1
|
Yang M, Wang C, Cai J, Lai X, Cao M, Zhao X. Advancement of microchip electrophoresis coupled with capacitively coupled contactless conductivity detection-from design to application (2018-2024). ANAL SCI 2025:10.1007/s44211-025-00771-3. [PMID: 40279040 DOI: 10.1007/s44211-025-00771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/06/2025] [Indexed: 04/26/2025]
Abstract
Over the past three decades, microchip electrophoresis coupled with capacitively coupled contactless conductivity detection (ME-C4D) has garnered considerable interest due to its various merits, including minimal sample consumption, compact structure, immediate detection, and high analytical precision. Continuous technological innovation and improvement have significantly advanced ME-C4D in structural design, fabrication processes, and experimental methodologies. As a result, the application of this technology has expanded into a wider range of electrochemical analysis fields, including disease diagnosis, food safety assessment, environmental pollutant detection, and soil nutrient analysis. This review meticulously examines the forefront of ME-C4D over the last five years. It methodically categorizes and scrutinizes advancements from various dimensions, including newly emerged ME microchips, C4D electrodes, experimental protocols, and pioneering applications. Moreover, this paper critically summarizes these developments, identifying the prevailing limitations and challenges within ME-C4D. Ultimately, it projects potential future trajectories for innovation in the field of ME-C4D, suggesting pathways to overcome existing hurdles and hinting at the untapped possibilities that lie ahead.
Collapse
Affiliation(s)
- Mingpeng Yang
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China.
- Jiangsu Collaborative Innovation Centre On Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China.
| | - Chaofan Wang
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Jun Cai
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
- Jiangsu Collaborative Innovation Centre On Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
- School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei, 230009, China
| | - Xiaochen Lai
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
- Jiangsu Collaborative Innovation Centre On Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Mingyi Cao
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Xingqiang Zhao
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
- Jiangsu Collaborative Innovation Centre On Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| |
Collapse
|
2
|
Yoo EJ, Kim JS, Stransky S, Spivack S, Sidoli S. Advances in proteomics methods for the analysis of exhaled breath condensate. MASS SPECTROMETRY REVIEWS 2024; 43:713-722. [PMID: 38149478 DOI: 10.1002/mas.21871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
The analysis of exhaled breath condensate (EBC) demonstrates a promising avenue of minimally invasive biopsies for diagnostics. EBC is obtained by cooling exhaled air and collecting the condensation to be utilized for downstream analysis using various analytical methods. The aqueous phase of breath contains a large variety of miscible small compounds including polar electrolytes, amino acids, cytokines, chemokines, peptides, small proteins, metabolites, nucleic acids, and lipids/eicosanoids-however, these analytes are typically present at minuscule levels in EBC, posing a considerable technical challenge. Along with recent improvements in devices for breath collection, the sensitivity and resolution of liquid chromatography coupled to online mass spectrometry-based proteomics has attained subfemtomole sensitivity, vastly enhancing the quality of EBC sample analysis. As a result, proteomics analysis of EBC has been expanding the field of breath biomarker research. We present an au courant overview of the achievements in proteomics of EBC, the advancement of EBC collection devices, and the current and future applications for EBC biomarker analysis.
Collapse
Affiliation(s)
- Edwin J Yoo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julie S Kim
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Simon Spivack
- Department of Medicine, Department of Epidemiology & Population Health, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
3
|
Gade IL, Riddersholm SJ, Stilling-Vinther T, Brøndum RF, Bennike TB, Honoré B. A clinical proteomics study of exhaled breath condensate and biomarkers for pulmonary embolism. J Breath Res 2023; 18:016007. [PMID: 37939397 DOI: 10.1088/1752-7163/ad0aaa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
Pulmonary embolism (PE) can be a diagnostic challenge. Current diagnostic markers for PE are unspecific and new diagnostic tools are needed. The air we exhale is a possible new source for biomarkers which can be tapped into by analysing the exhaled breath condensate (EBC). We analysed the EBC from patients with PE and controls to investigate if the EBC is a useful source for new diagnostic biomarkers of PE. We collected and analysed EBC samples from patients with suspected PE and controls matched on age and sex. Patients in whom PE was ruled out after diagnostic work-up were included in the control group to increase the sensitivity and generalizability of the identified markers. EBC samples were collected using an RTube™. The protein composition of the EBCs were analysed using data dependent label-free quantitative nano liquid chromatography-tandem mass spectrometry. EBC samples from 28 patients with confirmed PE, and 49 controls were analysed. A total of 928 EBC proteins were identified in the 77 EBC samples. As expected, a low protein concentration was determined which resulted in many proteins with unmeasurable levels in several samples. The levels of HSPA5, PEBP1 and SFTPA2 were higher and levels of POF1B, EPPK1, PSMA4, ALDOA, and CFL1 were lower in PE compared with controls. In conclusion, the human EBC contained a variety of endogenous proteins and may be a source for new diagnostic markers of PE and other diseases.
