as-prepared PPDO/SF wavy nanofibrous scaffolds (WNSs) could be tunable by adjusting the mass ratio of PPDO/SF. The biological tests revealed that the addition of SF obviously promoted the cell adhesion, proliferation, and phenotypic maintenance of human tenocytes on the WNSs. A preliminary study on the subcutaneous implantation showed that the PPDO/SF WNSs notably decreased the inflammatory response compared with pure PPDO WNSs. More importantly, a combination of growth factor induction and mechanical stimulation was found to notably enhance the tenogenic differentiation of human adipose derived mesenchymal stem cells on the PPDO/SF WNSs by upregulating the expressions of tendon-associated protein and gene markers. Overall, this study demonstrated that our PPDO/SF WNSs could provide a beneficial microenvironment for various cell activities, making them an attractive candidate for tendon tissue engineering research.
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, China.
| | - Jiao Liu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ye Qi
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, China.
| |
Collapse
|
18
|
Meeremans M, Van de Walle GR, Van Vlierberghe S, De Schauwer C. The Lack of a Representative Tendinopathy Model Hampers Fundamental Mesenchymal Stem Cell Research. Front Cell Dev Biol 2021; 9:651164. [PMID: 34012963 PMCID: PMC8126669 DOI: 10.3389/fcell.2021.651164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Overuse tendon injuries are a major cause of musculoskeletal morbidity in both human and equine athletes, due to the cumulative degenerative damage. These injuries present significant challenges as the healing process often results in the formation of inferior scar tissue. The poor success with conventional therapy supports the need to search for novel treatments to restore functionality and regenerate tissue as close to native tendon as possible. Mesenchymal stem cell (MSC)-based strategies represent promising therapeutic tools for tendon repair in both human and veterinary medicine. The translation of tissue engineering strategies from basic research findings, however, into clinical use has been hampered by the limited understanding of the multifaceted MSC mechanisms of action. In vitro models serve as important biological tools to study cell behavior, bypassing the confounding factors associated with in vivo experiments. Controllable and reproducible in vitro conditions should be provided to study the MSC healing mechanisms in tendon injuries. Unfortunately, no physiologically representative tendinopathy models exist to date. A major shortcoming of most currently available in vitro tendon models is the lack of extracellular tendon matrix and vascular supply. These models often make use of synthetic biomaterials, which do not reflect the natural tendon composition. Alternatively, decellularized tendon has been applied, but it is challenging to obtain reproducible results due to its variable composition, less efficient cell seeding approaches and lack of cell encapsulation and vascularization. The current review will overview pros and cons associated with the use of different biomaterials and technologies enabling scaffold production. In addition, the characteristics of the ideal, state-of-the-art tendinopathy model will be discussed. Briefly, a representative in vitro tendinopathy model should be vascularized and mimic the hierarchical structure of the tendon matrix with elongated cells being organized in a parallel fashion and subjected to uniaxial stretching. Incorporation of mechanical stimulation, preferably uniaxial stretching may be a key element in order to obtain appropriate matrix alignment and create a pathophysiological model. Together, a thorough discussion on the current status and future directions for tendon models will enhance fundamental MSC research, accelerating translation of MSC therapies for tendon injuries from bench to bedside.
Collapse
Affiliation(s)
- Marguerite Meeremans
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Catharina De Schauwer
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|