1
|
Gurz S, Sullu Y, Tomak L, Temel NG, Sengul A. Comparison of Margin Quality for Intersegmental Plan Identification in Pulmonary Segmentectomy. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:535. [PMID: 40142346 PMCID: PMC11943681 DOI: 10.3390/medicina61030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025]
Abstract
Background and Objectives: Insufficient margin in lung cancer is associated with an increased locoregional recurrence rate. In pulmonary segmentectomy, two commonly used methods for identifying the intersegmental plane are inflation-deflation and indocyanine green dyeing. The aim of this study was to compare these two methods in terms of quality margins and to evaluate their superiority. Materials and Methods: A total of 63 patients who underwent segmentectomy via video-assisted thoracoscopic surgery (VATS) for pulmonary nodules and underwent preoperative planning with 3D modeling between October 2020 and February 2024 were included in this study. The location of the nodule and the distance to the intersegmental margins were virtually measured preoperatively using an open-source 3D modeling system. Patients were grouped according to the method of identifying the intersegmental margins. Group 1 included segmentectomies performed by the inflation-deflation method (n = 42), and Group 2 included segmentectomies performed by systemic indocyanine green (ICG) injection (n = 21). The area where the histopathological nodule was measured closest to the intersegmental margin was recorded. Values within (+/-10 mm) compared to the value measured in the three-dimensional model were considered successful. The obtained data were statistically compared between the groups. Results: There was no difference between the groups in terms of virtual and pathological margins. However, in terms of margin quality, the rate of deviation detected in the pathological margin compared to the measured virtual margin was significantly different between the groups (p = 0.04). Accordingly, the success rate was 64.3% in Group 1 and 90.5% in Group 2 (p = 0.05). In Group 1, the failure rate was highly against the adjacent parenchyma. There was no significant difference between the groups in the analysis of simple and complex segmentectomies. Conclusions: Intersegmental plane identification with indocyanine green increases the margin quality by defining resection margins closer to the virtual margins. In the inflation-deflation method, unnecessary parenchymal loss occurs due to disadvantages in identifying intersegmental margins.
Collapse
Affiliation(s)
- Selcuk Gurz
- Department of Thoracic Surgery, Ondokuz Mayis University, Samsun 55270, Turkey;
| | - Yurdanur Sullu
- Department of Pathology, Ondokuz Mayis University, Samsun 55270, Turkey;
| | - Leman Tomak
- Department of Biostatistics and Medical Informatics, Ondokuz Mayis University, Samsun 55270, Turkey;
| | - Necmiye Gul Temel
- Department of Thoracic Surgery, Samsun University, Samsun 55080, Turkey;
| | - Aysen Sengul
- Department of Thoracic Surgery, Ondokuz Mayis University, Samsun 55270, Turkey;
| |
Collapse
|
2
|
Qiu Y, Hu G. Lung-on-a-chip: From design principles to disease applications. BIOMICROFLUIDICS 2025; 19:021501. [PMID: 40161998 PMCID: PMC11954643 DOI: 10.1063/5.0257908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/12/2025] [Indexed: 04/02/2025]
Abstract
To address the growing need for accurate lung models, particularly in light of respiratory diseases, lung cancer, and the COVID-19 pandemic, lung-on-a-chip technology is emerging as a powerful alternative. Lung-on-a-chip devices utilize microfluidics to create three-dimensional models that closely mimic key physiological features of the human lung, such as the air-liquid interface, mechanical forces associated with respiration, and fluid dynamics. This review provides a comprehensive overview of the fundamental components of lung-on-a-chip systems, the diverse fabrication methods used to construct these complex models, and a summary of their wide range of applications in disease modeling and aerosol deposition studies. Despite existing challenges, lung-on-a-chip models hold immense potential for advancing personalized medicine, drug development, and disease prevention, offering a transformative approach to respiratory health research.
