1
|
Pangerl J, Sukul P, Rück T, Fuchs P, Weigl S, Miekisch W, Bierl R, Matysik FM. An inexpensive UV-LED photoacoustic based real-time sensor-system detecting exhaled trace-acetone. PHOTOACOUSTICS 2024; 38:100604. [PMID: 38559568 PMCID: PMC10973644 DOI: 10.1016/j.pacs.2024.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
In this research we present a low-cost system for breath acetone analysis based on UV-LED photoacoustic spectroscopy. We considered the end-tidal phase of exhalation, which represents the systemic concentrations of volatile organic compounds (VOCs) - providing clinically relevant information about the human health. This is achieved via the development of a CO2-triggered breath sampling system, which collected alveolar breath over several minutes in sterile and inert containers. A real-time mass spectrometer is coupled to serve as a reference device for calibration measurements and subsequent breath analysis. The new sensor system provided a 3σ detection limit of 8.3 ppbV and an NNEA of 1.4E-9 Wcm-1Hz-0.5. In terms of the performed breath analysis measurements, 12 out of 13 fell within the error margin of the photoacoustic measurement system, demonstrating the reliability of the measurements in the field.
Collapse
Affiliation(s)
- Jonas Pangerl
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, Regensburg 93053, Germany
- Institute of Analytical Chemistry, Chemo- and Biosensing, University of Regensburg, Regensburg 93053, Germany
| | - Pritam Sukul
- Rostock Medical Breath Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Rostock 18057, Germany
| | - Thomas Rück
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, Regensburg 93053, Germany
| | - Patricia Fuchs
- Rostock Medical Breath Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Rostock 18057, Germany
| | - Stefan Weigl
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, Regensburg 93053, Germany
| | - Wolfram Miekisch
- Rostock Medical Breath Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Rostock 18057, Germany
| | - Rudolf Bierl
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, Regensburg 93053, Germany
| | - Frank-Michael Matysik
- Institute of Analytical Chemistry, Chemo- and Biosensing, University of Regensburg, Regensburg 93053, Germany
| |
Collapse
|
2
|
Czippelová B, Nováková S, Šarlinová M, Baranovičová E, Urbanová A, Turianiková Z, Krohová JČ, Halašová E, Škovierová H. Impact of breath sample collection method and length of storage of breath samples in Tedlar bags on the level of selected volatiles assessed using gas chromatography-ion mobility spectrometry (GC-IMS). J Breath Res 2024; 18:036004. [PMID: 38701772 DOI: 10.1088/1752-7163/ad4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
The analysis of volatile organic compounds (VOCs) in exhaled air has attracted the interest of the scientific community because it provides the possibility of monitoring physiological and metabolic processes and non-invasive diagnostics of various diseases. However, this method remains underused in clinical practice as well as in research because of the lack of standardized procedures for the collection, storage and transport of breath samples, which would guarantee good reproducibility and comparability of results. The method of sampling, as well as the storage time of the breath samples in the polymer bags used for sample storage and transport, affect the composition and concentration of VOCs present in the breath samples. The aim of our study was to compare breath samples obtained using two methods with fully disposable equipment: a Haldane sampling tube intended for direct breath collection and breath samples exhaled into a transparent Tedlar bag. The second task was to monitor the stability of selected compounds of real breath samples stored in a Tedlar bag for 6 h. Gas chromatography coupled with ion mobility spectrometry (GC-IMS) implemented in the BreathSpec®device was used to analyse exhaled breath. Our results showed a significant difference in the signal intensity of some volatiles when taking a breath sample with a Haldane tube and a Tedlar bag. Due to its endogenous origin, acetone levels were significantly higher when the Haldane tube sampler was used while elevated levels of 2-propanol and unidentified VOC (designated as VOC 3) in the Tedlar bag samples likely originated from contamination of the Tedlar bags. The VOC stability study revealed compound-specific signal intensity changes of the selected VOCs with storage time in the Tedlar bags, with some volatiles showing increasing signal intensity during storage in Tedlar bags. This limits the use of Tedlar bags only for very limited time and carefully selected purpose. Our results highlight the importance of careful design and implementation of experiments and clinical protocols to obtain relevant and reliable results.
