1
|
Mukundan LM, Rajasekaran R, Das S, Seesala VS, Ganguly D, Kumar N, Dhara S, Chattopadhyay S. Tailoring of agarose hydrogel to modulate its 3D bioprintability and mechanical properties for stem cell mediated bone tissue engineering. Int J Biol Macromol 2025; 309:142795. [PMID: 40185455 DOI: 10.1016/j.ijbiomac.2025.142795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The intense gelling characteristics and viscosity constraints of agarose limit its utility as a sole ink material in 3D printing. This study presents the development of agarose bioink designed for cell-laden printing, featuring controlled printability, exceptional stiffness, and cell-responsiveness achieved via the insertion of photochemically reactive methacrylate groups. This chemical modification transforms the dense agarose network into a thinner structure, effecting a gentle thermogelling property that enhances the printability and facile cell encapsulation. Herein we examine the interplay between the degree of substitution and concentration variations to determine the optimal hydrogel composition. The best bioink composition possessed a lower shear modulus (storage modulus G' = 11.6 Pa) at 37 °C, assuring better bioprintability, while it possessed a Young's modulus of 1.4 ± 0.10 MPa in the crosslinked state, which is the highest reported in the natural single-matrix hydrogel systems. Studies with mesenchymal stem cells (MSC) confirmed that it is a good cell encapsulation matrix, achieving 111 % cell viability at 72 h. The bioprinted constructs promoted the osteogenic differentiation of MSC, as evidenced by mineralization and secretion of bone-related matrix. The gene expression analysis indicated that osteogenic marker expressions exhibited at least a two-fold increase on day 14 relative to the control group.
Collapse
Affiliation(s)
- Lakshmi M Mukundan
- Rubber Technology Center, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Ragavi Rajasekaran
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Samir Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - V S Seesala
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Debabrata Ganguly
- Rubber Technology Center, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Nikhil Kumar
- Rubber Technology Center, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Santanu Chattopadhyay
- Rubber Technology Center, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
2
|
Huang Y, Peng S, Chen Y, Chu B. Agarose Hydrogels for Bone Tissue Engineering, from Injectables to Bioprinting. Gels 2025; 11:255. [PMID: 40277691 DOI: 10.3390/gels11040255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
A great interest in agarose, with many health-promoting and gel properties, has been registered, especially in the field of bone regeneration and repair. Agarose and its major bioactive compounds are involved in biological activities such as inflammation, cell adhesion and proliferation, and the promotion of tissue repair. Due to its unique physical properties like gelation and solubility, agarose is increasingly utilized in the medical industry. The aim of this review is to present an overview of the applications of agarose hydrogels in bone tissue engineering, introducing agarose and its modified products as innovative solutions for bone regeneration. Additionally, the injectability of agarose hydrogels and their applications in bioprinting are also summarized. Data indicate that agarose will play an increasing role in current and future global medical sectors.
Collapse
Affiliation(s)
- Yibin Huang
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Siyuan Peng
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Yifan Chen
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Bin Chu
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute, Tsinghua University, Shenzhen 518057, China
| |
Collapse
|
3
|
Tanvir MAH, Khaleque MA, Lee J, Park JB, Kim GH, Lee HH, Kim YY. Three-Dimensional Bioprinting for Intervertebral Disc Regeneration. J Funct Biomater 2025; 16:105. [PMID: 40137384 PMCID: PMC11943008 DOI: 10.3390/jfb16030105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
The rising demand for organ transplants and the need for precise tissue models have positioned the in vitro biomanufacturing of tissues and organs as a pivotal area in regenerative treatment. Considerable development has been achieved in growing tissue-engineered intervertebral disc (IVD) scaffolds, designed to meet stringent mechanical and biological compatibility criteria. Among the cutting-edge approaches, 3D bioprinting stands out due to its unparalleled capacity to organize biomaterials, bioactive molecules, and living cells with high precision. Despite these advancements, polymer-based scaffolds still encounter limitations in replicating the extracellular matrix (ECM)-like environment, which is fundamental for optimal cellular activities. To overcome these challenges, integrating polymers with hydrogels has been recommended as a promising solution. This combination enables the advancement of porous scaffolds that nurture cell adhesion, proliferation, as well as differentiation. Additionally, bioinks derived from the decellularized extracellular matrix (dECM) have exhibited potential in replicating biologically relevant microenvironments, enhancing cell viability, differentiation, and motility. Hydrogels, whether derived from natural sources involving collagen and alginate or synthesized chemically, are highly valued for their ECM-like properties and superior biocompatibility. This review will explore recent advancements in techniques and technologies for IVD regeneration. Emphasis will be placed on identifying research gaps and proposing strategies to bridge them, with the goal of accelerating the translation of IVDs into clinical applications.
Collapse
Affiliation(s)
- Md Amit Hasan Tanvir
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Md Abdul Khaleque
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Junhee Lee
- Department of Bionic Machinery, KIMM Institute of AI Robot, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea;
| | - Jong-Beom Park
- Department of Orthopedic Surgery, Uijeongbu Saint Mary’s Hospital, The Catholic University of Korea, Seoul 11765, Republic of Korea;
| | - Ga-Hyun Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Hwan-Hee Lee
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Young-Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| |
Collapse
|
4
|
Yogeshwaran S, Goodarzi Hosseinabadi H, Gendy DE, Miri AK. Design considerations and biomaterials selection in embedded extrusion 3D bioprinting. Biomater Sci 2024; 12:4506-4518. [PMID: 39045682 DOI: 10.1039/d4bm00550c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
In embedded extrusion 3D bioprinting, a temporary matrix preserves a paste-like filament ejecting from a narrow nozzle. For granular sacrificial matrices, the methodology is known as the freeform reversible embedding of suspended hydrogels (FRESH). Embedded extrusion 3D bioprinting methods result in more rapid and controlled manufacturing of cell-laden tissue constructs, particularly vascular and multi-component structures. This report focuses on the working principles and bioink design criteria for implementing conventional embedded extrusion and FRESH 3D bioprinting strategies. We also present a set of experimental data as a guideline for selecting the support bath or matrix. We discuss the advantages of embedded extrusion methods over conventional biomanufacturing methods. This work provides a short recipe for selecting inks and printing parameters for desired shapes in embedded extrusion and FRESH 3D bioprinting methods.
Collapse
Affiliation(s)
- Swaprakash Yogeshwaran
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA.
| | - Hossein Goodarzi Hosseinabadi
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Daniel E Gendy
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA.
| | - Amir K Miri
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA.
| |
Collapse
|
5
|
Thaden O, Schneider N, Walther T, Spiller E, Taoum A, Göpfrich K, Duarte Campos D. Bioprinting of Synthetic Cell-like Lipid Vesicles to Augment the Functionality of Tissues after Manufacturing. ACS Synth Biol 2024; 13:2436-2446. [PMID: 39025476 PMCID: PMC11334175 DOI: 10.1021/acssynbio.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
Bioprinting is an automated bioassembly method that enables the formation of human tissue-like constructs to restore or replace damaged tissues. Regardless of the employed bioprinting method, cells undergo mechanical stress that can impact their survival and function postprinting. In this study, we investigate the use of a synthetic cell-like unit, giant unilamellar vesicles (GUVs), as adjuvants of the cellular function of human cells postprinting, or in future as the complete replacement of human cells. We analyzed the impact of two nozzle-based bioprinting methods (drop-on-demand and extrusion bioprinting) on the structure, stability, and function of GUVs. We showed that over 65% of the GUVs remain intact when printing at 0.5 bar, demonstrating the potential of using GUVs as a synthetic cell source. We further increased the stability of GUVs in a cell culture medium by introducing polyethylene glycol (PEG) into the GUV lipid membrane. The presence of PEG, however, diminished the structural properties of GUVs postprinting, and reduced the interaction of GUVs with human cells. Although the design of PEG-GUVs can still be modified in future studies for better cell-GUV interactions, we demonstrated that GUVs are functional postprinting. Chlorin e6-PEG-GUVs loaded with a fluorescent dye were bioprinted, and they released the dye postprinting only upon illumination. This is a new strategy to deliver carriers, such as growth factors, drugs, nutrients, or gases, inside large bioprinted specimens on a millimeter to centimeter scale. Overall, we showed that printed GUVs can augment the functionality of manufactured human tissues.
