1
|
Filimon A, Dobos AM, Onofrei MD, Serbezeanu D. Polyvinyl Alcohol-Based Membranes: A Review of Research Progress on Design and Predictive Modeling of Properties for Targeted Application. Polymers (Basel) 2025; 17:1016. [PMID: 40284281 PMCID: PMC12030392 DOI: 10.3390/polym17081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
This review provides a comprehensive evaluation of the current state of polyvinyl alcohol (PVA)-based membranes, emphasizing their significance in membrane technology for various applications. The analysis encompasses both experimental and theoretical research articles, with a focus on recent decades, aiming to elucidate the potential and limitations of different fabrication approaches, structure-property relationships, and their applicability in the real world. The review begins by examining the advanced polymeric materials and strategies employed in the design and processing of membranes with tailored properties. Fundamental principles of membrane processes are introduced, with a focus on general modeling approaches for describing the fluid transport through membranes. A key aspect of discussion is the distinction between the membrane performance and process performance. Additionally, an in-depth analysis of PVA membranes in various applications is presented, particularly in environmental fields (e.g., fuel cell, water treatment, air purification, and food packaging) and biomedical domains (e.g., drug delivery systems, wound healing, tissue engineering and regenerative medicine, hemodialysis and artificial organs, and ophthalmic and periodontal treatment). Special attention is given to the relationship between membranes' characteristics, such as material composition, structure, and processing parameters, and their overall performance, in terms of permeability, selectivity, and stability. Despite their promising properties, enhanced through innovative fabrication methods that expand their applicability, challenges remain in optimizing long-term stability, improving fouling resistance, and increasing process scalability. Therefore, further research is needed to develop novel modifications and composite structures that overcome these limitations and enhance the practical implementation of PVA-based membranes. By offering a systematic overview, this review aims to advance the understanding of PVA membrane fabrication, properties, and functionality, providing valuable insights for continued development and optimization in membrane technology.
Collapse
Affiliation(s)
- Anca Filimon
- “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.M.D.); (M.D.O.); (D.S.)
| | | | | | | |
Collapse
|
2
|
Dinesh, Wang H, Pham DH, Kim J. Anionic surfactant effect on the structural and thermal insulation properties of crosslinked-cellulose nanofiber foam and its superhydrophobic treatment. Int J Biol Macromol 2024; 283:137934. [PMID: 39579828 DOI: 10.1016/j.ijbiomac.2024.137934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/28/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Sustainable and environmentally friendly cellulose nanofiber (CNF) has unique advantages and properties for preparing porous materials for various applications. This study reports a CNF foam developed via an environmentally friendly, expeditious and cost-effective process using sodium dodecyl sulfate (SDS) and citric acid (CA) as an anionic surfactant and a bio-based green crosslinker. Incorporating 0.5 wt% SDS into CA-crosslinked CNF foam significantly enhances its porous structure, indicating the highest porosity (>99.24 %) and a very low density (18.59 mg/cm3). The performance improvement is attributed to the formation of robust ester bonds through chemical crosslinking, which stabilizes the foam's microstructure and enhances its mechanical strength. Additionally, the SDS facilitates better foaming and reduces surface tension, promoting uniform distribution of pores. The foam shows better mechanical properties and antioxidant behavior than the neat CNF foam. Moreover, adding SDS into the CA-crosslinked NC foam exhibits lower thermal conductivity (0.029 W/mK) and diffusivity than commercial insulation foams, including polyurethane foam. Finally, a superhydrophobic CA-crosslinked CNF foam is made by a water-based hydrophobic treatment (water contact angle = 150°), indicating its waterproof behavior.
Collapse
Affiliation(s)
- Dinesh
- Creative Research Center for Nanocellulose Future Composites, Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Hanbin Wang
- Creative Research Center for Nanocellulose Future Composites, Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Duc Hoa Pham
- Creative Research Center for Nanocellulose Future Composites, Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Jaehwan Kim
- Creative Research Center for Nanocellulose Future Composites, Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea.