Collapse
Affiliation(s)
- Inger Lise Gade
- Department of Hematology and Clinical Cancer Research Center, Aalborg University Hospital, 9000 Aalborg, Denmark
| | | | | | - Rasmus Froberg Brøndum
- Center for Clinical Data Science, Aalborg University and Aalborg University Hospital, 9260 Gistrup, Denmark
| | - Tue Bjerg Bennike
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Bent Honoré
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
4
|
Course CW, Lewis PA, Kotecha SJ, Cousins M, Hart K, Watkins WJ, Heesom KJ, Kotecha S. Modulation of pulmonary desmosomes by inhaler therapy in preterm-born children with bronchopulmonary dysplasia. Sci Rep 2023; 13:7330. [PMID: 37147394 PMCID: PMC10163267 DOI: 10.1038/s41598-023-34233-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
Despite evidence demonstrating persistent lung function deficits in preterm-born children, especially in those who had bronchopulmonary dysplasia (BPD) in infancy, the underlying biological mechanisms explaining these lung function deficits remain poorly understood. We characterised the exhaled breath condensate (EBC) proteome in preterm-born children, with and without BPD; and before and after inhaler treatment. EBC from children aged 7-12 years, from the Respiratory Health Outcomes in Neonates (RHiNO) study, were analysed by Nano-LC Mass Spectrometry with Tandem Mass Tag labelling. Children with percent predicted forced expiratory volume in 1 second ≤ 85% were enrolled to a 12-week blinded randomised trial of inhaled corticosteroids alone (ICS) or with long-acting β2-agonist (ICS/LABA) or placebo. EBC was analysed from 218 children at baseline, and 46 children received randomised inhaled therapy. 210 proteins were detected in total. For the 19 proteins present in every sample, the desmosome proteins: desmoglein-1, desmocollin-1 and plakoglobin were significantly decreased, and cytokeratin-6A was increased in preterm-born children with BPD when compared to preterm- and term-born controls. ICS/LABA treatment significantly increased abundance of desmoglein-1, desmocollin-1 and plakoglobin in the BPD group with low lung function, and significantly increased plakoglobin in those without BPD. No differences were noted after ICS treatment. Exploratory analyses of proteins not detected in all samples suggested decreased abundance of several antiproteases. This study provides proteomic evidence of ongoing pulmonary structural changes with decreased desmosomes in school-aged preterm-born children with BPD and low lung function, which was reversed with combined inhaled corticosteroids and long-acting β2-agonists therapy.
Collapse
Affiliation(s)
- Christopher W Course
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Philip A Lewis
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Sarah J Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Michael Cousins
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Department of Paediatrics, Cardiff and Vale University Health Board, Cardiff, UK
| | - Kylie Hart
- Department of Paediatrics, Cardiff and Vale University Health Board, Cardiff, UK
| | - W John Watkins
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Kate J Heesom
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Sailesh Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
5
|
Hirdman G, Bodén E, Kjellström S, Fraenkel CJ, Olm F, Hallgren O, Lindstedt S. Proteomic characteristics and diagnostic potential of exhaled breath particles in patients with COVID-19. Clin Proteomics 2023; 20:13. [PMID: 36967377 PMCID: PMC10040313 DOI: 10.1186/s12014-023-09403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/13/2023] [Indexed: 03/28/2023] Open
Abstract
BACKGROUND SARS-CoV-2 has been shown to predominantly infect the airways and the respiratory tract and too often have an unpredictable and different pathologic pattern compared to other respiratory diseases. Current clinical diagnostical tools in pulmonary medicine expose patients to harmful radiation, are too unspecific or even invasive. Proteomic analysis of exhaled breath particles (EBPs) in contrast, are non-invasive, sample directly from the pathological source and presents as a novel explorative and diagnostical tool. METHODS Patients with PCR-verified COVID-19 infection (COV-POS, n = 20), and patients with respiratory symptoms but with > 2 negative polymerase chain reaction (PCR) tests (COV-NEG, n = 16) and healthy controls (HCO, n = 12) were prospectively recruited. EBPs were collected using a "particles in exhaled air" (PExA 2.0) device. Particle per exhaled volume (PEV) and size distribution profiles were compared. Proteins were analyzed using liquid chromatography-mass spectrometry. A random forest machine learning classification model was then trained and validated on EBP data achieving an accuracy of 0.92. RESULTS Significant increases in PEV and changes in size distribution profiles of EBPs was seen in COV-POS and COV-NEG compared to healthy controls. We achieved a deep proteome profiling of EBP across the three groups with proteins involved in immune activation, acute phase response, cell adhesion, blood coagulation, and known components of the respiratory tract lining fluid, among others. We demonstrated promising results for the use of an integrated EBP biomarker panel together with particle concentration for diagnosis of COVID-19 as well as a robust method for protein identification in EBPs. CONCLUSION Our results demonstrate the promising potential for the use of EBP fingerprints in biomarker discovery and for diagnosing pulmonary diseases, rapidly and non-invasively with minimal patient discomfort.
Collapse
Affiliation(s)
- Gabriel Hirdman
- Dept. of Clinical Sciences, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Embla Bodén
- Dept. of Clinical Sciences, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sven Kjellström
- BioMS - Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden
| | - Carl-Johan Fraenkel
- Department of Infection Control, Region Skåne, Lund, Sweden
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Franziska Olm
- Dept. of Clinical Sciences, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Oskar Hallgren
- Dept. of Clinical Sciences, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Dept. of Clinical Sciences, Lund University, Lund, Sweden.
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Lund University, Lund, Sweden.