Collapse
Affiliation(s)
- Ole Thaden
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Nicole Schneider
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Tobias Walther
- Biophysical
Engineering of Life Group, Center for Molecular
Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
- Max
Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Erin Spiller
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Alexandre Taoum
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Kerstin Göpfrich
- Biophysical
Engineering of Life Group, Center for Molecular
Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
- Max
Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Daniela Duarte Campos
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| |
Collapse
|
6
|
Salih T, Caputo M, Ghorbel MT. Recent Advances in Hydrogel-Based 3D Bioprinting and Its Potential Application in the Treatment of Congenital Heart Disease. Biomolecules 2024; 14:861. [PMID: 39062575 PMCID: PMC11274841 DOI: 10.3390/biom14070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect, requiring invasive surgery often before a child's first birthday. Current materials used during CHD surgery lack the ability to grow, remodel, and regenerate. To solve those limitations, 3D bioprinting is an emerging tool with the capability to create tailored constructs based on patients' own imaging data with the ability to grow and remodel once implanted in children with CHD. It has the potential to integrate multiple bioinks with several cell types and biomolecules within 3D-bioprinted constructs that exhibit good structural fidelity, stability, and mechanical integrity. This review gives an overview of CHD and recent advancements in 3D bioprinting technologies with potential use in the treatment of CHD. Moreover, the selection of appropriate biomaterials based on their chemical, physical, and biological properties that are further manipulated to suit their application are also discussed. An introduction to bioink formulations composed of various biomaterials with emphasis on multiple cell types and biomolecules is briefly overviewed. Vasculogenesis and angiogenesis of prefabricated 3D-bioprinted structures and novel 4D printing technology are also summarized. Finally, we discuss several restrictions and our perspective on future directions in 3D bioprinting technologies in the treatment of CHD.
Collapse
Affiliation(s)
- Tasneem Salih
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK; (T.S.); (M.C.)
| | - Massimo Caputo
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK; (T.S.); (M.C.)
- Cardiac Surgery, University Hospitals Bristol, NHS Foundation Trust, Bristol BS2 8HW, UK
| | - Mohamed T. Ghorbel
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK; (T.S.); (M.C.)
| |
Collapse
|
7
|
Makode S, Maurya S, Niknam SA, Mollocana-Lara E, Jaberi K, Faramarzi N, Tamayol A, Mortazavi M. Three dimensional (bio)printing of blood vessels: from vascularized tissues to functional arteries. Biofabrication 2024; 16:022005. [PMID: 38277671 DOI: 10.1088/1758-5090/ad22ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Tissue engineering has emerged as a strategy for producing functional tissues and organs to treat diseases and injuries. Many chronic conditions directly or indirectly affect normal blood vessel functioning, necessary for material exchange and transport through the body and within tissue-engineered constructs. The interest in vascular tissue engineering is due to two reasons: (1) functional grafts can be used to replace diseased blood vessels, and (2) engineering effective vasculature within other engineered tissues enables connection with the host's circulatory system, supporting their survival. Among various practices, (bio)printing has emerged as a powerful tool to engineer biomimetic constructs. This has been made possible with precise control of cell deposition and matrix environment along with the advancements in biomaterials. (Bio)printing has been used for both engineering stand-alone vascular grafts as well as vasculature within engineered tissues for regenerative applications. In this review article, we discuss various conditions associated with blood vessels, the need for artificial blood vessels, the anatomy and physiology of different blood vessels, available 3D (bio)printing techniques to fabricate tissue-engineered vascular grafts and vasculature in scaffolds, and the comparison among the different techniques. We conclude our review with a brief discussion about future opportunities in the area of blood vessel tissue engineering.
Collapse
Affiliation(s)
- Shubham Makode
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Satyajit Maurya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Seyed A Niknam
- Department of Industrial Engineering, Western New England University, Springfield, MA, United States of America
| | - Evelyn Mollocana-Lara
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Kiana Jaberi
- Department of Nutritional Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Faramarzi
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Mehdi Mortazavi
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
| |
Collapse
|
8
|
Chowdhury SR, Mondal G, Ratnayake P, Basu B. Three-Dimensional Extrusion Printed Urinary Specific Grafts: Mechanistic Insights into Buildability and Biophysical Properties. ACS Biomater Sci Eng 2024; 10:1040-1061. [PMID: 38294204 DOI: 10.1021/acsbiomaterials.3c01422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The compositional formulations and the optimization of process parameters to fabricate hydrogel scaffolds with urological tissue-mimicking biophysical properties are not yet extensively explored, including a comprehensive assessment of a spectrum of properties, such as mechanical strength, viscoelasticity, antimicrobial property, and cytocompatibility. While addressing this aspect, the present work provides mechanistic insights into process science, to produce shape-fidelity compliant alginate-based biomaterial ink blended with gelatin and synthetic nanocellulose. The composition-dependent pseudoplasticity, viscoelasticity, thixotropy, and gel stability over a longer duration in physiological context have been rationalized in terms of intermolecular hydrogen bonding interactions among the biomaterial ink constituents. By varying the hybrid hydrogel ink composition within a narrow compositional window, the resulting hydrogel closely mimics the natural urological tissue-like properties, including tensile stretchability, compressive strength, and biophysical properties. Based on the printability assessment using a critical analysis of gel strength, we have established the buildability of the acellular hydrogel ink and have been successful in fabricating shape-fidelity compliant urological patches or hollow cylindrical grafts using 3D extrusion printing. Importantly, the new hydrogel formulations with good hydrophilicity, support fibroblast cell proliferation and inhibit the growth of Gram-negative E. coli bacteria. These attributes were rationalized in terms of nanocellulose-induced physicochemical changes on the scaffold surface. Taken together, the present study uncovers the process-science-based understanding of the 3D extrudability of the newly formulated alginate-gelatin-nanocellulose-based hydrogels with urological tissue-specific biophysical, cytocompatibility, and antibacterial properties.
Collapse
Affiliation(s)
- Sulob Roy Chowdhury
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Garga Mondal
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Praneeth Ratnayake
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
Budharaju H, Sundaramurthi D, Sethuraman S. Embedded 3D bioprinting - An emerging strategy to fabricate biomimetic & large vascularized tissue constructs. Bioact Mater 2024; 32:356-384. [PMID: 37920828 PMCID: PMC10618244 DOI: 10.1016/j.bioactmat.2023.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/16/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Three-dimensional bioprinting is an advanced tissue fabrication technique that allows printing complex structures with precise positioning of multiple cell types layer-by-layer. Compared to other bioprinting methods, extrusion bioprinting has several advantages to print large-sized tissue constructs and complex organ models due to large build volume. Extrusion bioprinting using sacrificial, support and embedded strategies have been successfully employed to facilitate printing of complex and hollow structures. Embedded bioprinting is a gel-in-gel approach developed to overcome the gravitational and overhanging limits of bioprinting to print large-sized constructs with a micron-scale resolution. In embedded bioprinting, deposition of bioinks into the microgel or granular support bath will be facilitated by the sol-gel transition of the support bath through needle movement inside the granular medium. This review outlines various embedded bioprinting strategies and the polymers used in the embedded systems with advantages, limitations, and efficacy in the fabrication of complex vascularized tissues or organ models with micron-scale resolution. Further, the essential requirements of support bath systems like viscoelasticity, stability, transparency and easy extraction to print human scale organs are discussed. Additionally, the organs or complex geometries like vascular constructs, heart, bone, octopus and jellyfish models printed using support bath assisted printing methods with their anatomical features are elaborated. Finally, the challenges in clinical translation and the future scope of these embedded bioprinting models to replace the native organs are envisaged.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Center, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Center, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Center, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
10
|
Shin S, Brunel LG, Cai B, Kilian D, Roth JG, Seymour AJ, Heilshorn SC. Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2307435. [PMID: 38646474 PMCID: PMC11031202 DOI: 10.1002/adfm.202307435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 04/23/2024]
Abstract
While the human body has many different examples of perfusable structures with complex geometries, biofabrication methods to replicate this complexity are still lacking. Specifically, the fabrication of self-supporting, branched networks with multiple channel diameters is particularly challenging. Here, we present the Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing (GUIDE-3DP) approach for constructing perfusable networks of interconnected channels with precise control over branching geometries and vessel sizes. To achieve user-specified channel dimensions, this technique leverages the predictable diffusion of crosslinking reaction-initiators released from sacrificial inks printed within a hydrogel precursor. We demonstrate the versatility of GUIDE-3DP to be adapted for use with diverse physicochemical crosslinking mechanisms by designing seven printable material systems. Importantly, GUIDE-3DP allows for the independent tunability of both the inner and outer diameters of the printed channels and the ability to fabricate seamless junctions at branch points. This 3D bioprinting platform is uniquely suited for fabricating lumenized structures with complex shapes characteristic of multiple hollow vessels throughout the body. As an exemplary application, we demonstrate the fabrication of vasculature-like networks lined with endothelial cells. GUIDE-3DP represents an important advance toward the fabrication of self-supporting, physiologically relevant networks with intricate and perfusable geometries.
