1
|
Cohn N, Bradtmüller H, Zanotto E, von Marttens A, Covarrubias C. Novel Organic-Inorganic Nanocomposite Hybrids Based on Bioactive Glass Nanoparticles and Their Enhanced Osteoinductive Properties. Biomolecules 2024; 14:482. [PMID: 38672498 PMCID: PMC11047882 DOI: 10.3390/biom14040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Inorganic-organic hybrid biomaterials have been proposed for bone tissue repair, with improved mechanical flexibility compared with scaffolds fabricated from bioceramics. However, obtaining hybrids with osteoinductive properties equivalent to those of bioceramics is still a challenge. In this work, we present for the first time the synthesis of a class II hybrid modified with bioactive glass nanoparticles (nBGs) with osteoinductive properties. The nanocomposite hybrids were produced by incorporating nBGs in situ into a polytetrahydrofuran (PTHF) and silica (SiO2) hybrid synthesis mixture using a combined sol-gel and cationic polymerization method. nBGs ~80 nm in size were synthesized using the sol-gel technique. The structure, composition, morphology, and mechanical properties of the resulting materials were characterized using ATR-FTIR, 29Si MAS NMR, SEM-EDX, AFM, TGA, DSC, mechanical, and DMA testing. The in vitro bioactivity and degradability of the hybrids were assessed in simulated body fluid (SBF) and PBS, respectively. Cytocompatibility with mesenchymal stem cells was assessed using MTS and cell adhesion assays. Osteogenic differentiation was determined using the alkaline phosphatase activity (ALP), as well as the gene expression of Runx2 and Osterix markers. Hybrids loaded with 5, 10, and 15% of nBGs retained the mechanical flexibility of the PTHF-SiO2 matrix and improved its ability to promote the formation of bone-like apatite in SBF. The nBGs did not impair cell viability, increased the ALP activity, and upregulated the expression of Runx2 and Osterix. These results demonstrate that nBGs are an effective osteoinductive nanoadditive for the production of class II hybrid materials with enhanced properties for bone tissue regeneration.
Collapse
Affiliation(s)
- Nicolás Cohn
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
| | - Henrik Bradtmüller
- Center of Research, Technology and Education in Vitreous Materials, Department of Materials Engineering, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil; (H.B.); (E.Z.)
| | - Edgar Zanotto
- Center of Research, Technology and Education in Vitreous Materials, Department of Materials Engineering, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil; (H.B.); (E.Z.)
| | - Alfredo von Marttens
- Oral and Maxillofacial Implantology Program, Graduate School, Faculty of Dentistry, University of Chile, Santiago 7520355, Chile
| | - Cristian Covarrubias
- Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago 8380544, Chile
| |
Collapse
|
2
|
Sultan N, Jayash SN. In Vivo Evaluation of Regenerative Osteogenic Potential Using a Human Demineralized Dentin Matrix for Dental Application. Dent J (Basel) 2024; 12:76. [PMID: 38534300 PMCID: PMC10968855 DOI: 10.3390/dj12030076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The use of a demineralized dentin matrix (DDM) has garnered substantial importance in dentistry. This study was carried out to evaluate the osteoinductive performance of DDM in comparison to nano-hydroxyapatite (n-HA) on calvarial critical-sized bone defect. METHODS Two critical-sized defects (CSDs) were bilaterally trephined in the calvarium of sixteen healthy white rabbits. The rabbits were categorized into four groups: in group 1, the defect was left empty; in group 2, defects were filled with sodium alginate (SA) hydrogel as a sole material; in group 3, defects were treated with nano-hydroxyapatite hydrogel (NHH); in group 4, defects were treated using demineralized dentin matrix hydrogel (DDMH). Histological and immunohistochemical analyses were carried out to evaluate the total areas of newly formed bone. RESULTS The DDMH group showed that new woven bone tissue progressively bridged the defect area while there was no bone in the control group. Collagen expression was significantly different in the DDMH- and NHH-treated groups compared to in the SA group at 4 and 8 weeks (p < 0.01). OCN expression was significantly higher in the DDMH group in comparison to in the NHH or SA groups at 8 weeks (p < 0.01). CONCLUSIONS The DDMH group exhibited significantly higher levels of new bone formation compared to the NHH group at both 4 and 8 weeks post-surgically.