- Dept. of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, SE-221 85, Lund, Sweden.
| |
Collapse
|
6
|
Hu B. Recent Advances in Facemask Devices for In Vivo Sampling of Human Exhaled Breath Aerosols and Inhalable Environmental Exposures. Trends Analyt Chem 2022; 151:116600. [PMID: 35310778 PMCID: PMC8917876 DOI: 10.1016/j.trac.2022.116600] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the COVID-19 pandemic, the unprecedented use of facemasks has been requiring for wearing in daily life. By wearing facemask, human exhaled breath aerosols and inhaled environmental exposures can be efficiently filtered and thus various filtration residues can be deposited in facemask. Therefore, facemask could be a simple, wearable, in vivo, onsite and noninvasive sampler for collecting exhaled and inhalable compositions, and gain new insights into human health and environmental exposure. In this review, the recent advances in developments and applications of in vivo facemask sampling of human exhaled bacteria, viruses, proteins, and metabolites, and inhalable facemask contaminants and air pollutants, are reviewed. New features of facemask sampling are highlighted. The perspectives and challenges on further development and potential applications of facemask devices are also discussed.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Abstract
Background COVID-19 is a highly contagious respiratory disease that can be transmitted through human exhaled breath. It has caused immense loss and has challenged the healthcare sector. It has affected the economy of countries and thereby affected numerous sectors. Analysis of human breath samples is an attractive strategy for rapid diagnosis of COVID-19 by monitoring breath biomarkers. Content Breath collection is a noninvasive process. Various technologies are employed for detection of breath biomarkers like mass spectrometry, biosensors, artificial learning, and machine learning. These tools have low turnaround time, robustness, and provide onsite results. Also, MS-based approaches are promising tools with high speed, specificity, sensitivity, reproducibility, and broader coverage, as well as its coupling with various chromatographic separation techniques providing better clinical and biochemical understanding of COVID-19 using breath samples. Summary Herein, we have tried to review the MS-based approaches as well as other techniques used for the analysis of breath samples for COVID-19 diagnosis. We have also highlighted the different breath analyzers being developed for COVID-19 detection.
Collapse
Affiliation(s)
- Jyoti Kanwar Shekhawat
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur-342005, Rajasthan, India
| | - Mithu Banerjee
- Address correspondence to this author at: AIIMS, Road, MI Phase-2, Basni, Jodhpur, Rajasthan, India—342005. E-mail:
| |
Collapse
|
8
|
Gade IL, Schultz JG, Brøndum RF, Kjærgaard B, Nielsen-Kudsk JE, Andersen A, Kristensen SR, Honoré B. Putative Biomarkers for Acute Pulmonary Embolism in Exhaled Breath Condensate. J Clin Med 2021; 10:5165. [PMID: 34768685 PMCID: PMC8584843 DOI: 10.3390/jcm10215165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Current diagnostic markers for pulmonary embolism (PE) are unspecific. We investigated the proteome of the exhaled breath condensate (EBC) in a porcine model of acute PE in order to identify putative diagnostic markers for PE. EBC was collected at baseline and after the induction of autologous intermediate-risk PE in 14 pigs, plus four negative control pigs. The protein profiles of the EBC were analyzed using label-free quantitative nano liquid chromatography-tandem mass spectrometry. A total of 897 proteins were identified in the EBCs from the pigs. Alterations were found in the levels of 145 different proteins after PE compared with the baseline and negative controls: albumin was among the most upregulated proteins, with 14-fold higher levels 2.5 h after PE (p-value: 0.02). The levels of 49 other proteins were between 1.3- and 17.1-fold higher after PE. The levels of 95 proteins were lower after PE. Neutrophil gelatinase-associated lipocalin (fold change 0.3, p-value < 0.01) was among the most reduced proteins 2.5 h after PE. A prediction model based on penalized regression identified five proteins including albumin and neutrophil gelatinase-associated lipocalin. The model was capable of discriminating baseline samples from EBC samples collected 2.5 h after PE correctly in 22 out of 27 samples. In conclusion, the EBC from pigs with acute PE contained several putative diagnostic markers of PE.
Collapse
Affiliation(s)
- Inger Lise Gade
- Department of Hematology and Clinical Cancer Research Center, Aalborg University Hospital, 9000 Aalborg, Denmark;
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark; (S.R.K.); (B.H.)
- Department of Clinical Biochemistry, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Jacob Gammelgaard Schultz
- Department of Cardiology, Aarhus University Hospital, 8200 Aarhus, Denmark; (J.G.S.); (J.E.N.-K.); (A.A.)
- Department of Clinical Medicine, Faculty of Health, Aarhus University, 8200 Aarhus, Denmark
| | - Rasmus Froberg Brøndum
- Department of Hematology and Clinical Cancer Research Center, Aalborg University Hospital, 9000 Aalborg, Denmark;
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark; (S.R.K.); (B.H.)
| | - Benedict Kjærgaard
- Department of Cardiothoracic Surgery, Aalborg University Hospital, 9000 Aalborg, Denmark;
| | - Jens Erik Nielsen-Kudsk
- Department of Cardiology, Aarhus University Hospital, 8200 Aarhus, Denmark; (J.G.S.); (J.E.N.-K.); (A.A.)
- Department of Clinical Medicine, Faculty of Health, Aarhus University, 8200 Aarhus, Denmark
| | - Asger Andersen
- Department of Cardiology, Aarhus University Hospital, 8200 Aarhus, Denmark; (J.G.S.); (J.E.N.-K.); (A.A.)