Collapse
Affiliation(s)
- Yan Qiu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Jin Y, Liu Z, Hu C, Dong Z, Rong R, Liu H, Liang Z, Liu J, Chen L, Huang M, Cui H, Shen Y. Study on the flow mechanism and frequency characteristics of rales in lower respiratory tract. Biomech Model Mechanobiol 2024; 23:227-239. [PMID: 37831284 DOI: 10.1007/s10237-023-01769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 10/14/2023]
Abstract
The frequency characteristics of lung sounds have great significance for noninvasive diagnosis of respiratory diseases. The rales in the lower respiratory tract region that can provide rich information about symptoms of respiratory diseases are not clear. In this paper, a three-dimensional idealized bifurcated lower respiratory tract geometric model, which contains 3rd to 13th generation (G3-G13) bronchi is constructed, where Re ∼ 10 1 - 10 3 , and then the large eddy simulation and volume of fluid are used to study the fluid flow characteristics. Ffowcs Williams and Hawkings model are subsequently used to study the frequency characteristics of rale of different generations of bronchi. The results showed that bronchial blockage and sputum movement will enhance the turbulence intensity and vortex shedding intensity of flow. The dominant frequency and highest value of sound pressure level (SPL) of rhonchi/moist crackles decrease with the increase of bronchial generation. The change rates of dominant frequency of rhonchi / moist crackles in adjacent generations were 5.0 ± 0.1 ~ 9.1 ± 0.2% and 3.1 ± 0.1 ~ 11.9 ± 0.3%, respectively, which is concentrated in 290 ~ 420 Hz and 200 ~ 300 Hz, respectively. The change rates of SPL of rhonchi/moist crackles were 8.8 ± 0.1 ~ 15.7 ± 0.1% and 7.1 ± 0.1 ~ 19.5 ± 0.2%, respectively, which is concentrated in 28 ~ 50 dB and 16 ~ 32 dB, respectively. In the same generation of bronchus (e.g., G8, G9) with the same degree of initial blockage, the dominant frequency and SPL of moist crackles can be 3.7 ± 0.2% and 4.5 ± 0.3% slightly higher than that of rhonchi, respectively. This research is conducive to the establishment of a rapid and accurate noninvasive diagnosis system for respiratory diseases.
Collapse
Affiliation(s)
- Yongjun Jin
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, China
| | - Zhijian Liu
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, China.
| | - Chenxing Hu
- School of Mechanical and Vehicle Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhijian Dong
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, China
| | - Rui Rong
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, China
| | - Haiyang Liu
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, China
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jingwei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Li Chen
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Minghua Huang
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Haihang Cui
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yan Shen
- Henan Institute of Occupational Disease Prevention and Control, The Third People's Hospital of Henan Province, Zhengzhou, 450000, China
| |
Collapse
|
4
|
Agafonov GM, Petrov AS, Atyukov MA, Novikova OV, Zemtsova IY, Dvorakovskaya IV, Yablonsky PK. [Right upper lobe pulmonary sequestration as a rare cause of recurrent spontaneous pneumothorax]. Khirurgiia (Mosk) 2024:102-109. [PMID: 38258696 DOI: 10.17116/hirurgia2024011102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A 19-year-old patient after previous wedge resection of the right upper pulmonary lobe a year ago urgently admitted with recurrent right-sided spontaneous pneumothorax. According to standard management of spontaneous pneumothorax, we performed diagnostic thoracoscopy and drainage of the right pleural cavity with regular X-ray examinations. However, these measures were ineffective. The patient was scheduled for surgery, and we intraoperatively observed an unusual cause of pneumothorax. Thus, we present spontaneous pneumothorax following right upper lobe pulmonary sequestration. The uniqueness of this case is associated with unusual manifestation and non-standard localization of rare lesion. A few cases of pneumothorax in similar patients are described in the world literature. The key limiting factor in diagnosis of such defects (identification of aberrant vessel supplying abnormal lung parenchyma) is the lack of routine CT angiography in patients diagnosed with pneumothorax. That is why CT changes were interpreted as postoperative ones, and the true cause was established only during redo surgery. A thorough inspection of the pleural cavity and alertness regarding unusual appearance of the right upper pulmonary lobe made it possible to suggest a non-standard diagnosis, avoid complications (bleeding from afferent vessel) and perform adequate lung resection.