Collapse
Affiliation(s)
- Nessma Sultan
- Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt;
- Oral Biology and Dental Morphology, Faculty of Dentistry, Mansoura National University, Gamasa 7731168, Egypt
| | | |
Collapse
|
3
|
Tian T, Hu Q, Shi M, Liu C, Wang G, Chen X. The synergetic effect of hierarchical pores and micro-nano bioactive glass on promoting osteogenesis and angiogenesis in vitro. J Mech Behav Biomed Mater 2023; 146:106093. [PMID: 37651757 DOI: 10.1016/j.jmbbm.2023.106093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Hierarchical pores are important structural components of the bone tissue and are closely related to angiogenesis, nutrient transport, and metabolism involved in the repair of a bone defect. Here, we fabricated a composite scaffold having a hierarchical structure, based on micro-nano bioactive glass (MNBG) incorporated into poly (lactic-co-glycolic acid) (PLGA), and with camphene as a pore-forming agent for bone repair. The results showed that camphene formed abundant micropores in the walls of large pores, resulting in hierarchical pore structures ranging from a few microns to a hundred microns. Moreover, there was 2-3 folds increased in compressive modulus and the scaffolds showed a stable degradation rate and a higher degree of apatite crystallization than ordinary porous scaffolds. The results of in vitro studies showed that, when compared to ordinary porous scaffolds, PLGA-MNBG scaffolds with multi-holes could better promote the proliferation of bone marrow mesenchymal stem cells (BMSCs) and the expression of angiogenic marker (CD31) of human umbilical vein endothelial cells (HUVECs).
Collapse
Affiliation(s)
- Ting Tian
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qing Hu
- School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333001, China
| | - Miao Shi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Cong Liu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Gang Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China; Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China; Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Sivakumar PM, Yetisgin AA, Demir E, Sahin SB, Cetinel S. Polysaccharide-bioceramic composites for bone tissue engineering: A review. Int J Biol Macromol 2023; 250:126237. [PMID: 37567538 DOI: 10.1016/j.ijbiomac.2023.126237] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Limitations associated with conventional bone substitutes such as autografts, increasing demand for bone grafts, and growing elderly population worldwide necessitate development of unique materials as bone graft substitutes. Bone tissue engineering (BTE) would ensure therapy advancement, efficiency, and cost-effective treatment modalities of bone defects. One way of engineering bone tissue scaffolds by mimicking natural bone tissue composed of organic and inorganic phases is to utilize polysaccharide-bioceramic hybrid composites. Polysaccharides are abundant in nature, and present in human body. Biominerals, like hydroxyapatite are present in natural bone and some of them possess osteoconductive and osteoinductive properties. Ion doped bioceramics could substitute protein-based biosignal molecules to achieve osteogenesis, vasculogenesis, angiogenesis, and stress shielding. This review is a systemic summary on properties, advantages, and limitations of polysaccharide-bioceramic/ion doped bioceramic composites along with their recent advancements in BTE.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Istanbul 34956, Turkey
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sevilay Burcu Sahin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey.