- Department of Clinical Medicine, Faculty of Health, Aarhus University, 8200 Aarhus, Denmark
| | - Søren Risom Kristensen
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark; (S.R.K.); (B.H.)
- Department of Clinical Biochemistry, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Bent Honoré
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark; (S.R.K.); (B.H.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
9
|
Shao D, Huang L, Wang Y, Cui X, Li Y, Wang Y, Ma Q, Du W, Cui J. HBFP: a new repository for human body fluid proteome. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6395039. [PMID: 34642750 PMCID: PMC8516408 DOI: 10.1093/database/baab065] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
Body fluid proteome has been intensively studied as a primary source for disease
biomarker discovery. Using advanced proteomics technologies, early research
success has resulted in increasingly accumulated proteins detected in different
body fluids, among which many are promising biomarkers. However, despite a
handful of small-scale and specific data resources, current research is clearly
lacking effort compiling published body fluid proteins into a centralized and
sustainable repository that can provide users with systematic analytic tools. In
this study, we developed a new database of human body fluid proteome (HBFP) that
focuses on experimentally validated proteome in 17 types of human body fluids.
The current database archives 11 827 unique proteins reported by 164
scientific publications, with a maximal false discovery rate of 0.01 on both the
peptide and protein levels since 2001, and enables users to query, analyze and
download protein entries with respect to each body fluid. Three unique features
of this new system include the following: (i) the protein annotation page
includes detailed abundance information based on relative qualitative measures
of peptides reported in the original references, (ii) a new score is calculated
on each reported protein to indicate the discovery confidence and (iii) HBFP
catalogs 7354 proteins with at least two non-nested uniquely mapping peptides of
nine amino acids according to the Human Proteome Project Data Interpretation
Guidelines, while the remaining 4473 proteins have more than two unique peptides
without given sequence information. As an important resource for human protein
secretome, we anticipate that this new HBFP database can be a powerful tool that
facilitates research in clinical proteomics and biomarker discovery. Database URL:https://bmbl.bmi.osumc.edu/HBFP/
Collapse
Affiliation(s)
- Dan Shao
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, 122E Avery Hall, 1144 T St., Lincoln, NE 68588, USA.,Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China.,Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Lan Huang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xueteng Cui
- Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Yufei Li
- Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Yao Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 310G Lincoln tower, 1800 cannon drive, Columbus, OH 43210, USA
| | - Wei Du
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juan Cui
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, 122E Avery Hall, 1144 T St., Lincoln, NE 68588, USA
| |
Collapse
|
10
|
Zakharova N, Kozyr A, Ryabokon AM, Indeykina M, Strelnikova P, Bugrova A, Nikolaev EN, Kononikhin AS. Mass spectrometry based proteome profiling of the exhaled breath condensate for lung cancer biomarkers search. Expert Rev Proteomics 2021; 18:637-642. [PMID: 34477466 DOI: 10.1080/14789450.2021.1976150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Lung cancer remains the most prevalent cause of cancer mortality worldwide mainly due to insufficient availability of early screening methods for wide-scale application. Exhaled breath condensate (EBC) is currently considered as one of the promising targets for early screening and is particularly attractive due to its absolutely noninvasive collection and possibility for long-term frozen storage. EBC proteome analysis can provide valuable information about the (patho)physiological changes in the respiratory system and may help to identify in time a high risk of lung cancer. Mass spectrometry (MS) profiling of EBC proteome seems to have no alternative in obtaining the most extensive data and characteristic marker panels for screening. AREAS COVERED This special report summarizes the data of several proteomic studies of EBC in normal and lung cancer (from 2012 to 2021, PubMed), focuses on the possible reasons for the significant discrepancy in the results, and discusses some aspects for special attention in further studies. EXPERT OPINION The significant discrepancy in the results of various studies primarily highlights the need to create standardized protocols for the collection and preparation of EBC for proteomic analysis. The application of quantitative and targeted LC-MS/MS based approaches seems to be the most promising in further EBC proteomic studies.
Collapse
Affiliation(s)
- Natalia Zakharova
- Laboratory of mass spectrometry of biomacromolecules Emanuel Institute for Biochemical Physics, Russian Academy of Science Moscow
| | - Anna Kozyr
- Laboratory of mass spectrometry of biomacromolecules Emanuel Institute for Biochemical Physics, Russian Academy of Science Moscow
| | - Anna M Ryabokon
- Laboratory of mass spectrometry of biomacromolecules Emanuel Institute for Biochemical Physics, Russian Academy of Science Moscow.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Indeykina
- Laboratory of mass spectrometry of biomacromolecules Emanuel Institute for Biochemical Physics, Russian Academy of Science Moscow.,Laboratory of ion and molecular physics, V.l. Talrose Institute for Energy Problems of Chemical Physics, N.n. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Polina Strelnikova
- Laboratory of mass spectrometry of biomacromolecules Emanuel Institute for Biochemical Physics, Russian Academy of Science Moscow
| | - Anna Bugrova
- Laboratory of mass spectrometry of biomacromolecules Emanuel Institute for Biochemical Physics, Russian Academy of Science Moscow
| | - Eugene N Nikolaev
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Alexey S Kononikhin
- Laboratory of mass spectrometry of biomacromolecules Emanuel Institute for Biochemical Physics, Russian Academy of Science Moscow.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Skolkovo, Russia
| |
Collapse
|
11
|
Yuan ZC, Hu B. Mass Spectrometry-Based Human Breath Analysis: Towards COVID-19 Diagnosis and Research. JOURNAL OF ANALYSIS AND TESTING 2021; 5:287-297. [PMID: 34422436 PMCID: PMC8364943 DOI: 10.1007/s41664-021-00194-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
COVID-19 is a highly contagious respiratory disease that can be infected through human exhaled breath. Human breath analysis is an attractive strategy for rapid diagnosis of COVID-19 in a non-invasive way by monitoring breath biomarkers. Mass spectrometry (MS)-based approaches offer a promising analytical platform for human breath analysis due to their high speed, specificity, sensitivity, reproducibility, and broad coverage, as well as its versatile coupling methods with different chromatographic separation, and thus can lead to a better understanding of the clinical and biochemical processes of COVID-19. Herein, we try to review the developments and applications of MS-based approaches for multidimensional analysis of COVID-19 breath samples, including metabolites, proteins, microorganisms, and elements. New features of breath sampling and analysis are highlighted. Prospects and challenges on MS-based breath analysis related to COVID-19 diagnosis and study are discussed.