Collapse
Affiliation(s)
- G M Agafonov
- Saint-Petersburg State University, St. Petersburg, Russia
| | - A S Petrov
- Saint-Petersburg State University, St. Petersburg, Russia
- Saint-Petersbursg City Clinical Hospital No. 2, St. Petersburg, Russia
| | - M A Atyukov
- Saint-Petersbursg City Clinical Hospital No. 2, St. Petersburg, Russia
| | - O V Novikova
- Saint-Petersburg State University, St. Petersburg, Russia
- Saint-Petersbursg City Clinical Hospital No. 2, St. Petersburg, Russia
| | - I Yu Zemtsova
- Saint-Petersburg State University, St. Petersburg, Russia
- Saint-Petersbursg City Clinical Hospital No. 2, St. Petersburg, Russia
| | - I V Dvorakovskaya
- Pavlov St. Petersburg First State Medical University, St. Petersburg, Russia
| | - P K Yablonsky
- Saint-Petersburg State University, St. Petersburg, Russia
- Saint-Petersbursg City Clinical Hospital No. 2, St. Petersburg, Russia
- Saint-Petersburg State Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| |
Collapse
|
5
|
Zhen Q, Zhang A, Huang Q, Li J, Du Y, Zhang Q. Overview of the Role of Spatial Factors in Indoor SARS-CoV-2 Transmission: A Space-Based Framework for Assessing the Multi-Route Infection Risk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11007. [PMID: 36078723 PMCID: PMC9518419 DOI: 10.3390/ijerph191711007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic has lasted from 2019 to 2022, severely disrupting human health and daily life. The combined effects of spatial, environmental, and behavioral factors on indoor COVID-19 spread and their interactions are usually ignored. Especially, there is a lack of discussion on the role of spatial factors in reducing the risk of virus transmission in complex and diverse indoor environments. This paper endeavours to summarize the spatial factors and their effects involved in indoor virus transmission. The process of release, transport, and intake of SARS-CoV-2 was reviewed, and six transmission routes according to spatial distance and exposure way were classified. The triangular relationship between spatial, environmental and occupant behavioral parameters during virus transmission was discussed. The detailed effects of spatial parameters on droplet-based, surface-based and air-based transmission processes and virus viability were summarized. We found that spatial layout, public-facility design and openings have a significant indirect impact on the indoor virus distribution and transmission by affecting occupant behavior, indoor airflow field and virus stability. We proposed a space-based indoor multi-route infection risk assessment framework, in which the 3D building model containing detailed spatial information, occupant behavior model, virus-spread model and infection-risk calculation model are linked together. It is also applicable to other, similar, respiratory infectious diseases such as SARS, influenza, etc. This study contributes to developing building-level, infection-risk assessment models, which could help building practitioners make better decisions to improve the building's epidemic-resistance performance.
Collapse
Affiliation(s)
- Qi Zhen
- School of Architecture, Tianjin University, Tianjin 300072, China
| | - Anxiao Zhang
- School of Architecture, Tianjin University, Tianjin 300072, China
| | - Qiong Huang
- School of Architecture, Tianjin University, Tianjin 300072, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300072, China
| | - Yiming Du
- School of Architecture, Tianjin University, Tianjin 300072, China
| | - Qi Zhang
- School of Architecture, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Jin Y, Cui H, Chen L, Sun K, Liu Z. Effects of airway deformation and alveolar pores on particle deposition in the lungs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154931. [PMID: 35364181 DOI: 10.1016/j.scitotenv.2022.154931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/10/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
The distal lung (G14-G23), which are composed of alveoli and bronchi, are responsible for almost all gas exchange and micro- and nanoparticle deposition in the lungs. In the existing research using computational fluid dynamics, the geometric modeling accuracy of the bronchial bifurcation structure is given priority, and then the alveoli are attached to bronchi as discrete spherical crowns. This method ignores the correlation between alveoli. In fact, the alveoli have a tessellated distribution, and adjacent alveoli are connected by several alveolar pores. Due to the huge number of alveoli, this seemingly small difference will be greatly amplified, which may lead to a large deviation in the prediction of the overall flow. Accordingly, the objective of this study is to construct a two-dimensional distal lung model including the bronchi, acini, and alveolar pores by using the methods of regular hexagonal tessellational subdivision, fusion, and coordinate transformation. A moving boundary is introduced to simulate the process of airflow and particle deposition in the distal lung, and the effects of bronchial deformation, respiratory frequency, and alveolar pores are obtained. The results show that there are significant differences in intrapulmonary flow patterns with and without alveolar pores. Alveolar pores can establish bypass ventilation downstream of a blockage, thus providing a pathway for particles to enter the airways downstream of the blockage. Changing the respiratory frequency and the amplitude of bronchial deformation will change the relative velocity between particles and moving wall, which, in turn, will change the particle deposition efficiency in the distal lung. To summarize this study, a geometric modeling method for the distal lung with alveolar pores is established, and the important roles of detailed characteristics of the distal lung are revealed. The findings of this study provide a reasonable hydrodynamic mechanism for the prevention of related respiratory diseases.