Collapse
Affiliation(s)
- Sungchul Shin
- Department of Materials Science and Engineering, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 08826 Gwanak-ro 1, Gwanak-gu, Seoul, Republic of Korea
| | - Lucia G Brunel
- Department of Chemical Engineering, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
| | - Betty Cai
- Department of Materials Science and Engineering, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
| | - David Kilian
- Department of Materials Science and Engineering, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
| | - Julien G Roth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
| | - Alexis J Seymour
- Department of Bioengineering, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Sabzevari A, Rayat Pisheh H, Ansari M, Salati A. Progress in bioprinting technology for tissue regeneration. J Artif Organs 2023; 26:255-274. [PMID: 37119315 DOI: 10.1007/s10047-023-01394-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/09/2023] [Indexed: 05/01/2023]
Abstract
In recent years, due to the increase in diseases that require organ/tissue transplantation and the limited donor, on the other hand, patients have lost hope of recovery and organ transplantation. Regenerative medicine is one of the new sciences that promises a bright future for these patients by providing solutions to repair, improve function, and replace tissue. One of the technologies used in regenerative medicine is three-dimensional (3D) bioprinters. Bioprinting is a new strategy that is the basis for starting a global revolution in the field of medical sciences and has attracted much attention. 3D bioprinters use a combination of advanced biology and cell science, computer science, and materials science to create complex bio-hybrid structures for various applications. The capacity to use this technology can be demonstrated in regenerative medicine to make various connective tissues, such as skin, cartilage, and bone. One of the essential parts of a 3D bioprinter is the bio-ink. Bio-ink is a combination of biologically active molecules, cells, and biomaterials that make the printed product. In this review, we examine the main bioprinting strategies, such as inkjet printing, laser, and extrusion-based bioprinting, as well as some of their applications.
Collapse
Affiliation(s)
- Alireza Sabzevari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| | - Amir Salati
- Tissue Engineering and Applied Cell Sciences Group, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
12
|
Girgis MM, Christodoulides M. Vertebrate and Invertebrate Animal and New In Vitro Models for Studying Neisseria Biology. Pathogens 2023; 12:782. [PMID: 37375472 DOI: 10.3390/pathogens12060782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The history of Neisseria research has involved the use of a wide variety of vertebrate and invertebrate animal models, from insects to humans. In this review, we itemise these models and describe how they have made significant contributions to understanding the pathophysiology of Neisseria infections and to the development and testing of vaccines and antimicrobials. We also look ahead, briefly, to their potential replacement by complex in vitro cellular models.
Collapse
Affiliation(s)
- Michael M Girgis
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
13
|
Shin S, Brunel LG, Cai B, Kilian D, Roth JG, Seymour AJ, Heilshorn SC. Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535250. [PMID: 37066190 PMCID: PMC10104000 DOI: 10.1101/2023.04.02.535250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
While the human body has many different examples of perfusable structures with complex geometries, biofabrication methods to replicate this complexity are still lacking. Specifically, the fabrication of self-supporting, branched networks with multiple channel diameters is particularly challenging. Here, we present the Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing (GUIDE-3DP) approach for constructing perfusable networks of interconnected channels with precise control over branching geometries and vessel sizes. To achieve user-specified channel dimensions, this technique leverages the predictable diffusion of crosslinking reaction-initiators released from sacrificial inks printed within a hydrogel precursor. We demonstrate the versatility of GUIDE-3DP to be adapted for use with diverse physiochemical crosslinking mechanisms by designing seven printable material systems. Importantly, GUIDE-3DP allows for the independent tunability of both the inner and outer diameters of the printed channels and the ability to fabricate seamless junctions at branch points. This 3D bioprinting platform is uniquely suited for fabricating lumenized structures with complex shapes characteristic of multiple hollow vessels throughout the body. As an exemplary application, we demonstrate the fabrication of vasculature-like networks lined with endothelial cells. GUIDE-3DP represents an important advance toward the fabrication of self-supporting, physiologically relevant networks with intricate and perfusable geometries.
Collapse
|
14
|
Samadi A, Moammeri A, Pourmadadi M, Abbasi P, Hosseinpour Z, Farokh A, Shamsabadipour A, Heydari M, Mohammadi MR. Cell Encapsulation and 3D Bioprinting for Therapeutic Cell Transplantation. ACS Biomater Sci Eng 2023; 9:1862-1890. [PMID: 36877212 DOI: 10.1021/acsbiomaterials.2c01183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The promise of cell therapy has been augmented by introducing biomaterials, where intricate scaffold shapes are fabricated to accommodate the cells within. In this review, we first discuss cell encapsulation and the promising potential of biomaterials to overcome challenges associated with cell therapy, particularly cellular function and longevity. More specifically, cell therapies in the context of autoimmune disorders, neurodegenerative diseases, and cancer are reviewed from the perspectives of preclinical findings as well as available clinical data. Next, techniques to fabricate cell-biomaterials constructs, focusing on emerging 3D bioprinting technologies, will be reviewed. 3D bioprinting is an advancing field that enables fabricating complex, interconnected, and consistent cell-based constructs capable of scaling up highly reproducible cell-biomaterials platforms with high precision. It is expected that 3D bioprinting devices will expand and become more precise, scalable, and appropriate for clinical manufacturing. Rather than one printer fits all, seeing more application-specific printer types, such as a bioprinter for bone tissue fabrication, which would be different from a bioprinter for skin tissue fabrication, is anticipated in the future.
Collapse
Affiliation(s)
- Amirmasoud Samadi
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, California 92617, United States
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Parisa Abbasi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, Tehran 1458889694, Iran
| | - Zeinab Hosseinpour
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol 4714871167, Mazandaran Province, Iran
| | - Arian Farokh
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran 199389373, Iran
| | - M Rezaa Mohammadi
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, California 92866, United States
| |
Collapse
|
15
|
Zhu M, Wang Q, Gu T, Han Y, Zeng X, Li J, Dong J, Huang H, Qian P. Hydrogel-based microenvironment engineering of haematopoietic stem cells. Cell Mol Life Sci 2023; 80:49. [PMID: 36690903 PMCID: PMC11073069 DOI: 10.1007/s00018-023-04696-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/06/2022] [Accepted: 01/08/2023] [Indexed: 01/25/2023]
Abstract
Haematopoietic Stem cells (HSCs) have the potential for self-renewal and multilineage differentiation, and their behaviours are finely tuned by the microenvironment. HSC transplantation (HSCT) is widely used in the treatment of haematologic malignancies while limited by the quantity of available HSCs. With the development of tissue engineering, hydrogels have been deployed to mimic the HSC microenvironment in vitro. Engineered hydrogels influence HSC behaviour by regulating mechanical strength, extracellular matrix microstructure, cellular ligands and cytokines, cell-cell interaction, and oxygen concentration, which ultimately facilitate the acquisition of sufficient HSCs. Here, we review recent advances in the application of hydrogel-based microenvironment engineering of HSCs, and provide future perspectives on challenges in basic research and clinical practice.
Collapse
Affiliation(s)
- Meng Zhu
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Qiwei Wang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Tianning Gu
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yingli Han
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Xin Zeng
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Jinxin Li
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Jian Dong
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Pengxu Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Recent trends in bioartificial muscle engineering and their applications in cultured meat, biorobotic systems and biohybrid implants. Commun Biol 2022; 5:737. [PMID: 35869250 PMCID: PMC9307618 DOI: 10.1038/s42003-022-03593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRecent advances in tissue engineering and biofabrication technology have yielded a plethora of biological tissues. Among these, engineering of bioartificial muscle stands out for its exceptional versatility and its wide range of applications. From the food industry to the technology sector and medicine, the development of this tissue has the potential to affect many different industries at once. However, to date, the biofabrication of cultured meat, biorobotic systems, and bioartificial muscle implants are still considered in isolation by individual peer groups. To establish common ground and share advances, this review outlines application-specific requirements for muscle tissue generation and provides a comprehensive overview of commonly used biofabrication strategies and current application trends. By solving the individual challenges and merging various expertise, synergetic leaps of innovation that inspire each other can be expected in all three industries in the future.
Collapse
|
17
|
Wang Y, Yuan X, Yao B, Zhu S, Zhu P, Huang S. Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing. Bioact Mater 2022; 17:178-194. [PMID: 35386443 PMCID: PMC8965032 DOI: 10.1016/j.bioactmat.2022.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/11/2022] Open
Abstract
Extrusion-based bioprinting (EBB) holds potential for regenerative medicine. However, the widely-used bioinks of EBB exhibit some limitations for skin regeneration, such as unsatisfactory bio-physical (i.e., mechanical, structural, biodegradable) properties and compromised cellular compatibilities, and the EBB-based bioinks with therapeutic effects targeting cutaneous wounds still remain largely undiscussed. In this review, the printability considerations for skin bioprinting were discussed. Then, current strategies for improving the physical properties of bioinks and for reinforcing bioinks in EBB approaches were introduced, respectively. Notably, we highlighted the applications and effects of current EBB-based bioinks on wound healing, wound scar formation, vascularization and the regeneration of skin appendages (i.e., sweat glands and hair follicles) and discussed the challenges and future perspectives. This review aims to provide an overall view of the applications, challenges and promising solutions about the EBB-based bioinks for cutaneous wound healing and skin regeneration.
