1
|
Wang Y, Tang Z, Zhao T, Yang J, Zhang W, Li X, Huan T. BreathXplorer: Processing Online Breathomics Data Generated from Direct Analysis Using High-Resolution Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1818-1825. [PMID: 39052287 DOI: 10.1021/jasms.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Nontargeted breath analysis in real time using high-resolution mass spectrometry (HRMS) is a promising approach for high coverage profiling of metabolites in human exhaled breath. However, the information-rich and unique non-Gaussian metabolic signal shapes of real-time HRMS-based data pose a significant challenge for efficient data processing. This work takes a typical real-time HRMS technique as an example, i.e. secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS), and presents BreathXplorer, an open-source Python package designed for the processing of real-time exhaled breath data comprising multiple exhalations. BreathXplorer is composed of four main modules. The first module applies either a topological algorithm or a Gaussian mixture model (GMM) to determine the start and end points of each exhalation. Next, density-based spatial clustering of applications with noise (DBSCAN) is employed to cluster m/z values belonging to the same metabolic feature, followed by applying an intensity relative standard deviation (RSD) filter to extract real breath metabolic features. BreathXplorer also offers functions of (1) feature alignment across the samples and (2) associating MS/MS spectra with their corresponding metabolic features for downstream compound annotation. Manual inspection of the metabolic features extracted from SESI-HRMS breath data suggests that BreathXplorer can achieve 100% accuracy in identifying the start and end points of each exhalation and acquire accurate quantitative measurements of each breath feature. In a proof-of-concept study on exercise breathomics using SESI-HRMS, BreathXplorer successfully reveals the significantly changed metabolites that are pertinent to exercise. BreathXplorer is publicly available on GitHub (https://github.com/HuanLab/breathXplorer). It provides a powerful and convenient-to-use tool for the researchers to process breathomics data obtained by directly analysis using HRMS.
Collapse
Affiliation(s)
- Yukai Wang
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver V6T 1Z1, BC, Canada
| | - Zhifeng Tang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou 510632, China
| | - Tingting Zhao
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver V6T 1Z1, BC, Canada
| | - Jianming Yang
- Guangdong Provincial Key Laboratory of Speed Capability Research; Su Bingtian Center for Speed Research and Training; School of Physical Education, Jinan University, Guangzhou 510632, China
| | - Wei Zhang
- Guangdong A-HealthX Technologies Co., Ltd, Dongguan 523830, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou 510632, China
| | - Tao Huan
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver V6T 1Z1, BC, Canada
| |
Collapse
|
2
|
He Y, Chen J, Shi W, Shi J, Ma T, Wang X. Can nonvolatile tastants be smelled during food oral processing? Chem Senses 2023; 48:bjad028. [PMID: 37590987 PMCID: PMC10516591 DOI: 10.1093/chemse/bjad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 08/19/2023] Open
Abstract
While accumulating evidence implied the involvement of retro-nasal sensation in the consumption of nonvolatile taste compounds, it is still unclear whether it was caused by the taste compounds themselves, and if so, how can they migrate from the oral to nasal cavity. At first, we proposed aerosol particles as an alternative oral-nasal mass transfer mechanism. The high-speed camera approved that aerosol particles could be generated by the typical oral and pharynx actions during food oral processing; while the narrow-band imaging of nasal cleft and mass spectrometry of nostril-exhaled air approved the migration of aerosol within the oral-nasal route. Then, the "smelling" of taste compounds within the aerosol particles was testified. The four-alternative forced choices (4AFC) approved that the potential volatile residues or contaminants within the headspace air of pure taste solution cannot arouse significant smell, while the taste compounds embedded in the in vitro prepared aerosol particles can be "smelled" via the ortho route. The "smell" of sucrose is very different from its taste and the "smell" of quinine, implying its actual olfaction. The sweetness intensity of sucrose solution was also reduced when the volunteers' noses were clipped, indicating the involvement of retro-nasal sensation during its drinking. At last, the efficiency of aerosol as a mechanism of oral-nasal mass transfer was demonstrated to be comparable with the volatile molecules under the experimental condition, giving it the potential to be a substantial and unique source of retro-nasal sensation during food oral processing.
Collapse
Affiliation(s)
- Yue He
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianshe Chen
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weiyao Shi
- EPC Natural Products Co., Ltd., Beijing, China
| | - Jingang Shi
- EPC Natural Products Co., Ltd., Beijing, China
| | - Tian Ma
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xinmiao Wang
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|