| |
Collapse
|
3
|
Wang H, Dinesh, Kim J. Development of lightweight, high-strength, and highly porous ligno-nanocellulosic foam with excellent antioxidant and insulation properties. Carbohydr Polym 2024; 326:121616. [PMID: 38142097 DOI: 10.1016/j.carbpol.2023.121616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/25/2023]
Abstract
This study reports an environmentally friendly ligno-nanocellulosic foam prepared by utilizing lignin (LGN), cellulose nanofiber (CNF), and citric acid (CA) as a green crosslinker through an easy, low-cost, and environmentally friendly process. The FTIR study and XPS analysis of the prepared LGN/CNF foams confirm the crosslinking between the components, which leads to lower shrinkage, lower density, and higher porosity than the neat CNF foam, achieving a remarkably low density of 19.59 mg/cm3 and high porosity of 98.84 % The morphology and microstructure of the foam show a uniform three-dimensional porous network built by strong cell walls. The crosslinked LGN/CNF foams indicate 182 % higher compressive modulus and 306 % higher compressive strength at 70 % strain than the neat CNF foam. Further, the addition of LGN and CA enhances the antioxidant activity of the foam. The prepared foam shows lower thermal conductivity and better sound absorption performance than the neat CNF foam, indicating a potential to be used as thermal insulation and sound-absorbing materials that can mitigate greenhouse gas emissions.
Collapse
Affiliation(s)
- Hanbin Wang
- Creative Research Center for Nanocellulose Future Composites, Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Dinesh
- Creative Research Center for Nanocellulose Future Composites, Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Jaehwan Kim
- Creative Research Center for Nanocellulose Future Composites, Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea.
| |
Collapse
|
4
|
Wang Z, Li R, Liu H, Liu X, Zheng F, Yu C. Reduced graphene oxide/SiC nanowire composite aerogel prepared by a hydrothermal method with excellent thermal insulation performance and electromagnetic wave absorption performance. NANOTECHNOLOGY 2024; 35:135703. [PMID: 38134441 DOI: 10.1088/1361-6528/ad183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
In aerospace and downhole exploration, materials must function reliably in challenging environments characterized by high temperatures and complex electromagnetic (EM) interference. Graphene oxide (GO) aerogels are promising materials for thermal insulation, and the incorporation of silicon carbide nanowires can enhance their mechanical properties, thermal stability and EM absorption efficiency. In this context, citric acid acts as both a cross-linking and reducing agent, facilitating the formation of a composite aerogel comprising GO and SiC nanowires (rGO/m-SiC NWs). Compared with GO aerogels, the representative composite aerogel sample rGS4 demonstrated significantly improved mechanical properties (yield strength increased by 0.031 MPa), outstanding thermal stability (ability to withstand temperatures up to 800 °C) and remarkably low thermal conductivity (measuring just 0.061 W m-1K-1). Importantly, the composite aerogels displayed impressive EM absorption characteristics, including a slim profile (2.5 mm), high absorption capacity (-42.23 dB) and an exceptionally broad effective absorption bandwidth (7.47 GHz). Notably, the specific effective absorption bandwidth of composite aerogels exceeded that of similar composite materials. In conclusion, rGO/m-SiC NWs exhibited exceptional mechanical properties, remarkable thermal stability, efficient thermal insulation and outstanding microwave absorption capabilities. These findings highlight their potential for use in high-temperature and electromagnetically challenging environments.
Collapse
Affiliation(s)
- Zhijian Wang
- College of Mechanical and Electrical Engineering, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| | - Rong Li
- College of Mechanical and Electrical Engineering, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| | - He Liu
- CNPC Bohai Drilling Engineering Company Ltd., Tianjin 300457, People's Republic of China
| | - Xingmin Liu
- College of Material Science and Engineering, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| | - Feng Zheng
- CNPC Bohai Drilling Engineering Company Ltd., Tianjin 300457, People's Republic of China
| | - Chen Yu
- CNPC Bohai Drilling Engineering Company Ltd., Tianjin 300457, People's Republic of China
| |
Collapse
|
5
|
de Lima TADM, de Lima GG, Munir N, Coutinho JRT, Mitchell GR, Magalhães WLE, Nugent MJD. Nanofibrillated cellulose originated from Rhododendron ponticum to produce scaffolds using 3D printing for biomedical applications. Int J Biol Macromol 2023; 253:126556. [PMID: 37640187 DOI: 10.1016/j.ijbiomac.2023.126556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/28/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Rhododendron ponticum is an invasive species that spreads rapidly and is described as one of the biggest threats to peatlands in Ireland. This study offers an innovative approach to utilizing Rhododendron waste. Initially, sawdust was submitted to a bleaching treatment and the nanofibrillated cellulose (NFC) was obtained using two different methods: ultra-fine friction grinding and twin-screw extrusion with the assistance of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) pre-treatment. The samples processed through twin-screw extrusion exhibited the presence of NFC at five intervals, as confirmed by TEM analysis. However, these samples displayed a higher diameter deviation compared to those processed through grinding alone. Notably, after 20 extrusion steps, the NFC diameter became more uniform, reaching approximately 35 nm. Sedimentation tests showed that extrusion produced more homogeneous cellulose size than the grinder method. However, FTIR characterization for the samples showed a unique band related to C-O-C glycosidic linkage. The results showed that grinding breaks these groups resulting in crystallinity values lower than extrusion, 50 % compared 60 %. Therefore, NFC with 20 steps by grinding was blended with polycaprolactone to produce a 3D scaffold using a 3D printer at different ratios of 1-5 % addition. The effect of 1 % of NFC was unique showing significant enhanced mechanical properties compared to pure polycaprolactone (PCL), additionally, the NFC does not exhibit toxicity so these materials show promise for biomedical applications.