Collapse
Affiliation(s)
- Yuzhen Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing, 100048, PR China
- Department of Burn and Plastic Surgery, Air Force Hospital of Chinese PLA Central Theater Command, 589 Yunzhong Road, Pingcheng District, Datong, Shanxi, 037006, PR China
| | - Xingyu Yuan
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, 94 Wei Jing Road, Tianjin, 300071, PR China
| | - Bin Yao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing, 100048, PR China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, PR China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
| |
Collapse
|
18
|
Mandal S, Nagi GK, Corcoran AA, Agrawal R, Dubey M, Hunt RW. Algal polysaccharides for 3D printing: A review. Carbohydr Polym 2022; 300:120267. [DOI: 10.1016/j.carbpol.2022.120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 11/02/2022]
|
19
|
Hua W, Mitchell K, Kariyawasam LS, Do C, Chen J, Raymond L, Valentin N, Coulter R, Yang Y, Jin Y. Three-Dimensional Printing in Stimuli-Responsive Yield-Stress Fluid with an Interactive Dual Microstructure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39420-39431. [PMID: 35973232 DOI: 10.1021/acsami.2c12465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Yield-stress support bath-enabled three-dimensional (3D) printing has been widely used in recent years for diverse applications. However, current yield-stress fluids usually possess single microstructures and still face the challenges of on-demand adding and/or removing support bath materials during printing, constraining their application scope. This study aims to propose a concept of stimuli-responsive yield-stress fluids with an interactive dual microstructure as support bath materials. The microstructure from a yield-stress additive allows the fluids to present switchable states at different stresses, facilitating an embedded 3D printing process. The microstructure from stimuli-responsive polymers enables the fluids to have regulable rheological properties upon external stimuli, making it feasible to perfuse additional yield-stress fluids during printing and easily remove residual fluids after printing. A nanoclay-Pluronic F127 nanocomposite is studied as a thermosensitive yield-stress fluid. The key material properties are characterized to unveil the interactions in the formed dual microstructure and microstructure evolutions at different stresses and temperatures. Core scientific issues, including the filament formation principle, surface roughness control, and thermal effects of the newly added nanocomposite, are comprehensively investigated. Finally, three representative 3D structures, the Hall of Prayer, capsule, and tube with changing diameter, are successfully printed to validate the printing capability of stimuli-responsive yield-stress fluids for fabricating arbitrary architectures.
Collapse
Affiliation(s)
- Weijian Hua
- Department of Mechanical Engineering, University of Nevada Reno, Reno, Nevada 89557, United States
| | - Kellen Mitchell
- Department of Mechanical Engineering, University of Nevada Reno, Reno, Nevada 89557, United States
| | - Lasith S Kariyawasam
- Department of Chemistry, University of Nevada Reno, Reno, Nevada 89557, United States
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Lab, Oak Ridge, Tennessee 37830, United States
| | - Lily Raymond
- Department of Mechanical Engineering, University of Nevada Reno, Reno, Nevada 89557, United States
| | - Naima Valentin
- Department of Mechanical Engineering, University of Nevada Reno, Reno, Nevada 89557, United States
| | - Ryan Coulter
- Department of Mechanical Engineering, University of Nevada Reno, Reno, Nevada 89557, United States
| | - Ying Yang
- Department of Chemistry, University of Nevada Reno, Reno, Nevada 89557, United States
| | - Yifei Jin
- Department of Mechanical Engineering, University of Nevada Reno, Reno, Nevada 89557, United States
| |
Collapse
|
20
|
Maeng WY, Tseng WL, Li S, Koo J, Hsueh YY. Electroceuticals for peripheral nerve regeneration. Biofabrication 2022; 14. [PMID: 35995036 PMCID: PMC10109522 DOI: 10.1088/1758-5090/ac8baa] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022]
Abstract
Electroceuticals provide promising opportunities for peripheral nerve regeneration, in terms of modulating the extensive endogenous tissue repair mechanisms between neural cell body, axons and target muscles. However, great challenges remain to deliver effective and controllable electroceuticals via bioelectronic implantable device. In this review, the modern fabrication methods of bioelectronic conduit for bridging critical nerve gaps after nerve injury are summarized, with regard to conductive materials and core manufacturing process. In addition, to deliver versatile electrical stimulation, the integration of implantable bioelectronic device is discussed, including wireless energy harvesters, actuators and sensors. Moreover, a comprehensive insight of beneficial mechanisms is presented, including up-to-date in vitro, in vivo and clinical evidence. By integrating conductive biomaterials, 3D engineering manufacturing process and bioelectronic platform to deliver versatile electroceuticals, the modern biofabrication enables comprehensive biomimetic therapies for neural tissue engineering and regeneration in the new era.
Collapse
Affiliation(s)
- Woo-Youl Maeng
- Bio-Medical Engineering, Korea University, B156, B, Hana Science Hall, 145, Anam-ro, Seongbuk-gu, Seoul, Seongbuk-gu, Seoul, 02841, Korea (the Republic of)
| | - Wan Ling Tseng
- Department of Surgery, National Cheng Kung University College of Medicine, No.138, Sheng-Li road, Tainan, 701, TAIWAN
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, 5121 Eng V, Los Angeles, California, 90095, UNITED STATES
| | - Jahyun Koo
- Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, 02841, Korea (the Republic of)
| | - Yuan-Yu Hsueh
- Department of Surgery, National Cheng Kung University College of Medicine, No.138, Sheng-Li road, Tainan, 701, TAIWAN
| |
Collapse
|
21
|
A Three-Dimensional Bioprinted Copolymer Scaffold with Biocompatibility and Structural Integrity for Potential Tissue Regeneration Applications. Polymers (Basel) 2022; 14:polym14163415. [PMID: 36015671 PMCID: PMC9413511 DOI: 10.3390/polym14163415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
The present study was to investigate the rheological property, printability, and cell viability of alginate−gelatin composed hydrogels as a potential cell-laden bioink for three-dimensional (3D) bioprinting applications. The 2 g of sodium alginate dissolved in 50 mL of phosphate buffered saline solution was mixed with different concentrations (1% (0.5 g), 2% (1 g), 3% (1.5 g), and 4% (2 g)) of gelatin, denoted as GBH-1, GBH-2, GBH-3, and GBH-4, respectively. The properties of the investigated hydrogels were characterized by contact angle goniometer, rheometer, and bioprinter. In addition, the hydrogel with a proper concentration was adopted as a cell-laden bioink to conduct cell viability testing (before and after bioprinting) using Live/Dead assay and immunofluorescence staining with a human corneal fibroblast cell line. The analytical results indicated that the GBH-2 hydrogel exhibited the lowest loss rate of contact angle (28%) and similar rheological performance as compared with other investigated hydrogels and the control group. Printability results also showed that the average wire diameter of the GBH-2 bioink (0.84 ± 0.02 mm (*** p < 0.001)) post-printing was similar to that of the control group (0.79 ± 0.05 mm). Moreover, a cell scaffold could be fabricated from the GBH-2 bioink and retained its shape integrity for 24 h post-printing. For bioprinting evaluation, it demonstrated that the GBH-2 bioink possessed well viability (>70%) of the human corneal fibroblast cell after seven days of printing under an ideal printing parameter combination (0.4 mm of inner diameter needle, 0.8 bar of printing pressure, and 25 °C of printing temperature). Therefore, the present study suggests that the GBH-2 hydrogel could be developed as a potential cell-laden bioink to print a cell scaffold with biocompatibility and structural integrity for soft tissues such as skin, cornea, nerve, and blood vessel regeneration applications.
Collapse
|
22
|
Xu J, Zhang M, Du W, Zhao J, Ling G, Zhang P. Chitosan-based high-strength supramolecular hydrogels for 3D bioprinting. Int J Biol Macromol 2022; 219:545-557. [PMID: 35907459 DOI: 10.1016/j.ijbiomac.2022.07.206] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/11/2022]
Abstract
The loss of tissues and organs is a major challenge for biomedicine, and the emerging 3D bioprinting technology has brought the dawn for the development of tissue engineering and regenerative medicine. Chitosan-based supramolecular hydrogels, as novel biomaterials, are considered as ideal materials for 3D bioprinting due to their unique dynamic reversibility and fantastic biological properties. Although chitosan-based supramolecular hydrogels have wonderful biological properties, the mechanical properties are still under early exploration. This paper aims to provide some inspirations for researchers to further explore. In this review, common 3D bioprinting techniques and the properties required for bioink for 3D bioprinting are firstly described. Then, several strategies to enhance the mechanical properties of chitosan hydrogels are introduced from the perspectives of both materials and supramolecular binding motifs. Finally, current challenges and future opportunities in this field are discussed. The combination of chitosan-based supramolecular hydrogels and 3D bioprinting will hold promise for developing novel biomedical implants.