Collapse
Affiliation(s)
- Barbora Czippelová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Slavomíra Nováková
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Miroslava Šarlinová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Eva Baranovičová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | | | - Zuzana Turianiková
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Jana Čerňanová Krohová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Erika Halašová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Henrieta Škovierová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| |
Collapse
|
3
|
Awchi M, Singh KD, Dill PE, Frey U, Datta AN, Sinues P. Prediction of systemic free and total valproic acid by off-line analysis of exhaled breath in epileptic children and adolescents. J Breath Res 2023; 17:046013. [PMID: 37678210 DOI: 10.1088/1752-7163/acf782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Therapeutic drug monitoring (TDM) of medications with a narrow therapeutic window is a common clinical practice to minimize toxic effects and maximize clinical outcomes. Routine analyses rely on the quantification of systemic blood concentrations of drugs. Alternative matrices such as exhaled breath are appealing because of their inherent non-invasive nature. This is especially the case for pediatric patients. We have recently showcased the possibility of predicting systemic concentrations of valproic acid (VPA), an anti-seizure medication by real-time breath analysis in two real clinical settings. This approach, however, comes with the limitation of the patients having to physically exhale into the mass spectrometer. This restricts the possibility of sampling from patients not capable or available to exhale into the mass spectrometer located on the hospital premises. In this work, we developed an alternative method to overcome this limitation by collecting the breath samples in customized bags and subsequently analyzing them by secondary electrospray ionization coupled to high-resolution mass spectrometry (SESI-HRMS). A total ofn= 40 patients (mean ± SD, 11.5 ± 3.5 y.o.) diagnosed with epilepsy and taking VPA were included in this study. The patients underwent three measurements: (i) serum concentrations of total and free VPA, (ii) real-time breath analysis and (iii) off-line analysis of exhaled breath collected in bags. The agreement between the real-time and the off-line breath analysis methods was evaluated using Lin's concordance correlation coefficient (CCC). CCC was computed for ten mass spectral predictors of VPA concentrations. Lin's CCC was >0.6 for all VPA-associated features, except for two low-signal intensity isotopic peaks. Finally, free and total serum VPA concentrations were predicted by cross validating the off-line data set. Support vector machine algorithms provided the most accurate predictions with a root mean square error of cross validation of 29.0 ± 7.4 mg l-1and 3.9 ± 1.4 mg l-1for total and free VPA (mean ± SD), respectively. As a secondary analysis, we explored whether exhaled metabolites previously associated with side-effects and response to medication could be rendered by the off-line analysis method. We found that five features associated with side effects showed a CCC > 0.6, whereas none of the drug response-associated peaks reached this cut-off. We conclude that the clinically relevant free fraction of VPA can be predicted by this combination of off-line breath collection with rapid SESI-HRMS analysis. This opens new possibilities for breath based TDM in clinical settings.
Collapse
Affiliation(s)
- Mo Awchi
- University Children's Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Kapil Dev Singh
- University Children's Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | - Urs Frey
- University Children's Hospital Basel, Basel, Switzerland
| | | | - Pablo Sinues
- University Children's Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Bellagambi FG, Lomonaco T, Ghimenti S, Biagini D, Fuoco R, Di Francesco F. Determination of peppermint compounds in breath by needle trap micro-extraction coupled with gas chromatography-tandem mass spectrometry. J Breath Res 2020; 15. [PMID: 33238253 DOI: 10.1088/1752-7163/abcdec] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/25/2020] [Indexed: 01/26/2023]
Abstract
Breath analysis is an alternative approach for disease diagnosis and for monitoring therapy. The lack of standardized procedures for collecting and analysing breath samples currently limits its use in clinical practice. In order to overcome this limitation, the "Peppermint Consortium" was established within the breath community to carry out breath wash-out experiments and define reference values for a panel of compounds contained in the peppermint oil capsule. Here, we present a needle trap micro-extraction technique coupled with gas chromatography and tandem mass spectrometry for a rapid and accurate determination of alpha-pinene, beta-pinene, limonene, eucalyptol, menthofuran, menthone, menthol and menthyl acetate in mixed breath samples. Detection limits between 1 and 20 pptv were observed when 25 mL of a humidified standard gas mixture were loaded into a needle trap device at a flow rate of 10 mL/min. Inter- and intra-day precisions were lower than 15%, thus confirming the reliability of the assay. Our procedure was used to analyse breath samples taken from a nominally healthy volunteer who were invited to swallow a 200 mg capsule of peppermint oil. Six samples were collected at various times within six hours of ingestion. Analyte concentrations were not affected by the sampling mode (i.e. mixed vs. end-tidal fraction), whereas respiratory rate and exhalation flow rate values slightly influenced the concentration of the target compounds in breath samples.