Collapse
Affiliation(s)
- Tielidy A de M de Lima
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37HD68 Athlone, Ireland.
| | - Gabriel Goetten de Lima
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37HD68 Athlone, Ireland; Programa de Pós-Graduação em Engenharia e Ciência dos Materiais-PIPE, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Nimra Munir
- Centre for Precision Engineering, Materials and Manufacturing (PEM Centre),Atlantic Technological University, ATU Sligo, Ash Lane, F91 YW50 Sligo, Ireland
| | - Joana Raquel Teixeira Coutinho
- Centre for Rapid and Sustainable Product Development, Institute Polytechnic of Leiria, 2430-082 Marinha Grande, Portugal
| | - Geoffrey Robert Mitchell
- Centre for Rapid and Sustainable Product Development, Institute Polytechnic of Leiria, 2430-082 Marinha Grande, Portugal
| | | | - Michael J D Nugent
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37HD68 Athlone, Ireland.
| |
Collapse
|
6
|
Solomevich SO, Oranges CM, Kalbermatten DF, Schwendeman A, Madduri S. Natural polysaccharides and their derivatives as potential medical materials and drug delivery systems for the treatment of peripheral nerve injuries. Carbohydr Polym 2023; 315:120934. [PMID: 37230605 DOI: 10.1016/j.carbpol.2023.120934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Peripheral nerve repair following injury is one of the most serious problems in neurosurgery. Clinical outcomes are often unsatisfactory and associated with a huge socioeconomic burden. Several studies have revealed the great potential of biodegradable polysaccharides for improving nerve regeneration. We review here the promising therapeutic strategies involving different types of polysaccharides and their bio-active composites for promoting nerve regeneration. Within this context, polysaccharide materials widely used for nerve repair in different forms are highlighted, including nerve guidance conduits, hydrogels, nanofibers and films. While nerve guidance conduits and hydrogels were used as main structural scaffolds, the other forms including nanofibers and films were generally used as additional supporting materials. We also discuss the issues of ease of therapeutic implementation, drug release properties and therapeutic outcomes, together with potential future directions of research.
Collapse
Affiliation(s)
- Sergey O Solomevich
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Carlo M Oranges
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Daniel F Kalbermatten
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Srinivas Madduri
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
7
|
Omidian H, Dey Chowdhury S, Babanejad N. Cryogels: Advancing Biomaterials for Transformative Biomedical Applications. Pharmaceutics 2023; 15:1836. [PMID: 37514023 PMCID: PMC10384998 DOI: 10.3390/pharmaceutics15071836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cryogels, composed of synthetic and natural materials, have emerged as versatile biomaterials with applications in tissue engineering, controlled drug delivery, regenerative medicine, and therapeutics. However, optimizing cryogel properties, such as mechanical strength and release profiles, remains challenging. To advance the field, researchers are exploring advanced manufacturing techniques, biomimetic design, and addressing long-term stability. Combination therapies and drug delivery systems using cryogels show promise. In vivo evaluation and clinical trials are crucial for safety and efficacy. Overcoming practical challenges, including scalability, structural integrity, mass transfer constraints, biocompatibility, seamless integration, and cost-effectiveness, is essential. By addressing these challenges, cryogels can transform biomedical applications with innovative biomaterials.