Collapse
Affiliation(s)
- Yongjun Jin
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihang Cui
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Li Chen
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kai Sun
- Microwave Device and Integrated Circuits Laboratory, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 10029, China
| | - Zhe Liu
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
7
|
Zhou M, Zou J. A dynamical overview of droplets in the transmission of respiratory infectious diseases. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:031301. [PMID: 33897237 PMCID: PMC8061903 DOI: 10.1063/5.0039487] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/29/2020] [Indexed: 05/04/2023]
Abstract
The outbreak of the coronavirus disease has drawn public attention to the transmission of infectious pathogens, and as major carriers of those pathogens, respiratory droplets play an important role in the process of transmission. This Review describes respiratory droplets from a physical and mechanical perspective, especially their correlation with the transmission of infectious pathogens. It covers the important aspects of (i) the generation and expulsion of droplets during respiratory activities, (ii) the transport and evolution of respiratory droplets in the ambient environment, and (iii) the inhalation and deposition of droplets in the human respiratory tract. State-of-the-art experimental, computational, and theoretical models and results are presented, and the corresponding knowledge gaps are identified. This Review stresses the multidisciplinary nature of its subject and appeals for collaboration among different fields to fight the present pandemic.
Collapse
Affiliation(s)
- Maoying Zhou
- School of Mechanical Engineering, Hangzhou Dianzi
University, Hangzhou, Zhejiang 310027, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, Hangzhou, Zhejiang 310027,
China
| |
Collapse
|
8
|
Schmidt AJ, Borras E, Kenyon NJ, Davis CE. Investigating the relationship between breath aerosol size and exhaled breath condensate (EBC) metabolomic content. J Breath Res 2020; 14:047104. [PMID: 33021211 DOI: 10.1088/1752-7163/abb764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Exhaled breath aerosols contain valuable metabolomic content due to gas exchange with blood at the alveolar capillary interface in the lung. Passive and selective filtering of these aerosols and droplets may reduce the amount of saliva contaminants and serve as an aid to enhance targeted metabolomic content when sampled in exhaled breath condensate (EBC). It is currently unknown if breath aerosol size distribution affects the types or abundances of metabolites sampled through EBC. This pilot study uses a previously described hand-held human breath sampler device with varying notch filter geometries to redirect the trajectory of breath aerosols based on size. Ten notch filter lengths were simulated with the device to calculate the effect of filter length on the breath aerosol size distribution and the proportion of aerosols which make their way through to an EBC collection tube. From three notch filter lengths, we investigate metabolite content of various aerosol fractions. We analyzed the non-volatile fraction of breath condensate with high performance liquid chromatography-mass spectrometry for broad metabolite coverage. We hypothesize that: (1) increasing the length of the notch filter in this device will prevent larger aerosols from reaching the collection tube thus altering the breath aerosol size distribution sampled in EBC; and (2) there is not a systematic large-scale difference in EBC metabolomic content that correlates with breath aerosol size. From simulation results, particles typically larger than 10 µm were filtered out. This indicates that a longer notch filter in this device prevents larger particles from reaching the collection tube thus altering the aerosol particle size distribution. Most compounds were commonly present in all three filter lengths tested, and we did not see strong statistical evidence of systematic metabolite differences between breath aerosol size distributions.