Collapse
Affiliation(s)
- Jiaqi Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Manyue Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wenzhen Du
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiuhong Zhao
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
23
|
Schumayer S, Simon N, Sittkus B, Wagner S, Bucher V, Strasser T. Novel Three-Dimensional and Biocompatible Lift-Off Method for Selective Metallization of a Scleral Contact Lens Electrode for Biopotential Detection. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:920384. [PMID: 35756534 PMCID: PMC9226725 DOI: 10.3389/fmedt.2022.920384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Presbyopia describes the eye's physiological loss of the ability to see close objects clearly. The adaptation to different viewing distances, termed accommodation, is achieved by a change in the curvature of the eye lens induced by the ciliary muscle. A possible approach to correct presbyopia could be to detect the ciliary muscle's neuromuscular signals during accommodation and transfer these signals electronically to a biomimetic, micro-optical system to provide the necessary refractive power. As a preliminary step toward such a described system, a novel three-dimensional and biocompatible lift-off method was developed. In addition, the influence of the distance between the electrically conducting surfaces of the lens on the accommodated signal amplitudes was investigated. Compared to the conventional masking methods, this process has the advantage that three-dimensional surfaces can be masked with biocompatible gelling sugar by utilizing a direct writing process with a dispensing robot. Since gelling sugar can be used at room temperature and is water-soluble, the process presented is suitable for materials that should not be exposed to organic solvents or excessively high temperatures. Apart from investigating the shrinkage behavior of the gelling sugar during the physical vapor deposition (PVD) coating process, this paper also describes the approaches used to partially coat a commercial scleral contact lens with an electrically conductive material. It was shown that gelling sugar withstands the conditions during the PVD processes and a successful lift-off was performed. To investigate the influence of the spacing between the electrically conductive regions of the contact lens on the measured signals, three simplified electrode configurations with different distances were fabricated using a 3D printer. By testing these in an experimental setup, it could be demonstrated that the distance between the conductive surfaces has a significant influence on the amplitude. Regarding the described lift-off process using gelling sugar, it was found that the dispensing flow rate has a direct influence on the line uniformity. Future work should address the influence of the viscosity of the gelling sugar as well as the diameter of the cannula. It is assumed that they are the prevailing limitations for the lateral resolution.
Collapse
Affiliation(s)
- Sven Schumayer
- Institute of Microsystems Technology, Furtwangen University, Furtwangen, Germany
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Nicolai Simon
- Institute of Microsystems Technology, Furtwangen University, Furtwangen, Germany
- IMTEK—Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Benjamin Sittkus
- Institute of Microsystems Technology, Furtwangen University, Furtwangen, Germany
- IMTEK—Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Sandra Wagner
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Volker Bucher
- Institute of Microsystems Technology, Furtwangen University, Furtwangen, Germany
- *Correspondence: Volker Bucher
| | - Torsten Strasser
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- University Eye Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
24
|
Dravid A, Chapman A, Raos B, O'Carroll S, Connor B, Svirskis D. Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation. Biomed Mater 2022; 17. [PMID: 35654031 DOI: 10.1088/1748-605x/ac759f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022]
Abstract
Three-dimensional bioprinting continues to advance as an attractive biofabrication technique to employ cell-laden hydrogel scaffolds in the creation of precise, user-defined constructs that can recapitulate the native tissue environment. Development and characterisation of new bioinks to expand the existing library helps to open avenues that can support a diversity of tissue engineering purposes and fulfil requirements in terms of both printability and supporting cell attachment. In this paper, we report the development and characterisation of agarose-gelatin hydrogel blends as a bioink for extrusion-based bioprinting. Four different agarose-gelatin hydrogel blend formulations with varying gelatin concentration were systematically characterised to evaluate suitability as a potential bioink for extrusion-based bioprinting. Additionally, autoclave and filter sterilisation methods were compared to evaluate their effect on bioink properties. Finally, the ability of the agarose-gelatin bioink to support cell viability and culture after printing was evaluated using SH-SY5Y cells encapsulated in bioprinted droplets of the agarose-gelatin. All bioink formulations demonstrate rheological, mechanical and swelling properties suitable for bioprinting and cell encapsulation. Autoclave sterilisation significantly affected the rheological properties of the agarose-gelatin bioinks compared to filter sterilisation. SH-SY5Y cells printed and differentiated into neuronal-like cells using the developed agarose-gelatin bioinks demonstrated high viability (>90%) after 23 days in culture. This study demonstrates the properties of agarose-gelatin as a printable and biocompatible material applicable for use as a bioink.
Collapse
Affiliation(s)
- Anusha Dravid
- The University of Auckland, Grafton, Auckland, 1142, NEW ZEALAND
| | - Amy Chapman
- The University of Auckland, Grafton, Auckland, 1142, NEW ZEALAND
| | - Brad Raos
- The University of Auckland, Grafton, Auckland, 1142, NEW ZEALAND
| | - Simon O'Carroll
- The University of Auckland, Grafton, Auckland, 1142, NEW ZEALAND
| | - Bronwen Connor
- The University of Auckland, Grafton, Auckland, 1142, NEW ZEALAND
| | - Darren Svirskis
- The University of Auckland, Grafton Campus, Auckland, 1142, NEW ZEALAND
| |
Collapse
|
25
|
Rial R, Liu Z, Messina P, Ruso JM. Role of nanostructured materials in hard tissue engineering. Adv Colloid Interface Sci 2022; 304:102682. [PMID: 35489142 DOI: 10.1016/j.cis.2022.102682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 01/05/2023]
Abstract
The rise in the use of biomaterials in bone regeneration in the last decade has exponentially multiplied the number of publications, methods, and approaches to improve and optimize their functionalities and applications. In particular, biomimetic strategies based on the self-assembly of molecules to design, create and characterize nanostructured materials have played a very relevant role. We address this idea on four different but related points: self-setting bone cements based on calcium phosphate, as stable tissue support and regeneration induction; metallic prosthesis coatings for cell adhesion optimization and prevention of inflammatory response exacerbation; bio-adhesive hybrid materials as multiple drug delivery localized platforms and finally bio-inks. The effect of the physical, chemical, and biological properties of the newest biomedical devices on their bone tissue regenerative capacity are summarized, described, and analyzed in detail. The roles of experimental conditions, characterization methods and synthesis routes are emphasized. Finally, the future opportunities and challenges of nanostructured biomaterials with their advantages and shortcomings are proposed in order to forecast the future directions of this field of research.
Collapse
|
26
|
Yang Z, Yi P, Liu Z, Zhang W, Mei L, Feng C, Tu C, Li Z. Stem Cell-Laden Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering. Front Bioeng Biotechnol 2022; 10:865770. [PMID: 35656197 PMCID: PMC9152119 DOI: 10.3389/fbioe.2022.865770] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/18/2022] [Indexed: 12/30/2022] Open
Abstract
Tremendous advances in tissue engineering and regenerative medicine have revealed the potential of fabricating biomaterials to solve the dilemma of bone and articular defects by promoting osteochondral and cartilage regeneration. Three-dimensional (3D) bioprinting is an innovative fabrication technology to precisely distribute the cell-laden bioink for the construction of artificial tissues, demonstrating great prospect in bone and joint construction areas. With well controllable printability, biocompatibility, biodegradability, and mechanical properties, hydrogels have been emerging as an attractive 3D bioprinting material, which provides a favorable biomimetic microenvironment for cell adhesion, orientation, migration, proliferation, and differentiation. Stem cell-based therapy has been known as a promising approach in regenerative medicine; however, limitations arise from the uncontrollable proliferation, migration, and differentiation of the stem cells and fortunately could be improved after stem cells were encapsulated in the hydrogel. In this review, our focus was centered on the characterization and application of stem cell-laden hydrogel-based 3D bioprinting for bone and cartilage tissue engineering. We not only highlighted the effect of various kinds of hydrogels, stem cells, inorganic particles, and growth factors on chondrogenesis and osteogenesis but also outlined the relationship between biophysical properties like biocompatibility, biodegradability, osteoinductivity, and the regeneration of bone and cartilage. This study was invented to discuss the challenge we have been encountering, the recent progress we have achieved, and the future perspective we have proposed for in this field.
Collapse
Affiliation(s)
- Zhimin Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ping Yi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Mei
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengyao Feng
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Ronzoni FL, Aliberti F, Scocozza F, Benedetti L, Auricchio F, Sampaolesi M, Cusella G, Redwan IN, Ceccarelli G, Conti M. Myoblast 3D bioprinting to burst in vitro skeletal muscle differentiation. J Tissue Eng Regen Med 2022; 16:484-495. [PMID: 35246958 PMCID: PMC9311434 DOI: 10.1002/term.3293] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022]
Abstract
Skeletal muscle regeneration is one of the major areas of interest in sport medicine as well as trauma centers. Three-dimensional (3D) bioprinting (BioP) is nowadays widely adopted to manufacture 3D constructs for regenerative medicine but a comparison between the available biomaterial-based inks (bioinks) is missing. The present study aims to assess the impact of different hydrogels on the viability, proliferation, and differentiation of murine myoblasts (C2C12) encapsulated in 3D bioprinted constructs aided to muscle regeneration. We tested three different commercially available hydrogels bioinks based on: (1) gelatin methacrylate and alginate crosslinked by UV light; (2) gelatin methacrylate, xanthan gum, and alginate-fibrinogen; (3) nanofibrillated cellulose (NFC)/alginate-fibrinogen crosslinked with calcium chloride and thrombin. Constructs embedding the cells were manufactured by extrusion-based BioP and C2C12 viability, proliferation, and differentiation were assessed after 24 h, 7, 14, 21, and 28 days in culture. Although viability, proliferation, and differentiation were observed in all the constructs, among the investigated bioinks, the best results were obtained by using NFC/alginate-fibrinogen-based hydrogel from 7 to 14 days in culture, when the embedded myoblasts started fusing, forming at day 21 and day 28 multinucleated myotubes within the 3D bioprinted structures. The results revealed an extensive myotube alignment all over the linear structure of the hydrogel, demonstrating cell maturation, and enhanced myogenesis. The bioprinting strategies that we describe here denote a strong and endorsed approach for the creation of in vitro artificial muscle to improve skeletal muscle tissue engineering for future therapeutic applications.