| |
Collapse
|
5
|
Sultan N, Jayash SN. Evaluation of osteogenic potential of demineralized dentin matrix hydrogel for bone formation. BMC Oral Health 2023; 23:247. [PMID: 37118728 PMCID: PMC10148431 DOI: 10.1186/s12903-023-02928-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/31/2023] [Indexed: 04/30/2023] Open
Abstract
OBJECTIVES Dentin, the bulk material of the tooth, resemble the bone's chemical composition and is considered a valuable bone substitute. In the current study, we assessed the cytotoxicity and osteogenic potential of demineralized dentin matrix (DDM) in comparison to HA nanoparticles (n-HA) on bone marrow mesenchymal stem cells (BMMSCs) using a hydrogel formulation. MATERIALS AND METHODS Human extracted teeth were minced into particles and treated via chemical demineralization using ethylene diamine tetra-acetic acid solution (EDTA) to produce DDM particles. DDM and n-HA particles were added to the sodium alginate then, the combination was dripped into a 5% (w/v) calcium chloride solution to obtain DDM hydrogel (DDMH) or nano-hydroxyapatite hydrogel (NHH). The particles were evaluated by dynamic light scattering (DLS) and the hydrogels were evaluated via scanning electron microscope (SEM). BMMSCs were treated with different hydrogel concentrations (25%, 50%, 75% and neat/100%) and cell viability was evaluated using MTT assay after 72 h of culture. Collagen-I (COL-I) gene expression was studied with real-time quantitative polymerase chain reaction (RT-qPCR) after 3 weeks of culture and alkaline phosphatase (ALP) activity was assessed using enzyme-linked immune sorbent assay (ELISA) over 7th, 10th, 14th and 21st days of culture. BMMSCs seeded in a complete culture medium were used as controls. One-way ANOVA was utilized to measure the significant differences in the tested groups. RESULTS DLS measurements revealed that DDM and n-HA particles had negative values of zeta potential. SEM micrographs showed a porous microstructure of the tested hydrogels. The viability results revealed that 100% concentrations of either DDMH or NHH were cytotoxic to BMMSCs after 72 h of culture. However, the cytotoxicity of 25% and 50% concentrations of DDMH were not statistically significant compared to the control group. RT-qPCR showed that COL-I gene expression was significantly upregulated in BMMSCs cultured with 50% DDMH compared to all other treated or control groups (P < 0.01). ELISA analysis revealed that ALP level was significantly increased in the groups treated with 50% DDMH compared to 50% NHH after 21 days in culture (P < 0.001). CONCLUSION The injectable hydrogel containing demineralized dentin matrix was successfully formulated. DDMH has a porous structure and has been shown to provide a supporting matrix for the viability and differentiation of BMMSCs. A 50% concentration of DDMH was revealed to be not cytotoxic to BMMSCs and may have a great potential to promote bone formation ability.
Collapse
Affiliation(s)
- Nessma Sultan
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
6
|
Chen H, Qiu X, Xia T, Li Q, Wen Z, Huang B, Li Y. Mesoporous Materials Make Hydrogels More Powerful in Biomedicine. Gels 2023; 9:gels9030207. [PMID: 36975656 PMCID: PMC10048667 DOI: 10.3390/gels9030207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Scientists have been attempting to improve the properties of mesoporous materials and expand their application since the 1990s, and the combination with hydrogels, macromolecular biological materials, is one of the research focuses currently. Uniform mesoporous structure, high specific surface area, good biocompatibility, and biodegradability make the combined use of mesoporous materials more suitable for the sustained release of loaded drugs than single hydrogels. As a joint result, they can achieve tumor targeting, tumor environment stimulation responsiveness, and multiple therapeutic platforms such as photothermal therapy and photodynamic therapy. Due to the photothermal conversion ability, mesoporous materials can significantly improve the antibacterial ability of hydrogels and offer a novel photocatalytic antibacterial mode. In bone repair systems, mesoporous materials remarkably strengthen the mineralization and mechanical properties of hydrogels, aside from being used as drug carriers to load and release various bioactivators to promote osteogenesis. In hemostasis, mesoporous materials greatly elevate the water absorption rate of hydrogels, enhance the mechanical strength of the blood clot, and dramatically shorten the bleeding time. As for wound healing and tissue regeneration, incorporating mesoporous materials can be promising for enhancing vessel formation and cell proliferation of hydrogels. In this paper, we introduce the classification and preparation methods of mesoporous material-loaded composite hydrogels and highlight the applications of composite hydrogels in drug delivery, tumor therapy, antibacterial treatment, osteogenesis, hemostasis, and wound healing. We also summarize the latest research progress and point out future research directions. After searching, no research reporting these contents was found.
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Qiu
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Xia
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Qing Li
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhehan Wen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Correspondence: (B.H.); (Y.L.)