Collapse
Affiliation(s)
- Alexander J Schmidt
- Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, CA, United States of America
| | | | | | | |
Collapse
|
9
|
Blickensdorf M, Timme S, Figge MT. Hybrid Agent-Based Modeling of Aspergillus fumigatus Infection to Quantitatively Investigate the Role of Pores of Kohn in Human Alveoli. Front Microbiol 2020; 11:1951. [PMID: 32903715 PMCID: PMC7438790 DOI: 10.3389/fmicb.2020.01951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
The healthy state of an organism is constantly threatened by external cues. Due to the daily inhalation of hundreds of particles and pathogens, the immune system needs to constantly accomplish the task of pathogen clearance in order to maintain this healthy state. However, infection dynamics are highly influenced by the peculiar anatomy of the human lung. Lung alveoli that are packed in alveolar sacs are interconnected by so called Pores of Kohn. Mainly due to the lack of in vivo methods, the role of Pores of Kohn in the mammalian lung is still under debate and partly contradicting hypotheses remain to be investigated. Although it was shown by electron microscopy that Pores of Kohn may serve as passageways for immune cells, their impact on the infection dynamics in the lung is still unknown under in vivo conditions. In the present study, we apply a hybrid agent-based infection model to quantitatively compare three different scenarios and discuss the importance of Pores of Kohn during infections of Aspergillus fumigatus. A. fumigatus is an airborne opportunistic fungus with rising incidences causing severe infections in immunocompromised patients that are associated with high mortality rates. Our hybrid agent-based model incorporates immune cell dynamics of alveolar macrophages – the resident phagocytes in the lung – as well as molecular dynamics of diffusing chemokines that attract alveolar macrophages to the site of infection. Consequently, this model allows a quantitative comparison of three different scenarios and to study the importance of Pores of Kohn. This enables us to demonstrate how passaging of alveolar macrophages and chemokine diffusion affect A. fumigatus infection dynamics. We show that Pores of Kohn alter important infection clearance mechanisms, such as the spatial distribution of macrophages and the effect of chemokine signaling. However, despite these differences, a lack of passageways for alveolar macrophages does impede infection clearance only to a minor extend. Furthermore, we quantify the importance of recruited macrophages in comparison to resident macrophages.
Collapse
Affiliation(s)
- Marco Blickensdorf
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Sandra Timme
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Marc Thilo Figge
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
10
|
Tan TXZ, Li AY, Sng JJ, Lim M, Tan ZX, Ang HX, Ho BH, Law DZ, Hsu AAL. A diver's dilemma - a case report on bronchopulmonary sequestration. BMC Pulm Med 2020; 20:121. [PMID: 32366303 PMCID: PMC7199314 DOI: 10.1186/s12890-020-1159-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/20/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND An asymptomatic SCUBA (Self-contained underwater breathing apparatus) diver was discovered to have an intralobar bronchopulmonary sequestration during routine pre-course screening. This is the first reported case of a diver who, having previously completed several recreational and military diving courses, was subsequently diagnosed with a congenital lung condition, possibly contraindicating diving. Presently, there is no available literature providing guidance on the diving fitness of patients with such a condition. CASE PRESENTATION An asymptomatic 26-year-old male diver was nominated to attend an overseas naval diving course. Prior to this, he had been medically certified to participate in, and had successfully completed other military and recreational diving courses. He had also completed several hyperbaric dives up to a depth of 50 m and 45 recreational dives up to a depth of 30 m. He did not have a history of diving-related injuries or complications. He had never smoked and did not have any medical or congenital conditions, specifically recurrent respiratory infections. As part of pre-course screening requirements, a lateral Chest X-ray was performed, which revealed a left lower lobe pulmonary nodule. This was subsequently diagnosed as a cavitatory left lower lobe intralobar bronchopulmonary sequestration on Computed Tomography Thorax. The diver remains asymptomatic and well at the time of writing and has been accepted to participate in another overseas course involving only dry diving in a hyperbaric chamber, with no prerequisites for him to undergo surgery. CONCLUSION Although bronchopulmonary sequestrations lack communication with the tracheobronchial tree, they may still contain pockets of air, even if not radiologically visible. This can be attributed to anomalous connections which link them to other bronchi, lung parenchyma and/or pores of Kohn. As such, there is a higher theoretical risk of pulmonary barotrauma during diving, leading to pneumothorax, pneumomediastinum, or cerebral arterial gas embolism. Taking these into consideration, the current clinical consensus is that bronchopulmonary sequestrations and all other air-containing lung parenchymal lesions should be regarded as contraindications to diving. Patients who have undergone definitive and uncomplicated surgical resection may be considered fit to dive.