Collapse
Affiliation(s)
- Flavio L. Ronzoni
- Department of Public Health, Experimental and Forensic MedicineHuman Anatomy UnitUniversity of PaviaPaviaItaly
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly
| | - Flaminia Aliberti
- Department of Public Health, Experimental and Forensic MedicineHuman Anatomy UnitUniversity of PaviaPaviaItaly
- Fondazione IRCCS Policlinico San MatteoCenter for Inherited Cardiovascular DiseasesTransplant Research AreaPaviaItaly
| | - Franca Scocozza
- Department of Civil EngineeringUniversity of PaviaPaviaItaly
| | - Laura Benedetti
- Department of Public Health, Experimental and Forensic MedicineHuman Anatomy UnitUniversity of PaviaPaviaItaly
| | | | - Maurilio Sampaolesi
- Department of Public Health, Experimental and Forensic MedicineHuman Anatomy UnitUniversity of PaviaPaviaItaly
- Department of Development and RegenerationTranslational CardiomyologyKU LeuvenLeuvenBelgium
| | - Gabriella Cusella
- Department of Public Health, Experimental and Forensic MedicineHuman Anatomy UnitUniversity of PaviaPaviaItaly
| | | | - Gabriele Ceccarelli
- Department of Public Health, Experimental and Forensic MedicineHuman Anatomy UnitUniversity of PaviaPaviaItaly
| | - Michele Conti
- Department of Civil EngineeringUniversity of PaviaPaviaItaly
| |
Collapse
|
28
|
Samanipour R, Tahmooressi H, Rezaei Nejad H, Hirano M, Shin SR, Hoorfar M. A review on 3D printing functional brain model. BIOMICROFLUIDICS 2022; 16:011501. [PMID: 35145569 PMCID: PMC8816519 DOI: 10.1063/5.0074631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/31/2021] [Indexed: 05/08/2023]
Abstract
Modern neuroscience increasingly relies on 3D models to study neural circuitry, nerve regeneration, and neural disease. Several different biofabrication approaches have been explored to create 3D neural tissue model structures. Among them, 3D bioprinting has shown to have great potential to emerge as a high-throughput/high precision biofabrication strategy that can address the growing need for 3D neural models. Here, we have reviewed the design principles for neural tissue engineering. The main challenge to adapt printing technologies for biofabrication of neural tissue models is the development of neural bioink, i.e., a biomaterial with printability and gelation properties and also suitable for neural tissue culture. This review shines light on a vast range of biomaterials as well as the fundamentals of 3D neural tissue printing. Also, advances in 3D bioprinting technologies are reviewed especially for bioprinted neural models. Finally, the techniques used to evaluate the fabricated 2D and 3D neural models are discussed and compared in terms of feasibility and functionality.
Collapse
Affiliation(s)
| | - Hamed Tahmooressi
- Department of Mechanical Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Hojatollah Rezaei Nejad
- Department of Electrical and Computer Engineering, Tufts University, 161 College Avenue, Medford, Massachusetts 02155, USA
| | | | - Su-Royn Shin
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, USA
- Authors to whom correspondence should be addressed: and
| | - Mina Hoorfar
- Faculty of Engineering, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
29
|
Abstract
Tissue engineering or tissue reconstruction/repair/regeneration may be considered as a guiding strategy in oral and maxillofacial surgery, as well as in endodontics, orthodontics, periodontics, and daily clinical practice. A wide range of techniques has been developed over the past years, from tissue grafts to the more recent and innovative regenerative procedures. Continuous research in the field of natural and artificial materials and biomaterials, as well as in advanced scaffold design strategies has been carried out. The focus has also been on various growth factors involved in dental tissue repair or reconstruction. Benefiting from the recent literature, this review paper illustrates current innovative strategies and technological approaches in oral and maxillofacial tissue engineering, trying to offer some information regarding the available scientific data and practical applications. After introducing tissue engineering aspects, an overview on additive manufacturing technologies will be provided, with a focus on the applications of superparamagnetic iron oxide nanoparticles in the biomedical field. The potential applications of magnetic fields and magnetic devices on the acceleration of orthodontic tooth movement will be analysed.
Collapse
|
30
|
Tharakan S, Khondkar S, Ilyas A. Bioprinting of Stem Cells in Multimaterial Scaffolds and Their Applications in Bone Tissue Engineering. SENSORS (BASEL, SWITZERLAND) 2021; 21:7477. [PMID: 34833553 PMCID: PMC8618842 DOI: 10.3390/s21227477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
Bioprinting stem cells into three-dimensional (3D) scaffolds has emerged as a new avenue for regenerative medicine, bone tissue engineering, and biosensor manufacturing in recent years. Mesenchymal stem cells, such as adipose-derived and bone-marrow-derived stem cells, are capable of multipotent differentiation in a 3D culture. The use of different printing methods results in varying effects on the bioprinted stem cells with the appearance of no general adverse effects. Specifically, extrusion, inkjet, and laser-assisted bioprinting are three methods that impact stem cell viability, proliferation, and differentiation potential. Each printing method confers advantages and disadvantages that directly influence cellular behavior. Additionally, the acquisition of 3D bioprinters has become more prominent with innovative technology and affordability. With accessible technology, custom 3D bioprinters with capabilities to print high-performance bioinks are used for biosensor fabrication. Such 3D printed biosensors are used to control conductivity and electrical transmission in physiological environments. Once printed, the scaffolds containing the aforementioned stem cells have a significant impact on cellular behavior and differentiation. Natural polymer hydrogels and natural composites can impact osteogenic differentiation with some inducing chondrogenesis. Further studies have shown enhanced osteogenesis using cell-laden scaffolds in vivo. Furthermore, selective use of biomaterials can directly influence cell fate and the quantity of osteogenesis. This review evaluates the impact of extrusion, inkjet, and laser-assisted bioprinting on adipose-derived and bone-marrow-derived stem cells along with the effect of incorporating these stem cells into natural and composite biomaterials.
Collapse
Affiliation(s)
- Shebin Tharakan
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA; (S.T.); (S.K.)
- New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Shams Khondkar
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA; (S.T.); (S.K.)
- Department of Bioengineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Azhar Ilyas
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA; (S.T.); (S.K.)
- Department of Electrical and Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
31
|
Zhang Q, Bosch-Rué È, Pérez RA, Truskey GA. Biofabrication of tissue engineering vascular systems. APL Bioeng 2021; 5:021507. [PMID: 33981941 PMCID: PMC8106537 DOI: 10.1063/5.0039628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death among persons aged 65 and older in the United States and many other developed countries. Tissue engineered vascular systems (TEVS) can serve as grafts for CVD treatment and be used as in vitro model systems to examine the role of various genetic factors during the CVD progressions. Current focus in the field is to fabricate TEVS that more closely resembles the mechanical properties and extracellular matrix environment of native vessels, which depends heavily on the advance in biofabrication techniques and discovery of novel biomaterials. In this review, we outline the mechanical and biological design requirements of TEVS and explore the history and recent advances in biofabrication methods and biomaterials for tissue engineered blood vessels and microvascular systems with special focus on in vitro applications. In vitro applications of TEVS for disease modeling are discussed.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Èlia Bosch-Rué
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès 08195, Spain
| | - Román A. Pérez
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès 08195, Spain
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
32
|
Guo Z, Dong L, Xia J, Mi S, Sun W. 3D Printing Unique Nanoclay-Incorporated Double-Network Hydrogels for Construction of Complex Tissue Engineering Scaffolds. Adv Healthc Mater 2021; 10:e2100036. [PMID: 33949152 DOI: 10.1002/adhm.202100036] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/26/2021] [Indexed: 12/26/2022]
Abstract
The development of new biomaterial inks with good structural formability and mechanical strength is critical to the fabrication of 3D tissue engineering scaffolds. For extrusion-based 3D printing, the resulting 3D constructs are essentially a sequential assembly of 1D filaments into 3D constructs. Inspired by this process, this paper reports the recent study on 3D printing of nanoclay-incorporated double-network (NIDN) hydrogels for the fabrication of 1D filaments and 3D constructs without extra assistance of support bath. The frequently used "house-of-cards" architectures formed by nanoclay are disintegrated in the NIDN hydrogels. However, nanoclay can act as physical crosslinkers to interact with polymer chains of methacrylated hyaluronic acid (HAMA) and alginate (Alg), which endows the hydrogel precursors with good structural formability. Various straight filaments, spring-like loops, and complex 3D constructs with high shape-fidelity and good mechanical strength are fabricated successfully. In addition, the NIDN hydrogel system can easily be transformed into a new type of magnetic responsive hydrogel used for 3D printing. The NIDN hydrogels also supported the growth of bone marrow mesenchymal stem cells and displayed potential calvarial defect repair functions.