Collapse
Affiliation(s)
- Francesca G Bellagambi
- Institut des Sciences Analytiques, Université Claude Bernard Lyon 1, 5, rue de la Doua, Villeurbanne, FRANCE, 69100, FRANCE
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Toscana, ITALY
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Toscana, ITALY
| | - Roger Fuoco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Toscana, ITALY
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Toscana, ITALY
| |
Collapse
|
5
|
Sukul P, Schubert JK, Zanaty K, Trefz P, Sinha A, Kamysek S, Miekisch W. Exhaled breath compositions under varying respiratory rhythms reflects ventilatory variations: translating breathomics towards respiratory medicine. Sci Rep 2020; 10:14109. [PMID: 32839494 PMCID: PMC7445240 DOI: 10.1038/s41598-020-70993-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Control of breathing is automatic and its regulation is keen to autonomic functions. Therefore, involuntary and voluntary nervous regulation of breathing affects ventilatory variations, which has profound potential to address expanding challenges in contemporary pulmonology. Nonetheless, the fundamental attributes of the aforementioned phenomena are rarely understood and/or investigated. Implementation of unconventional approach like breathomics may leads to a better comprehension of those complexities in respiratory medicine. We applied breath-resolved spirometry and capnometry, non-invasive hemodynamic monitoring along with continuous trace analysis of exhaled VOCs (volatile organic compounds) by means of real-time mass-spectrometry in 25 young and healthy adult humans to investigate any possible mirroring of instant ventilatory variations by exhaled breath composition, under varying respiratory rhythms. Hemodynamics remained unaffected. Immediate changes in measured breath compositions and corresponding variations occurred when respiratory rhythms were switched between spontaneous (involuntary/unsynchronised) and/or paced (voluntary/synchronised) breathing. Such changes in most abundant, endogenous and bloodborne VOCs were closely related to the minute ventilation and end-tidal CO2 exhalation. Unprecedentedly, while preceded by a paced rhythm, spontaneous rhythms in both independent setups became reproducible with significantly (P-value ≤ 0.005) low intra- and inter-individual variation in measured parameters. We modelled breath-resolved ventilatory variations via alveolar isoprene exhalation, which were independently validated with unequivocal precision. Reproducibility i.e. attained via our method would be reliable for human breath sampling, concerning biomarker research. Thus, we may realize the actual metabolic and pathophysiological expressions beyond the everlasting in vivo physiological noise. Consequently, less pronounced changes are often misinterpreted as disease biomarker in cross-sectional studies. We have also provided novel information beyond conventional spirometry and capnometry. Upon clinical translations, our findings will have immense impact on pulmonology and breathomics as they have revealed a reproducible pattern of ventilatory variations and respiratory homeostasis in endogenous VOC exhalations.