Collapse
Affiliation(s)
- Zi-Cheng Yuan
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632 China
| | - Bin Hu
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
12
|
Zhang D, Latif M, Gamez G. Instantaneous Differentiation of Functional Isomers via Reactive Flowing Atmospheric Pressure Afterglow Mass Spectrometry. Anal Chem 2021; 93:9986-9994. [PMID: 34251188 DOI: 10.1021/acs.analchem.0c04867] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ambient mass spectrometry (AMS) allows direct desorption and ionization of analytes in real time with minimal-to-no sample preparation. However, it may present inadequate capabilities for differentiating isomers. Here, a reactive flowing atmospheric-pressure afterglow (reactive-FAPA) AMS source is developed for rapid isomer differentiation by derivatization of analytes in real time. The effects of the reactive-FAPA operating conditions on the reagent and product ions were studied and optimized for highly volatile and non-volatile model compounds with different carbonyl functional groups. In addition, two functional isomers of valproic acid (VPA) metabolites, 4-ene VPA and γ-valprolactone, are successfully differentiated for the first time by incorporating methylamine (MA) reagent vapor into the plasma effluent used for desorption/ionization. Reactive-FAPAMS for 4-ene VPA shows only detectable peaks of the protonated acylation product [M + MA-H2O + H]+, while for γ-valprolactone, it shows detectable peaks for both protonated acylation product [M + MA-H2O + H]+ and protonated intermediate [M + MA + H]+. A method for quantitative characterization of mixtures of 4-ene VPA and γ-valprolactone is also developed and validated. In addition, reactive-FAPAMS also shows better detection sensitivity compared to nonreactive-FAPAMS for some larger analyte types, such as UV filters and steroids. The limit of detection (LOD) of pregnenolone acetate in reactive-FAPAMS is 310 ng/mL, which is about 10 times better than its LOD in nonreactive-FAPA.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Mohsen Latif
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Gerardo Gamez
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
13
|
Ma L, Muscat JE, Sinha R, Sun D, Xiu G. Proteomics of exhaled breath condensate in lung cancer and controls using data-independent acquisition (DIA): a pilot study. J Breath Res 2021; 15. [DOI: 10.1088/1752-7163/abd07e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
|
14
|
Terrington DL, Kim JW, Ravenhill G, Tang J, Piec I, Fowler SJ, Fraser W, Wilson AM. Soluble interleukin-2 receptor in exhaled breath condensate in pulmonary sarcoidosis: a cross-sectional pilot study. J Breath Res 2020; 15:016016. [DOI: 10.1088/1752-7163/abb763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Gade IL, Schultz JG, Cehofski LJ, Kjaergaard B, Severinsen MT, Rasmussen BS, Vorum H, Honoré B, Kristensen SR. Exhaled breath condensate in acute pulmonary embolism; a porcine study of effect of condensing temperature and feasibility of protein analysis by mass spectrometry. J Breath Res 2020; 15. [PMID: 33321479 DOI: 10.1088/1752-7163/abd3f2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/15/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The search for diagnostic biomarkers for pulmonary embolism (PE) has mainly been focused on blood samples. Exhaled breath condensate (EBC) is a possible source for biomarkers specific for chronic lung diseases and cancer, yet no previous studies have investigated the potential of EBC for diagnosis of PE. The protein content in the EBC is very low, and efficient condensing of the EBC is important in order to obtain high quality samples for protein analysis. We investigated if advanced proteomic techniques in a porcine model of acute intermediate-high-risk PE was feasible using two different condensing temperatures for EBC collection. METHODS Seven pigs were anaesthetized and intubated. EBC was collected one hour after intubation. Two autologous emboli were induced through the right external jugular vein. Two hours after the emboli were administered, EBC was collected again. Condensing temperature was either -21 °C or -80 °C. Nano liquid chromatography - tandem mass spectrometry (nLC-MS/MS) was used to identify and quantify proteins of the EBC. RESULTS A condensing temperature of - 80 °C significantly increased the EBC volume compared with -21 °C (1.78±0.25 ml vs 0.71±0.12 ml) while the protein concentration in the EBC was unaltered. The mean protein concentration in the EBCs was 5.85±0.93 µg/ml, unaltered after PE. In total, 254 proteins were identified in the EBCs. Identified proteins included proteins of the cytoplasm, nucleus, plasma membrane and extracellular region. The protein composition did not differ according to condensing temperature. CONCLUSION The EBC from pigs with acute intermediate-high-risk PE contained sufficient amounts of protein for analysis by nLC-MS/MS. The proteins were from relevant cellular compartments, indicating that EBC is a possible source for biomarkers for acute PE.