Collapse
Affiliation(s)
- Zhongwei Guo
- Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
- Precision Medicine and Healthcare Research Center Tsinghua‐Berkeley Shenzhen Institute Tsinghua University Shenzhen 518055 China
| | - Lina Dong
- Precision Medicine and Healthcare Research Center Tsinghua‐Berkeley Shenzhen Institute Tsinghua University Shenzhen 518055 China
| | - Jingjing Xia
- Department of Mechanical Engineering and Mechanics Tsinghua University Beijing 100084 China
| | - Shengli Mi
- Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| | - Wei Sun
- Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
- Precision Medicine and Healthcare Research Center Tsinghua‐Berkeley Shenzhen Institute Tsinghua University Shenzhen 518055 China
- Department of Mechanical Engineering and Mechanics Tsinghua University Beijing 100084 China
- Department of Mechanical Engineering Drexel University Philadelphia PA 19104 United States
| |
Collapse
|
33
|
Mahendiran B, Muthusamy S, Sampath S, Jaisankar SN, Popat KC, Selvakumar R, Krishnakumar GS. Recent trends in natural polysaccharide based bioinks for multiscale 3D printing in tissue regeneration: A review. Int J Biol Macromol 2021; 183:564-588. [PMID: 33933542 DOI: 10.1016/j.ijbiomac.2021.04.179] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/21/2023]
Abstract
Biofabrication by three-dimensional (3D) printing has been an attractive technology in harnessing the possibility to print anatomical shaped native tissues with controlled architecture and resolution. 3D printing offers the possibility to reproduce complex microarchitecture of native tissues by printing live cells in a layer by layer deposition to provide a biomimetic structural environment for tissue formation and host tissue integration. Plant based biomaterials derived from green and sustainable sources have represented to emulate native physicochemical and biological cues in order to direct specific cellular response and formation of new tissues through biomolecular recognition patterns. This comprehensive review aims to analyze and identify the most commonly used plant based bioinks for 3D printing applications. An overview on the role of different plant based biomaterial of terrestrial origin (Starch, Nanocellulose and Pectin) and marine origin (Ulvan, Alginate, Fucoidan, Agarose and Carrageenan) used for 3D printing applications are discussed elaborately. Furthermore, this review will also emphasis in the functional aspects of different 3D printers, appropriate printing material, merits and demerits of numerous plant based bioinks in developing 3D printed tissue-like constructs. Additionally, the underlying potential benefits, limitations and future perspectives of plant based bioinks for tissue engineering (TE) applications are also discussed.
Collapse
Affiliation(s)
- Balaji Mahendiran
- Tissue Engineering Laboratory, PSG Institute of Advanced studies, Coimbatore 641004, Tamil Nadu, India
| | - Shalini Muthusamy
- Tissue Engineering Laboratory, PSG Institute of Advanced studies, Coimbatore 641004, Tamil Nadu, India
| | - Sowndarya Sampath
- Department of Polymer Science and Technology, Council of Scientific and Industrial Research-Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | - S N Jaisankar
- Department of Polymer Science and Technology, Council of Scientific and Industrial Research-Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | - Ketul C Popat
- Biomaterial Surface Micro/Nanoengineering Laboratory, Department of Mechanical Engineering/School of Biomedical Engineering/School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado-80523, USA
| | - R Selvakumar
- Tissue Engineering Laboratory, PSG Institute of Advanced studies, Coimbatore 641004, Tamil Nadu, India
| | | |
Collapse
|
34
|
Gupta D, Vashisth P, Bellare J. Multiscale porosity in a 3D printed gellan-gelatin composite for bone tissue engineering. Biomed Mater 2021; 16. [PMID: 33761468 DOI: 10.1088/1748-605x/abf1a7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/24/2021] [Indexed: 01/29/2023]
Abstract
The aim of this work was to develop a complex-shaped gelatin-gellan composite scaffold with multiscale porosity using a combination of cryogenic 3D printing and lyophilization for bone tissue engineering. Cryogenic 3D printing was used to fabricate a low-concentration composite of complex-shaped macroporous gelatin-gellan structures with a pore size of 919 ± 89 µm. This was followed by lyophilization to introduce micropores of size 20-250 µm and nanometre-level surface functionalities, thus achieving a hierarchical porous structure. These multiscale porous scaffolds (GMu) were compared with two other types of scaffolds having only microporosity (GMi) and macroporosity (GMa) with regard to their physical andin vitrobiological properties. GMu scaffolds were found to be better than GMi and GMa in terms of swelling percentage, degradation rate, uniform pore distribution, cellular infiltration, attachment, proliferation, protein generation and mineralization. In conclusion, we have developed a controlled hierarchical bone-like structure, biomimicking natural bone, together with a reproducible process of manufacture by coupling soft hydrogel 3D printing with lyophilization. This enables the development of complex-shaped patient-specific 3D printed hydrogel scaffolds with enhanced performancein vitroand great potential in the fields of tissue engineering, bioprinting and regenerative medicine.
Collapse
Affiliation(s)
- Deepak Gupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Priya Vashisth
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,Tata Centre for Technology and Design, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,Wadhwani Research Centre for Bioengineering (WRCB), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
35
|
Zhang J, Wehrle E, Rubert M, Müller R. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. Int J Mol Sci 2021; 22:ijms22083971. [PMID: 33921417 PMCID: PMC8069718 DOI: 10.3390/ijms22083971] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
The field of tissue engineering has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes for regenerative medicine and pharmaceutical research. Conventional scaffold-based approaches are limited in their capacity to produce constructs with the functionality and complexity of native tissue. Three-dimensional (3D) bioprinting offers exciting prospects for scaffolds fabrication, as it allows precise placement of cells, biochemical factors, and biomaterials in a layer-by-layer process. Compared with traditional scaffold fabrication approaches, 3D bioprinting is better to mimic the complex microstructures of biological tissues and accurately control the distribution of cells. Here, we describe recent technological advances in bio-fabrication focusing on 3D bioprinting processes for tissue engineering from data processing to bioprinting, mainly inkjet, laser, and extrusion-based technique. We then review the associated bioink formulation for 3D bioprinting of human tissues, including biomaterials, cells, and growth factors selection. The key bioink properties for successful bioprinting of human tissue were summarized. After bioprinting, the cells are generally devoid of any exposure to fluid mechanical cues, such as fluid shear stress, tension, and compression, which are crucial for tissue development and function in health and disease. The bioreactor can serve as a simulator to aid in the development of engineering human tissues from in vitro maturation of 3D cell-laden scaffolds. We then describe some of the most common bioreactors found in the engineering of several functional tissues, such as bone, cartilage, and cardiovascular applications. In the end, we conclude with a brief insight into present limitations and future developments on the application of 3D bioprinting and bioreactor systems for engineering human tissue.
Collapse
|
36
|
Maturavongsadit P, Narayanan LK, Chansoria P, Shirwaiker R, Benhabbour SR. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation. ACS APPLIED BIO MATERIALS 2021; 4:2342-2353. [PMID: 35014355 DOI: 10.1021/acsabm.0c01108] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
3D bioprinting has recently emerged as a very useful tool in tissue engineering and regenerative medicine. However, developing suitable bioinks to fabricate specific tissue constructs remains a challenging task. Herein, we report on a nanocellulose/chitosan-based bioink, which is compatible with a 3D extrusion-based bioprinting technology, to design and engineer constructs for bone tissue engineering and regeneration applications. Bioinks were prepared using thermogelling chitosan, glycerophosphate, hydroxyethyl cellulose, and cellulose nanocrystals (CNCs). Formulations were optimized by varying the concentrations of glycerophosphate (80-300 mM), hydroxyethyl cellulose (0-0.5 mg/mL), and CNCs (0-2% w/v) to promote fast gelation kinetics (<7 s) at 37 °C and retain the shape integrity of constructs post 3D bioprinting. We investigated the effect of CNCs and pre-osteoblast cells (MC3T3-E1) on the rheological properties of bioinks, bioink printability, and mechanical properties of bioprinted scaffolds. We demonstrate that the addition of CNCs and cells (5 million cells/mL) significantly improved the viscosity of bioinks and the mechanical properties of chitosan scaffolds post-fabrication. The bioinks were biocompatible and printable at an optimized range of printing pressures (12-20 kPa) that did not compromise cell viability. The presence of CNCs promoted greater osteogenesis of MC3T3-E1 cells in chitosan scaffolds as shown by the upregulation of alkaline phosphatase activity, higher calcium mineralization, and extracellular matrix formation. The versatility of this CNCs-incorporated chitosan hydrogel makes it attractive as a bioink for 3D bioprinting to engineer scaffolds for bone tissue engineering and other therapeutic applications.