Collapse
Affiliation(s)
- Pritam Sukul
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anaesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057, Rostock, Germany.
| | - Jochen K Schubert
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anaesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - Karim Zanaty
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anaesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - Phillip Trefz
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anaesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - Anupam Sinha
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Fetscherstr. 74, 01307, Dresden, Germany
| | - Svend Kamysek
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anaesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - Wolfram Miekisch
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anaesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057, Rostock, Germany
| |
Collapse
|
6
|
Malásková M, Henderson B, Chellayah PD, Ruzsanyi V, Mochalski P, Cristescu SM, Mayhew CA. Proton transfer reaction time-of-flight mass spectrometric measurements of volatile compounds contained in peppermint oil capsules of relevance to real-time pharmacokinetic breath studies. J Breath Res 2019; 13:046009. [PMID: 31163413 DOI: 10.1088/1752-7163/ab26e2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the growing interest in the use of breath volatiles in the health sciences, the lack of standardization for the sampling and analysis of exhaled breath is becoming a major issue leading to an absence of conformity, reproducibility and reliability in spectrometric measurements. Through the creation of a worldwide 'peppermint consortium', the International Association of Breath Research has set up a task force to deal with this problem. Pharmacokinetic studies are proposed, and a real-time analytical technique that is being used is proton transfer reaction-time-of-flight-mass spectrometry (PTR-ToF-MS). This paper presents details on how the volatile compounds contained in a peppermint oil capsule, and hence on breath, appear in a PTR-ToF-MS. To aid that study, the key volatiles in the headspace of peppermint oil were first identified using gas chromatography-mass spectrometry, notably: menthol, menthone, 1,8-cineole, menthofuran, limonene, α-pinene and β-pinene. A PTR-ToF-MS analysis of these compounds has been undertaken, divorced from the complexity of the peppermint oil matrix using 'normal' and 'saturated' humidity drift-tube conditions, with the latter used to mimic breath samples, and over a range of reduced electric fields. There are no characteristic product ions that can distinguish monoterpenes and 1,8-cineole, and hence, without pre-separation, a combined washout for these volatiles can only be provided. By operating the drift tube above about 130 Td, there are characteristic product ions for menthone, menthofuran and menthol, namely m/z 155.14 (protonated menthone), m/z 151.11 (protonated menthofuran), m/z 139.15 (loss of H2O from protonated menthol) and m/z 83.09 (a fragment ion, C6H11 +, from menthol). These have been used to monitor, with a high specificity, the temporal profile of these three compounds in breath following the ingestion of a peppermint oil capsule. To aid in the analyses, the proton affinities and gas-phase basicities for the key volatiles investigated have been determined using density functional theory.
Collapse
Affiliation(s)
- Michaela Malásková
- Institute for Breath Research, Leopold-Franzens-Universität Innsbruck, Rathausplatz 4, A-6850, Dornbirn, Austria
| | | | | | | | | | | | | |
Collapse
|
7
|
Wallace MAG, Pleil JD. Evolution of clinical and environmental health applications of exhaled breath research: Review of methods and instrumentation for gas-phase, condensate, and aerosols. Anal Chim Acta 2018; 1024:18-38. [PMID: 29776545 PMCID: PMC6082128 DOI: 10.1016/j.aca.2018.01.069] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022]
Abstract
Human breath, along with urine and blood, has long been one of the three major biological media for assessing human health and environmental exposure. In fact, the detection of odor on human breath, as described by Hippocrates in 400 BC, is considered the first analytical health assessment tool. Although less common in comparison to contemporary bio-fluids analyses, breath has become an attractive diagnostic medium as sampling is non-invasive, unlimited in timing and volume, and does not require clinical personnel. Exhaled breath, exhaled breath condensate (EBC), and exhaled breath aerosol (EBA) are different types of breath matrices used to assess human health and disease state. Over the past 20 years, breath research has made many advances in assessing health state, overcoming many of its initial challenges related to sampling and analysis. The wide variety of sampling techniques and collection devices that have been developed for these media are discussed herein. The different types of sensors and mass spectrometry instruments currently available for breath analysis are evaluated as well as emerging breath research topics, such as cytokines, security and airport surveillance, cellular respiration, and canine olfaction.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA.