Collapse
Affiliation(s)
- Timothy Xin Zhong Tan
- Navy Medical Service, Republic of Singapore Navy, 126 Tanah Merah Coast Road, Singapore, 498822, Singapore.
| | - Andrew Yunkai Li
- Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital, Singapore, Singapore
| | - James Jie Sng
- Navy Medical Service, Republic of Singapore Navy, 126 Tanah Merah Coast Road, Singapore, 498822, Singapore
| | - Mark Lim
- Navy Medical Service, Republic of Singapore Navy, 126 Tanah Merah Coast Road, Singapore, 498822, Singapore
| | - Zhi Xiang Tan
- Navy Medical Service, Republic of Singapore Navy, 126 Tanah Merah Coast Road, Singapore, 498822, Singapore
| | - Hope Xian'en Ang
- Navy Medical Service, Republic of Singapore Navy, 126 Tanah Merah Coast Road, Singapore, 498822, Singapore
| | - Boon Hor Ho
- Navy Medical Service, Republic of Singapore Navy, 126 Tanah Merah Coast Road, Singapore, 498822, Singapore
| | - David Zhiwei Law
- Navy Medical Service, Republic of Singapore Navy, 126 Tanah Merah Coast Road, Singapore, 498822, Singapore
| | - Anne Ann Ling Hsu
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
11
|
Asadi S, Wexler AS, Cappa CD, Barreda S, Bouvier NM, Ristenpart WD. Effect of voicing and articulation manner on aerosol particle emission during human speech. PLoS One 2020; 15:e0227699. [PMID: 31986165 PMCID: PMC6984704 DOI: 10.1371/journal.pone.0227699] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/24/2019] [Indexed: 12/30/2022] Open
Abstract
Previously, we demonstrated a strong correlation between the amplitude of human speech and the emission rate of micron-scale expiratory aerosol particles, which are believed to play a role in respiratory disease transmission. To further those findings, here we systematically investigate the effect of different 'phones' (the basic sound units of speech) on the emission of particles from the human respiratory tract during speech. We measured the respiratory particle emission rates of 56 healthy human volunteers voicing specific phones, both in isolation and in the context of a standard spoken text. We found that certain phones are associated with significantly higher particle production; for example, the vowel /i/ ("need," "sea") produces more particles than /ɑ/ ("saw," "hot") or /u/ ("blue," "mood"), while disyllabic words including voiced plosive consonants (e.g., /d/, /b/, /g/) yield more particles than words with voiceless fricatives (e.g., /s/, /h/, /f/). These trends for discrete phones and words were corroborated by the time-resolved particle emission rates as volunteers read aloud from a standard text passage that incorporates a broad range of the phones present in spoken English. Our measurements showed that particle emission rates were positively correlated with the vowel content of a phrase; conversely, particle emission decreased during phrases with a high fraction of voiceless fricatives. Our particle emission data is broadly consistent with prior measurements of the egressive airflow rate associated with the vocalization of various phones that differ in voicing and articulation. These results suggest that airborne transmission of respiratory pathogens via speech aerosol particles could be modulated by specific phonetic characteristics of the language spoken by a given human population, along with other, more frequently considered epidemiological variables.
Collapse
Affiliation(s)
- Sima Asadi
- Dept. of Chemical Engineering, University of California Davis, Davis, California, United States of America
| | - Anthony S. Wexler
- Dept. of Mechanical and Aerospace Engineering, University of California Davis, Davis, California, United States of America
- Air Quality Research Center, University of California Davis, Davis, California, United States of America
- Dept. of Civil and Environmental Engineering, University of California Davis, Davis, California, United States of America
- Dept. of Land, Air and Water Resources, University of California Davis, Davis, California, United States of America
| | - Christopher D. Cappa
- Dept. of Civil and Environmental Engineering, University of California Davis, Davis, California, United States of America
| | - Santiago Barreda
- Dept. of Linguistics, University of California Davis, Davis, California, United States of America
| | - Nicole M. Bouvier
- Div. of Infectious Diseases, Dept. of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - William D. Ristenpart
- Dept. of Chemical Engineering, University of California Davis, Davis, California, United States of America
| |
Collapse
|