Collapse
Affiliation(s)
- Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
8
|
Liu Y, Zhang X, Xiao C, Liu B. Engineered hydrogels for peripheral nerve repair. Mater Today Bio 2023; 20:100668. [PMID: 37273791 PMCID: PMC10232914 DOI: 10.1016/j.mtbio.2023.100668] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Peripheral nerve injury (PNI) is a complex disease that often appears in young adults. It is characterized by a high incidence, limited treatment options, and poor clinical outcomes. This disease not only causes dysfunction and psychological disorders in patients but also brings a heavy burden to the society. Currently, autologous nerve grafting is the gold standard in clinical treatment, but complications, such as the limited source of donor tissue and scar tissue formation, often further limit the therapeutic effect. Recently, a growing number of studies have used tissue-engineered materials to create a natural microenvironment similar to the nervous system and thus promote the regeneration of neural tissue and the recovery of impaired neural function with promising results. Hydrogels are often used as materials for the culture and differentiation of neurogenic cells due to their unique physical and chemical properties. Hydrogels can provide three-dimensional hydration networks that can be integrated into a variety of sizes and shapes to suit the morphology of neural tissues. In this review, we discuss the recent advances of engineered hydrogels for peripheral nerve repair and analyze the role of several different therapeutic strategies of hydrogels in PNI through the application characteristics of hydrogels in nerve tissue engineering (NTE). Furthermore, the prospects and challenges of the application of hydrogels in the treatment of PNI are also discussed.
Collapse
Affiliation(s)
- Yao Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| | - Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Bin Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| |
Collapse
|
9
|
Jabbari F, Babaeipour V, Bakhtiari S. Bacterial cellulose-based composites for nerve tissue engineering. Int J Biol Macromol 2022; 217:120-130. [PMID: 35820488 DOI: 10.1016/j.ijbiomac.2022.07.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
Nerve injuries and neurodegenerative disorders are very serious and costly medical challenges. Damaged nerve tissue may not be able to heal and regain its function, and scar tissue may restrict nerve cell regeneration. In recent years, new electroactive biomaterials have attracted widespread attention in the neural tissue engineering field. Bacterial cellulose (BC) due to its unique properties such as good mechanical properties, high water retention, biocompatibility, high crystallinity, large surface area, high purity, very fine network, and inability to absorb in the human body due to cellulase deficiency, can be considered a promising treatment for neurological injuries and disorders that require long-term support. However, BC lacks electrical activity, but can significantly improve the nerve regeneration rate by combining with conductive structures. Electrical stimulation has been shown to be an effective means of increasing the rate and accuracy of nerve regeneration. Many factors, such as the intensity and pattern of electrical current, have positive effects on cellular activity, including cell adhesion, proliferation, migration and differentiation, and cell-cell/tissue/molecule/drug interaction. This study discusses the importance and essential role of BC-based biomaterials in neural tissue regeneration and the effects of electrical stimulation on cellular behaviors.
Collapse
Affiliation(s)
- Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316, Tehran, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran.
| | - Samaneh Bakhtiari
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
10
|
Zhang F, Zhang M, Liu S, Li C, Ding Z, Wan T, Zhang P. Application of Hybrid Electrically Conductive Hydrogels Promotes Peripheral Nerve Regeneration. Gels 2022; 8:41. [PMID: 35049576 PMCID: PMC8775167 DOI: 10.3390/gels8010041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/18/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022] Open
Abstract
Peripheral nerve injury (PNI) occurs frequently, and the prognosis is unsatisfactory. As the gold standard of treatment, autologous nerve grafting has several disadvantages, such as lack of donors and complications. The use of functional biomaterials to simulate the natural microenvironment of the nervous system and the combination of different biomaterials are considered to be encouraging alternative methods for effective tissue regeneration and functional restoration of injured nerves. Considering the inherent presence of an electric field in the nervous system, electrically conductive biomaterials have been used to promote nerve regeneration. Due to their singular physical properties, hydrogels can provide a three-dimensional hydrated network that can be integrated into diverse sizes and shapes and stimulate the natural functions of nerve tissue. Therefore, conductive hydrogels have become the most effective biological material to simulate human nervous tissue's biological and electrical characteristics. The principal merits of conductive hydrogels include their physical properties and their electrical peculiarities sufficient to effectively transmit electrical signals to cells. This review summarizes the recent applications of conductive hydrogels to enhance peripheral nerve regeneration.
Collapse
Affiliation(s)
- Fengshi Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Songyang Liu
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Ci Li
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Zhentao Ding
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|