Collapse
Affiliation(s)
- Inger Lise Gade
- Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, Aalborg, 9000, DENMARK
| | | | | | - Benedict Kjaergaard
- Department of Cardiothoracic Surgery, Aalborg University Hospital, Aalborg, DENMARK
| | | | - Bodil Steen Rasmussen
- Department of Anesthesiology and Intensive Care, Aalborg University Hospital, Aalborg, DENMARK
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, DENMARK
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, DENMARK
| | | |
Collapse
|
16
|
Chen D, Bryden WA, McLoughlin M. A novel system for the comprehensive collection of nonvolatile molecules from human exhaled breath. J Breath Res 2020; 15:016001. [PMID: 33084605 DOI: 10.1088/1752-7163/abba87] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Characterization of nonvolatile molecules in exhaled breath particles can be used for respiratory disease monitoring and diagnosis. Conventional methods for the collection of nonvolatile molecules in breath heavily rely on the physical properties of exhaled breath particles. Strategies taking advantage of their chemical properties have not yet been explored. In the present study, we developed a column system in which the surface chemistry between organic nonvolatile molecules and octadecyl carbon chain was exploited for the comprehensive collection of metabolites, lipids, and proteins. We demonstrated that the collection system had the capture efficiency of 99% and the capacity to capture representative nonvolatile molecules. The collection system was further evaluated using human subjects and proteins collected from human exhaled breath were characterized and identified using gel electrophoresis and bottom-up proteomics. The identified 303 proteins from mass spectrometry were further searched against reported bronchoalveolar lavage fluid proteomes and it was shown that 60 proteins have the tissue origin of lower respiratory airways. In summary, we demonstrate that our collection system can collect nonvolatile molecules from human exhaled breath in an efficient and comprehensive manner and has the potential to be used for the study of respiratory diseases.
Collapse
Affiliation(s)
- Dapeng Chen
- Zeteo Tech, Inc., Sykesville, Maryland, United States of America
| | | | | |
Collapse
|
17
|
Kazeminasab S, Emamalizadeh B, Jouyban A, Shoja MM, Khoubnasabjafari M. Macromolecular biomarkers of chronic obstructive pulmonary disease in exhaled breath condensate. Biomark Med 2020; 14:1047-1063. [PMID: 32940079 DOI: 10.2217/bmm-2020-0121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Biomarkers provide important diagnostic and prognostic information on heterogeneous diseases such as chronic obstructive pulmonary disease (COPD). However, finding a suitable specimen for clinical analysis of biomarkers for COPD is challenging. Exhaled breath condensate (EBC) sampling is noninvasive, rapid, cost-effective and easily repeatable. EBC sampling has also provided recent progress in the identification of biological macromolecules, such as lipids, proteins and DNA in EBC samples, which has increased its utility for clinical scientists. In this article, we review applications involving EBC sampling for the analysis of COPD biomarkers and discuss its future potential.
Collapse
Affiliation(s)
- Somayeh Kazeminasab
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Liver & Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran
| | - Babak Emamalizadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences,Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| | - Mohammadali M Shoja
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Maryam Khoubnasabjafari
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran
| |
Collapse
|
18
|
Ferraro VA, Zanconato S, Baraldi E, Carraro S. Nitric Oxide and Biological Mediators in Pediatric Chronic Rhinosinusitis and Asthma. J Clin Med 2019; 8:jcm8111783. [PMID: 31731479 PMCID: PMC6912805 DOI: 10.3390/jcm8111783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In the context of the so-called unified airway theory, chronic rhinosinusitis (CRS) and asthma may coexist. The inflammation underlying these conditions can be studied through the aid of biomarkers. Main body: We described the main biological mediators that have been studied in pediatric CRS and asthma, and, according to the available literature, we reported their potential role in the diagnosis and management of these conditions. As for CRS, we discussed the studies that investigated nasal nitric oxide (nNO), pendrin, and periostin. As for asthma, we discussed the role of fractional exhaled nitric oxide (feNO), the role of periostin, and that of biological mediators measured in exhaled breath condensate (EBC) and exhaled air (volatile organic compounds, VOCs). CONCLUSION Among non-invasive biomarkers, nNO seems the most informative in CRS and feNO in asthma. Other biological mediators seem promising, but further studies are needed before they can be applied in clinical practice.