| | - Joachim D Pleil
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
8
|
Singh KD, Del Miguel GV, Gaugg MT, Ibañez AJ, Zenobi R, Kohler M, Frey U, Sinues PML. Translating secondary electrospray ionization-high-resolution mass spectrometry to the clinical environment. J Breath Res 2018; 12:027113. [PMID: 29411710 DOI: 10.1088/1752-7163/aa9ee3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While there has been progress in making use of breath tests to guide clinical decision making, the full potential of exhaled breath analysis still remains to be exploited. Here we summarize some of the reasons why this is the case, what we have done so far to overcome some of the existing obstacles, and our vision of how we think breath analysis will play a more prominent role in the coming years. In particular, we envision that real-time high-resolution mass spectrometry will provide valuable information in biomarker discovery studies. However, this can only be achieved by a coordinated effort, using standardized equipment and methods in multi-center studies to eventually deliver tangible advances in the field of breath analysis in a clinical setting. Concrete aspects such as sample integrity, compound identification, quantification and standardization are discussed. Novel secondary electrospray ionization developments with the aim of facilitating inter-groups comparisons and biomarker validation studies are also presented.
Collapse
Affiliation(s)
- Kapil Dev Singh
- University of Basel Children's Hospital, Basel, Switzerland. Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sukul P, Schubert JK, Kamysek S, Trefz P, Miekisch W. Applied upper-airway resistance instantly affects breath components: a unique insight into pulmonary medicine. J Breath Res 2017; 11:047108. [PMID: 28925377 DOI: 10.1088/1752-7163/aa8d86] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Respiratory parameters such as flow or rate have complex effects on the exhalation of volatile substances and can hamper clinical interpretation of breath biomarkers. We have investigated the effects of progressively applied upper-airway resistances on the exhalation of volatile organic compounds (VOCs) in healthy humans. We performed real-time mass-spectrometric determination of breath volatiles in 50 subjects with parallel, non-invasive hemodynamic monitoring, breath-resolved spirometry and capnometry during controlled tidal breathing (12 breaths/min). Airway resistance was increased by changing the mouthpiece diameters from 2.5 cm to 1.0 cm and to 0.5 cm. At the smallest diameter, oxygen uptake increased (35%↑). Cardiac output decreased (6%↓) but end-tidal PCO2 (8%↑) and exhalation of blood-borne isoprene (19%↑) increased. Carbon dioxide production remained constant. Furan, hydrogen sulphide mirrored isoprene. Despite lowered minute ventilation (4%↓) acetone concentrations decreased (3%↓). Exogenous acetonitrile, propionic acid, isopropanol, limonene mimicked acetone. VOC concentration changes could be modelled through substance volatility. Airway resistance-induced changes in hemodynamics, and ventilation can affect VOC exhalation and thereby interfere with breath biomarker interpretation. The effects of collateral ventilation, intra-alveolar pressure gradients and respiratory mechanics had to be considered to explain the exhalation kinetics of CO2 and VOCs. Conventional breath sampling via smaller mouthpiece diameters (≤1.0 cm, e.g. via straw in Tedlar bags or canisters, etc) will immediately affect VOC exhalation and thereby mislead the analysis of the obtained results. Endogenous isoprene may probe respiratory muscle workload under obstructive conditions. Breath-gas analysis might enhance our understanding of diagnosis and management of obstructive lung diseases in the future.
Collapse
Affiliation(s)
- Pritam Sukul
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Dept. of Anaesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, D-18057 Rostock, Germany
| | | | | | | | | |
Collapse
|
10
|
Abstract
Breath analysis is a form of metabolomics that utilises the identification and quantification of volatile chemicals to provide information about physiological or pathological processes occurring within the body. An inherent assumption of such analyses is that the concentration of the exhaled gases correlates with the concentration of the same gas in the tissue of interest. In this study we have investigated this assumption by quantifying some volatile compounds in peripheral venous blood headspace, and in nasal breath collected in Tedlar bags obtained at the same time from 30 healthy volunteers, prior to analysis by selected ion flow tube mass spectrometry. Some endogenous compounds were significantly correlated between blood headspace and nasal breath, such as isoprene (r p = 0.63) and acetone (r p = 0.68), however many, such as propanol (r p = -0.26) and methanol (r p = 0.23), were not. Furthermore, the relative concentrations of volatiles in blood and breath varied markedly between compounds, with some, such as isoprene and acetone, having similar concentrations in each, while others, such as acetic acid, ammonia and methanol, being significantly more abundant in breath, and others, such as methanal, being detectable only in breath. We also observed that breath propanol and acetic acid concentrations were higher in male compared to female participants, and that the blood headspace methanol concentration was negatively correlated to body mass index. No relationship between volatile concentrations and age was observed. Our data suggest that breath concentrations of volatiles do not necessarily give information about the same compound in the blood stream. This is likely due to the upper airway contributing compounds over and above that originating in the circulation. An investigation of the relationship between breath volatile concentrations and that in the tissue(s) of interest should therefore become a routine part of the development process of breath-based biomarkers.
