1
|
Ghumra D, Shetty N, McBrearty KR, Puthussery JV, Sumlin BJ, Gardiner WD, Doherty BM, Magrecki JP, Brody DL, Esparza TJ, O’Halloran JA, Presti RM, Bricker TL, Boon ACM, Yuede CM, Cirrito JR, Chakrabarty RK. Rapid Direct Detection of SARS-CoV-2 Aerosols in Exhaled Breath at the Point of Care. ACS Sens 2023; 8:3023-3031. [PMID: 37498298 PMCID: PMC10463275 DOI: 10.1021/acssensors.3c00512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Airborne transmission via virus-laden aerosols is a dominant route for the transmission of respiratory diseases, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Direct, non-invasive screening of respiratory virus aerosols in patients has been a long-standing technical challenge. Here, we introduce a point-of-care testing platform that directly detects SARS-CoV-2 aerosols in as little as two exhaled breaths of patients and provides results in under 60 s. It integrates a hand-held breath aerosol collector and a llama-derived, SARS-CoV-2 spike-protein specific nanobody bound to an ultrasensitive micro-immunoelectrode biosensor, which detects the oxidation of tyrosine amino acids present in SARS-CoV-2 viral particles. Laboratory and clinical trial results were within 20% of those obtained using standard testing methods. Importantly, the electrochemical biosensor directly detects the virus itself, as opposed to a surrogate or signature of the virus, and is sensitive to as little as 10 viral particles in a sample. Our platform holds the potential to be adapted for multiplexed detection of different respiratory viruses. It provides a rapid and non-invasive alternative to conventional viral diagnostics.
Collapse
Affiliation(s)
- Dishit
P. Ghumra
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Nishit Shetty
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Kevin R. McBrearty
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Joseph V. Puthussery
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Benjamin J. Sumlin
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Woodrow D. Gardiner
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Brookelyn M. Doherty
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Jordan P. Magrecki
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - David L. Brody
- National
Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, United States
- Department
of Neurology, Uniformed Services University
of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Thomas J. Esparza
- National
Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, United States
| | - Jane A. O’Halloran
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
| | - Rachel M. Presti
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
| | - Traci L. Bricker
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
- Departments
Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Adrianus C. M. Boon
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
- Departments
Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Carla M. Yuede
- Department
of Psychiatry, Washington University School
of Medicine, Campus Box
8134, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - John R. Cirrito
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Rajan K. Chakrabarty
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
2
|
Portacci A, Pierucci P, Quaranta VN, Quaranta S, Iorillo I, Locorotondo C, Buonamico E, Dragonieri S, Carpagnano GE. A glimpse in post-COVID pathophysiology: the role of exhaled breath condensate pH as an early marker of residual alveolar inflammation. Expert Rev Respir Med 2022; 16:1093-1099. [PMID: 36170967 DOI: 10.1080/17476348.2022.2130764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND . Residual alveolar inflammation seems to be paramount in post-COVID pathophysiology. Currently, we still lack a reliable marker to detect and track alveolar phlogosis in these patients. Exhaled Breath Condensate (EBC) pH has robust evidences highlighting its correlation with lung phlogosis in various diseases. We aim to define the reliability of alveolar and bronchial EBC pH in the assessment and in the follow up of post-COVID related inflammation. RESEARCH DESIGN AND METHODS We enrolled 10 patients previously hospitalized due to COVID-19 pneumonia. We performed a complete follow-up after 3 months and 6 months from discharge. Each visit included routine blood tests, arterial blood gas analysis, 6-minute walking test, spirometry, diffusing capacity and body plethysmography. Finally, bronchial and alveolar EBC were collected at the end of each visit. RESULTS Alveolar EBC pH was significantly lower than bronchial EBC pH at T1. Moreover, alveolar EBC pH tended to be more acid after 3 months from hospital discharge compared to the same sample 6 months later. Serum inflammatory biomarkers showed no significant differences from T1 to T2. However, alveolar EBC pH was positively correlated with neutrophil-lymphocyte ratio. CONCLUSIONS Collecting EBC pH could help to understand pathophysiologic mechanism as well as monitoring alveolar inflammation in the post-COVID syndrome.
Collapse
Affiliation(s)
- Andrea Portacci
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | - Paola Pierucci
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | | | - Sara Quaranta
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | - Ilaria Iorillo
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | - Cristian Locorotondo
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | - Enrico Buonamico
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | - Silvano Dragonieri
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | - Giovanna Elisiana Carpagnano
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| |
Collapse
|
3
|
Riccò M, Zaniboni A, Satta E, Ranzieri S, Marchesi F. Potential Use of Exhaled Breath Condensate for Diagnosis of SARS-CoV-2 Infections: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:diagnostics12092245. [PMID: 36140647 PMCID: PMC9497929 DOI: 10.3390/diagnostics12092245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background. Reverse-transcriptase polymerase chain reaction (RT-qPCR) assays performed on respiratory samples collected through nasal swabs still represent the gold standard for COVID-19 diagnosis. Alternative methods to this invasive and time-consuming options are still being inquired, including the collection of airways lining fluids through exhaled breath condensate (EBC). Materials and Methods. We performed a systematic review and meta-analysis in order to explore the reliability of EBC as a way to collect respiratory specimens for RT-qPCR for diagnosis of COVID-19. Results. A total of 4 studies (205 specimens), were ultimately collected, with a pooled sensitivity of 69.5% (95%CI 26.8–93.4), and a pooled specificity of 98.3% (95%CI 87.8–99.8), associated with high heterogeneity and scarce diagnostic agreement with the gold standard represented by nasal swabs (Cohen’s kappa = 0.585). Discussion. Even though non-invasive options for diagnosis of COVID-19 are still necessary, EBC-based RT-qPCR showed scarce diagnostic performances, ultimately impairing its implementation in real-world settings. However, as few studies have been carried out to date, and the studies included in the present review are characterized by low numbers and low sample power, further research are requested to fully characterize the actual reliability of EBC-based RT-qPCR in the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Matteo Riccò
- Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), AUSL-IRCCS di Reggio Emilia, Via Amendola n.2, I-42122 Reggio Emilia, Italy
- Correspondence: ; Tel.: +39-339-2994-343
| | - Alessandro Zaniboni
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| | - Elia Satta
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| | - Silvia Ranzieri
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| |
Collapse
|