Collapse
|
19
|
Pelclova D, Talacko P, Navratil T, Zamostna B, Fenclova Z, Vlckova S, Zakharov S. Can proteomics predict the prognosis in chronic dioxin intoxication? MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Proteomics of exhaled breath condensate in stable COPD and non-COPD controls using tandem mass tags (TMTs) quantitative mass spectrometry: A pilot study. J Proteomics 2019; 206:103392. [PMID: 31129269 DOI: 10.1016/j.jprot.2019.103392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/04/2019] [Accepted: 05/14/2019] [Indexed: 01/08/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a type of obstructive lung disease characterized by long-term breathing problems and poor airflow. Exhaled breath condensate (EBC) is now a safe and clinically significant measurement which has a huge potential to measure biomarkers in COPD. Previous studies profiled the pooled EBC samples from COPD or control participants due to technological limitations. In our study, 32 COPD patients and 28 control individuals were enrolled, and their EBC were collected. After matching with sex, age and smoking history, EBC samples of 19 COPD patients and 19 control individuals were analyzed using tandem mass tags (TMTs) quantitative mass spectrometry individually. A total of 257 proteins were identified. Compared with control group, 24 proteins (15 upregulated and 9 downregulated) were differentially expressed in COPD patients. The GO analysis of these differential proteins expressed mostly in the cytoplasm, and the KEGG analysis showed they had a predominant role in inflammatory response. And ACTB, UBC, TUBB and CCT2 involving in cell motility and cytoskeleton played important role in the interaction-net of these proteins. To sum up, we found some proteins might be novel biomarkers of EBC in COPD and TMTs was available to analyze proteomics in individual EBC samples. SIGNIFICANCE: It is still difficult to understand the mechanism of airway inflammation in COPD. Exhaled breath condensate(EBC) might be a great study object, but due to technological limitations, researchers preferred to use pooled EBC samples. This study analyzed individual EBC samples, which would deepen our understanding of the pathogenesis of COPD. And this method can be applied to individual EBC samples for further airway investigations of different purpose and different complexity.
Collapse
|
21
|
Núñez-Naveira L, Mariñas-Pardo LA, Montero-Martínez C. Mass Spectrometry Analysis of the Exhaled Breath Condensate and Proposal of Dermcidin and S100A9 as Possible Markers for Lung Cancer Prognosis. Lung 2019; 197:523-531. [PMID: 31115649 DOI: 10.1007/s00408-019-00238-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/11/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION New sampling techniques to analyse lung diseases, such as exhaled breath condensate (EBC), are a breakthrough in research field since they are less invasive and less traumatic for the patients compared to lung biopsies. Nevertheless, there is an increasing need to optimize not only the sampling protocols but the storage and processing of specimens to get accurate results. METHODS Exhaled breath condensate was sampled employing the ECoScreen device. Concentrated protein was obtained after ultracentrifugation, lyophilization and reversed-phase chromatography. MALDI-time of flight (TOF)/TOF mass spectrometry (MS) was applied to determine the protein profile in EBC. Commercially available ELISA kits were used to detect the selected biomarker in the EBC after MALDI-MS proteins identification. RESULTS The obtained EBC volume after two periods of 10 min doubled the amount obtained after 20 min. One hundred peptides were detected by MALDI-MS, and 18 proteins were identified after reversed-phase chromatography concentration. Dermcidin (P81605), S100A9 (P06702) and Cathepsin G (P08311) were selected to be analysed by ELISA. Dermcidin and S100A9 expression were statistically higher in lung cancer versus healthy volunteers. VEGF concentrations decreased, respectively, by 5.94 and 11.42-fold after 1 and 2 years of frozen EBC preservation in parallel with the declined number of proteins identified by MALDI-MS. CONCLUSION Exhaled breath condensate analysis combined with MS technique may become a valuable method for lung cancer screening and Dermcidin and S100A9 may serve as biomarkers for lung cancer diagnosis or prognosis.
Collapse
Affiliation(s)
- Laura Núñez-Naveira
- University Hospital Complex of A Coruña (CHUAC), As Xubias de Arriba, 84, 15006, A Coruña, Spain.,Biomedical Research Institute of A Coruña (INIBIC), As Xubias de Arriba, 84, 15006, A Coruña, Spain
| | - Luis Antonio Mariñas-Pardo
- University Hospital Complex of A Coruña (CHUAC), As Xubias de Arriba, 84, 15006, A Coruña, Spain. .,Biomedical Research Institute of A Coruña (INIBIC), As Xubias de Arriba, 84, 15006, A Coruña, Spain.
| | - Carmen Montero-Martínez
- University Hospital Complex of A Coruña (CHUAC), As Xubias de Arriba, 84, 15006, A Coruña, Spain
| |
Collapse
|
22
|
Oldham MJ, Moss OR. Pores of Kohn: forgotten alveolar structures and potential source of aerosols in exhaled breath. J Breath Res 2019; 13:021003. [PMID: 30731449 DOI: 10.1088/1752-7163/ab0524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Analysis of human and animal exhaled breath has identified numerous compounds including proteins and surfactant constituents from the deep lung. Some mechanisms such as coughing, breaking of surfactant/mucus plugs, or 'bronchiole film bursting' have been proposed to explain the presence of these proteins from the deep lung but do not include possible contributions from Pores of Kohn. A re-examination of the change in diameter as well as forces exerted by surfactant film in the Pores of Kohn during normal inspiration, demonstrates that these channels should open following rupture of the surfactant film; which could generate aerosols of surfactant film constituents. Generation, of such deep-lung aerosols, is predicted to begin during inhalation when lung tissue surface area has increased by at least a factor of 2.