Collapse
Affiliation(s)
- Brian M Ross
- Northern Ontario School of Medicine and Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | | |
Collapse
|
11
|
Sukul P, Oertel P, Kamysek S, Trefz P. Oral or nasal breathing? Real-time effects of switching sampling route onto exhaled VOC concentrations. J Breath Res 2017; 11:027101. [DOI: 10.1088/1752-7163/aa6368] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Lawal O, Ahmed WM, Nijsen TME, Goodacre R, Fowler SJ. Exhaled breath analysis: a review of 'breath-taking' methods for off-line analysis. Metabolomics 2017; 13:110. [PMID: 28867989 PMCID: PMC5563344 DOI: 10.1007/s11306-017-1241-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The potential of exhaled breath sampling and analysis has long attracted interest in the areas of medical diagnosis and disease monitoring. This interest is attributed to its non-invasive nature, access to an unlimited sample supply (i.e., breath), and the potential to facilitate a rapid at patient diagnosis. However, progress from laboratory setting to routine clinical practice has been slow. Different methodologies of breath sampling, and the consequent difficulty in comparing and combining data, are considered to be a major contributor to this. To fulfil the potential of breath analysis within clinical and pre-clinical medicine, standardisation of some approaches to breath sampling and analysis will be beneficial. OBJECTIVES The aim of this review is to investigate the heterogeneity of breath sampling methods by performing an in depth bibliometric search to identify the current state of art in the area. In addition, the review will discuss and critique various breath sampling methods for off-line breath analysis. METHODS Literature search was carried out in databases MEDLINE, BIOSIS, EMBASE, INSPEC, COMPENDEX, PQSCITECH, and SCISEARCH using the STN platform which delivers peer-reviewed articles. Keywords searched for include breath, sampling, collection, pre-concentration, volatile. Forward and reverse search was then performed on initially included articles. The breath collection methodologies of all included articles was subsequently reviewed. RESULTS Sampling methods differs between research groups, for example regarding the portion of breath being targeted. Definition of late expiratory breath varies between studies. CONCLUSIONS Breath analysis is an interdisciplinary field of study using clinical, analytical chemistry, data processing, and metabolomics expertise. A move towards standardisation in breath sampling is currently being promoted within the breath research community with a view to harmonising analysis and thereby increasing robustness and inter-laboratory comparisons.