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
- Correspondence: (B.H.); (Y.L.)
| |
Collapse
|
7
|
Lee SH, Jeon S, Qu X, Kang MS, Lee JH, Han DW, Hong SW. Ternary MXene-loaded PLCL/collagen nanofibrous scaffolds that promote spontaneous osteogenic differentiation. NANO CONVERGENCE 2022; 9:38. [PMID: 36029392 PMCID: PMC9420163 DOI: 10.1186/s40580-022-00329-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/17/2022] [Indexed: 05/31/2023]
Abstract
Conventional bioinert bone grafts often have led to failure in osseointegration due to low bioactivity, thus much effort has been made up to date to find alternatives. Recently, MXene nanoparticles (NPs) have shown prominent results as a rising material by possessing an osteogenic potential to facilitate the bioactivity of bone grafts or scaffolds, which can be attributed to the unique repeating atomic structure of two carbon layers existing between three titanium layers. In this study, we produced MXene NPs-integrated the ternary nanofibrous matrices of poly(L-lactide-co-ε-caprolactone, PLCL) and collagen (Col) decorated with MXene NPs (i.e., PLCL/Col/MXene), as novel scaffolds for bone tissue engineering, via electrospinning to explore the potential benefits for the spontaneous osteogenic differentiation of MC3T3-E1 preosteoblasts. The cultured cells on the physicochemical properties of the nanofibrous PLCL/Col/MXene-based materials revealed favorable interactions with the supportive matrices, highly suitable for the growth and survival of preosteoblasts. Furthermore, the combinatorial ternary material system of the PLCL/Col/MXene nanofibers obviously promoted spontaneous osteodifferentiation with positive cellular responses by providing effective microenvironments for osteogenesis. Therefore, our results suggest that the unprecedented biofunctional advantages of the MXene-integrated PLCL/Col nanofibrous matrices can be expanded to a wide range of strategies for the development of effective scaffolds in bone tissue regeneration.
Collapse
Affiliation(s)
- Seok Hyun Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Sangheon Jeon
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Xiaoxiao Qu
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jong Ho Lee
- Daan Korea Corporation, Seoul, 06252, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
8
|
Eshkol-Yogev I, Kaufman A, Haddad M, Zilberman M. Cell viability of novel composite hydrogels loaded with hydroxyapatite for oral and maxillofacial bone regeneration. Odontology 2021; 110:296-304. [PMID: 34623513 DOI: 10.1007/s10266-021-00662-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
The development of hydrogels for maxillofacial bone regeneration holds vast potential. However, some challenges need to be addressed to further their application in clinical settings. One challenge is optimizing cell viability. To improve mechanical strength, various materials have been investigated; however, incorporation of these materials within the hydrogel network may affect cell viability. The purpose of this study was to evaluate the cell viability of novel gelatin-alginate composite hydrogels loaded with hydroxyapatite (HA) and nano-hydroxyapatite (n-HA) for maxillofacial bone regeneration. Nine different hydrogels were prepared: three loaded with 0.5%, 1%, and 3% w/v HA; three loaded with 0.25%, 0.5%, and 1% w/v n-HA; one not loaded as a control and two HA and n-HA hydrogels with a lower concentration of the EDC crosslinker. Cell viability of human osteoblasts exposed to the hydrogels as affected by the HA type, size, and concentration, as well as to the crosslinker concentration, was investigated. An Alamar Blue assay was used to evaluate cell viability in the presence of hydrogel extracts and in aqueous solutions (without the hydrogel). A qualitative model was developed for explaining cell viability and growth. Higher percentages of cell viability were observed in the hydrogels loaded with hydroxyapatite as compared with the control. The effect of HA-related parameters, i.e., particle size and concentration, was found to increase the cytotoxic effect, as expressed in lower cell viability. The most favorable composites were the n-HA hydrogels. The incorporation of n-HA in the hydrogel to form a composite seems to be a very promising approach for maxillofacial bone regeneration applications.
Collapse
Affiliation(s)
- Inbar Eshkol-Yogev
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel.
| | - Anat Kaufman
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Marwan Haddad
- Head of Orthopedic Department, Holy Family Hospital, Nazareth, Israel
| | - Meital Zilberman
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel
- Department of Materials Science and Engineering, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|