Collapse
Affiliation(s)
- Michael J Oldham
- University of California, Irvine; Currently at Oldham Associates LLC, Goochland, VA, United States of America
| | | |
Collapse
|
23
|
Latendorf T, Gerstel U, Wu Z, Bartels J, Becker A, Tholey A, Schröder JM. Cationic Intrinsically Disordered Antimicrobial Peptides (CIDAMPs) Represent a New Paradigm of Innate Defense with a Potential for Novel Anti-Infectives. Sci Rep 2019; 9:3331. [PMID: 30833614 PMCID: PMC6399351 DOI: 10.1038/s41598-019-39219-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
In the search for potential mechanisms underlying the remarkable resistance of healthy skin against infection by soil bacteria like Pseudomonas (P.) aeruginosa we identified fragments of the intrinsically disordered protein hornerin as potent microbicidal agents in the stratum corneum. We found that, independent of the amino acid (AA)-sequence, any tested linear cationic peptide containing a high percentage of disorder-promoting AA and a low percentage of order-promoting AA is a potent microbicidal antimicrobial. We further show that the antimicrobial activity of these cationic intrinsically disordered antimicrobial peptides (CIDAMPs) depends on the peptide chain length, its net charge, lipidation and environmental conditions. The ubiquitous presence of latent CIDAMP sources in nature suggests a common and yet overlooked adapted innate disinfection system of body surfaces. The simple structure and virtually any imaginable sequence or composition of disorder-promoting AA allow the generation of a plethora of CIDAMPs. These are potential novel microbicidal anti-infectives for various bacterial pathogens, including P. aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA) and fungal pathogens like Candida albicans and Cryptococcus neoformans.
Collapse
Affiliation(s)
- Ties Latendorf
- Department of Dermatology, University-Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ulrich Gerstel
- Department of Dermatology, University-Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Zhihong Wu
- Department of Dermatology, University-Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Biochemistry and Cell Biology, Zhejiang University of Science and Technology, 310023, Hangzhou, China
| | - Joachim Bartels
- Department of Dermatology, University-Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Alexander Becker
- Institute for Experimental Medicine-AG Systematic Proteomics & Bioanalytics, Kiel University (CAU), Kiel, Germany
| | - Andreas Tholey
- Institute for Experimental Medicine-AG Systematic Proteomics & Bioanalytics, Kiel University (CAU), Kiel, Germany
| | - Jens-Michael Schröder
- Department of Dermatology, University-Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| |
Collapse
|
24
|
Neagu AN. Proteome Imaging: From Classic to Modern Mass Spectrometry-Based Molecular Histology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:55-98. [PMID: 31347042 DOI: 10.1007/978-3-030-15950-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In order to overcome the limitations of classic imaging in Histology during the actually era of multiomics, the multi-color "molecular microscope" by its emerging "molecular pictures" offers quantitative and spatial information about thousands of molecular profiles without labeling of potential targets. Healthy and diseased human tissues, as well as those of diverse invertebrate and vertebrate animal models, including genetically engineered species and cultured cells, can be easily analyzed by histology-directed MALDI imaging mass spectrometry. The aims of this review are to discuss a range of proteomic information emerging from MALDI mass spectrometry imaging comparative to classic histology, histochemistry and immunohistochemistry, with applications in biology and medicine, concerning the detection and distribution of structural proteins and biological active molecules, such as antimicrobial peptides and proteins, allergens, neurotransmitters and hormones, enzymes, growth factors, toxins and others. The molecular imaging is very well suited for discovery and validation of candidate protein biomarkers in neuroproteomics, oncoproteomics, aging and age-related diseases, parasitoproteomics, forensic, and ecotoxicology. Additionally, in situ proteome imaging may help to elucidate the physiological and pathological mechanisms involved in developmental biology, reproductive research, amyloidogenesis, tumorigenesis, wound healing, neural network regeneration, matrix mineralization, apoptosis and oxidative stress, pain tolerance, cell cycle and transformation under oncogenic stress, tumor heterogeneity, behavior and aggressiveness, drugs bioaccumulation and biotransformation, organism's reaction against environmental penetrating xenobiotics, immune signaling, assessment of integrity and functionality of tissue barriers, behavioral biology, and molecular origins of diseases. MALDI MSI is certainly a valuable tool for personalized medicine and "Eco-Evo-Devo" integrative biology in the current context of global environmental challenges.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania.
| |
Collapse
|
25
|
Rahimpour E, Khoubnasabjafari M, Jouyban-Gharamaleki V, Jouyban A. Non-volatile compounds in exhaled breath condensate: review of methodological aspects. Anal Bioanal Chem 2018; 410:6411-6440. [PMID: 30046867 DOI: 10.1007/s00216-018-1259-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
In contrast to bronchial and nasal lavages, the analysis of exhaled breath condensate (EBC) is a promising, simple, non-invasive, repeatable, and diagnostic method for studying the composition of airway lining fluid with the potential to assess lung inflammation, exacerbations, and disease severity, and to monitor the effectiveness of treatment regimens. Recent investigations have revealed the potential applications of EBC analysis in systemic diseases. In this review, we highlight the analytical studies conducted on non-volatile compounds/biomarkers in EBC. In contrast to other related articles, this review is classified on the basis of analytical techniques and includes almost all the applied methods and their methodological limitations for quantification of non-volatile compounds in EBC samples, providing a guideline for further researches. The studies were identified by searching the SCOPUS database with the keywords "biomarkers," "non-volatile compounds," "determination method," and "EBC."
Collapse
Affiliation(s)
- Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Jouyban-Gharamaleki
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|