Collapse
Affiliation(s)
- Oluwasola Lawal
- 0000000121662407grid.5379.8Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- 0000 0004 0398 9387grid.417284.cPhilips Research, Royal Philips B.V., Eindhoven, The Netherlands
- 0000000121662407grid.5379.8School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Waqar M. Ahmed
- 0000000121662407grid.5379.8Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- 0000 0004 0398 9387grid.417284.cPhilips Research, Royal Philips B.V., Eindhoven, The Netherlands
- 0000000121662407grid.5379.8School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Tamara M. E. Nijsen
- 0000 0004 0398 9387grid.417284.cPhilips Research, Royal Philips B.V., Eindhoven, The Netherlands
| | - Royston Goodacre
- 0000000121662407grid.5379.8School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Stephen J. Fowler
- 0000000121662407grid.5379.8Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- 0000 0004 0430 9363grid.5465.2Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester NHS Foundation Trust, Manchester, UK
| |
Collapse
|
13
|
Beauchamp J, Pleil J, Risby T, Dweik R. Report from IABR Breath Summit 2016 in Zurich, Switzerland. J Breath Res 2016; 10:049001. [DOI: 10.1088/1752-7155/10/4/049001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Recent analytical approaches to detect exhaled breath ammonia with special reference to renal patients. Anal Bioanal Chem 2016; 409:21-31. [PMID: 27595582 DOI: 10.1007/s00216-016-9903-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/10/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022]
Abstract
The ammonia odor from the exhaled breath of renal patients is associated with high levels of blood urea nitrogen. Typically, in the liver, ammonia and ammonium ions are converted into urea through the urea cycle. In the case of renal dysfunction, urea is unable to be removed and that causes a buildup of excessive ammonia. As small molecules, ammonia and ammonium ions can be forced into the blood-lung barrier and occur in exhaled breath. Therefore, people with renal failure have an ammonia (fishy) odor in their exhaled breath. Thus, exhaled breath ammonia can be a potential biomarker for monitoring renal diseases during hemodialyis. In this review, we have summarized the source of ammonia in the breath of end-stage renal disease patient, cause of renal disorders, exhaled breath condensate, and breath sampling. Further, various biosensor approaches to detect exhaled ammonia from renal patients and other ammonia systems are also discussed. We conclude with future perspectives, namely colorimetric-based real-time breathing diagnosis of renal failure, which might be useful for prospective studies.
Collapse
|
15
|
Gruber B, Groeger T, Harrison D, Zimmermann R. Vacuum ultraviolet absorption spectroscopy in combination with comprehensive two-dimensional gas chromatography for the monitoring of volatile organic compounds in breath gas: A feasibility study. J Chromatogr A 2016; 1464:141-6. [PMID: 27545394 DOI: 10.1016/j.chroma.2016.08.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/17/2022]
Abstract
Vacuum ultraviolet (VUV) absorption spectroscopy was recently introduced as a new detection system for one, as well as comprehensive two-dimensional gas chromatography (GC×GC) and successfully applied to the analysis of various analytes in several matrices. In this study, its suitability for the analysis of breath metabolites was investigated and the impact of a finite volume of the absorption cell and makeup gas pressure was evaluated for volatile analytes in terms of sensitivity and chromatographic resolution. A commercial available VUV absorption spectrometer was coupled to GC×GC and applied to the analysis of highly polar volatile organic compounds (VOCs). Breath gas samples were acquired by needle trap micro extraction (NTME) during a glucose challenge and analysed by the applied technique. Regarding qualitative and quantitative information, the VGA-100 is compatible with common GC×GC detection systems like FID and even TOFMS. Average peak widths of 300ms and LODs in the lower ng range were achieved using GC×GC-VUV. Especially small oxygenated breath metabolites show intense and characteristic absorption patterns in the VUV region. Challenge responsive VOCs could be identified and monitored during a glucose challenge. The new VUV detection technology might especially be of benefit for applications in clinical research.
Collapse
Affiliation(s)
- Beate Gruber
- Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, University of Rostock, Dr. Lorenz Weg 1, 18059 Rostock, Germany
| | - Thomas Groeger
- Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, University of Rostock, Dr. Lorenz Weg 1, 18059 Rostock, Germany.
| | - Dale Harrison
- VUV Analytics, Inc., Austin, TX 78717, United States
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, University of Rostock, Dr. Lorenz Weg 1, 18059 Rostock, Germany
| |
Collapse
|
16
|
Gruber B, Keller S, Groeger T, Matuschek G, Szymczak W, Zimmermann R. Breath gas monitoring during a glucose challenge by a combined PTR-QMS/GC×GC-TOFMS approach for the verification of potential volatile biomarkers. J Breath Res 2016; 10:036003. [DOI: 10.1088/1752-7155/10/3/036003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Beauchamp JD, Pleil JD, Dweik RA, Herbig J, Risby TH. International Association of Breath Research 10th anniversary conference at the Schoenbrunn Palace in Vienna, Austria. J Breath Res 2016; 10:019001. [DOI: 10.1088/1752-7155/10/1/019001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|