Collapse
Affiliation(s)
- Panita Maturavongsadit
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lokesh Karthik Narayanan
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Department of Industrial and Manufacturing Engineering, North Dakota State University, Fargo, North Dakota 58105, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Parth Chansoria
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Rohan Shirwaiker
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States.,Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - S Rahima Benhabbour
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States.,Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
37
|
Shiwarski DJ, Hudson AR, Tashman JW, Feinberg AW. Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL Bioeng 2021; 5:010904. [PMID: 33644626 PMCID: PMC7889293 DOI: 10.1063/5.0032777] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
In tissue engineering, an unresolved challenge is how to build complex 3D scaffolds in order to recreate the structure and function of human tissues and organs. Additive manufacturing techniques, such as 3D bioprinting, have the potential to build biological material with unprecedented spatial control; however, printing soft biological materials in air often results in poor fidelity. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) is an embedded printing approach that solves this problem by extruding bioinks within a yield-stress support bath that holds the bioinks in place until cured. In this Perspective, we discuss the challenges of 3D printing soft and liquid-like bioinks and the emergence for FRESH and related embedded printing techniques as a solution. This includes the development of FRESH and embedded 3D printing within the bioprinting field and the rapid growth in adoption, as well as the advantages of FRESH printing for biofabrication and the new research results this has enabled. Specific focus is on the customizability of the FRESH printing technique where the chemical composition of the yield-stress support bath and aqueous phase crosslinker can all be tailored for printing a wide range of bioinks in complex 3D structures. Finally, we look ahead at the future of FRESH printing, discussing both the challenges and the opportunities that we see as the biofabrication field develops.
Collapse
Affiliation(s)
- Daniel J. Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Andrew R. Hudson
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Joshua W. Tashman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
38
|
Cooke ME, Rosenzweig DH. The rheology of direct and suspended extrusion bioprinting. APL Bioeng 2021; 5:011502. [PMID: 33564740 PMCID: PMC7864677 DOI: 10.1063/5.0031475] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Bioprinting is a tool increasingly used in tissue engineering laboratories around the world. As an extension to classic tissue engineering, it enables high levels of control over the spatial deposition of cells, materials, and other factors. It is a field with huge promise for the production of implantable tissues and even organs, but the availability of functional bioinks is a barrier to success. Extrusion bioprinting is the most commonly used technique, where high-viscosity solutions of materials and cells are required to ensure good shape fidelity of the printed tissue construct. This is contradictory to hydrogels used in tissue engineering, which are generally of low viscosity prior to cross-linking to ensure cell viability, making them not directly translatable to bioprinting. This review provides an overview of the important rheological parameters for bioinks and methods to assess printability, as well as the effect of bioink rheology on cell viability. Developments over the last five years in bioink formulations and the use of suspended printing to overcome rheological limitations are then discussed.
Collapse
|
39
|
Wang Y, Guo Y, Wei Q, Li X, Ji K, Zhang K. Current researches on design and manufacture of biopolymer-based osteochondral biomimetic scaffolds. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00119-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Aveic S, Craveiro RB, Wolf M, Fischer H. Current Trends in In Vitro Modeling to Mimic Cellular Crosstalk in Periodontal Tissue. Adv Healthc Mater 2021; 10:e2001269. [PMID: 33191670 PMCID: PMC11469331 DOI: 10.1002/adhm.202001269] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Clinical evidence indicates that in physiological and therapeutic conditions a continuous remodeling of the tooth root cementum and the periodontal apparatus is required to maintain tissue strength, to prevent damage, and to secure teeth anchorage. Within the tooth's surrounding tissues, tooth root cementum and the periodontal ligament are the key regulators of a functional tissue homeostasis. While the root cementum anchors the periodontal fibers to the tooth root, the periodontal ligament itself is the key regulator of tissue resorption, the remodeling process, and mechanical signal transduction. Thus, a balanced crosstalk of both tissues is mandatory for maintaining the homeostasis of this complex system. However, the mechanobiological mechanisms that shape the remodeling process and the interaction between the tissues are largely unknown. In recent years, numerous 2D and 3D in vitro models have sought to mimic the physiological and pathophysiological conditions of periodontal tissue. They have been proposed to unravel the underlying nature of the cell-cell and the cell-extracellular matrix interactions. The present review provides an overview of recent in vitro models and relevant biomaterials used to enhance the understanding of periodontal crosstalk and aims to provide a scientific basis for advanced regenerative strategies.
Collapse
Affiliation(s)
- Sanja Aveic
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalAachen52074Germany
- Neuroblastoma LaboratoryPediatric Research Institute Fondazione Città della SperanzaPadova35127Italy
| | | | - Michael Wolf
- Department of OrthodonticsRWTH Aachen University HospitalAachen52074Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalAachen52074Germany
| |
Collapse
|
41
|
Matichescu A, Ardelean LC, Rusu LC, Craciun D, Bratu EA, Babucea M, Leretter M. Advanced Biomaterials and Techniques for Oral Tissue Engineering and Regeneration-A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5303. [PMID: 33238625 PMCID: PMC7700200 DOI: 10.3390/ma13225303] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
The reconstruction or repair of oral and maxillofacial functionalities and aesthetics is a priority for patients affected by tooth loss, congenital defects, trauma deformities, or various dental diseases. Therefore, in dental medicine, tissue reconstruction represents a major interest in oral and maxillofacial surgery, periodontics, orthodontics, endodontics, and even daily clinical practice. The current clinical approaches involve a vast array of techniques ranging from the traditional use of tissue grafts to the most innovative regenerative procedures, such as tissue engineering. In recent decades, a wide range of both artificial and natural biomaterials and scaffolds, genes, stem cells isolated from the mouth area (dental follicle, deciduous teeth, periodontal ligament, dental pulp, salivary glands, and adipose tissue), and various growth factors have been tested in tissue engineering approaches in dentistry, with many being proven successful. However, to fully eliminate the problems of traditional bone and tissue reconstruction in dentistry, continuous research is needed. Based on a recent literature review, this paper creates a picture of current innovative strategies applying dental stem cells for tissue regeneration in different dental fields and maxillofacial surgery, and offers detailed information regarding the available scientific data and practical applications.
Collapse
Affiliation(s)
- Anamaria Matichescu
- Department of Preventive Dentistry, Community and Oral Health, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Lavinia Cosmina Ardelean
- Department of Technology of Materials and Devices in Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Laura-Cristina Rusu
- Department of Oral Pathology, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.-C.R.); (D.C.); (M.B.)
| | - Dragos Craciun
- Department of Oral Pathology, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.-C.R.); (D.C.); (M.B.)
| | - Emanuel Adrian Bratu
- Department of Implant Supported Restorations, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Marius Babucea
- Department of Oral Pathology, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.-C.R.); (D.C.); (M.B.)
| | - Marius Leretter
- Department of Prosthodontics, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania;
| |
Collapse
|
42
|
Gu Y, Schwarz B, Forget A, Barbero A, Martin I, Shastri VP. Advanced Bioink for 3D Bioprinting of Complex Free-Standing Structures with High Stiffness. Bioengineering (Basel) 2020; 7:E141. [PMID: 33171883 PMCID: PMC7711998 DOI: 10.3390/bioengineering7040141] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
One of the challenges in 3D-bioprinting is the realization of complex, volumetrically defined structures, that are also anatomically accurate and relevant. Towards this end, in this study we report the development and validation of a carboxylated agarose (CA)-based bioink that is amenable to 3D printing of free-standing structures with high stiffness at physiological temperature using microextrusion printing without the need for a fugitive phase or post-processing or support material (FRESH). By blending CA with negligible amounts of native agarose (NA) a bioink formulation (CANA) which is suitable for printing with nozzles of varying internal diameters under ideal pneumatic pressure was developed. The ability of the CANA ink to exhibit reproducible sol-gel transition at physiological temperature of 37 °C was established through rigorous characterization of the thermal behavior, and rheological properties. Using a customized bioprinter equipped with temperature-controlled nozzle and print bed, high-aspect ratio objects possessing anatomically-relevant curvature and architecture have been printed with high print reproducibility and dimension fidelity. Objects printed with CANA bioink were found to be structurally stable over a wide temperature range of 4 °C to 37 °C, and exhibited robust layer-to-layer bonding and integration, with evenly stratified structures, and a porous interior that is conducive to fluid transport. This exceptional layer-to-layer fusion (bonding) afforded by the CANA bioink during the print obviated the need for post-processing to stabilize printed structures. As a result, this novel CANA bioink is capable of yielding large (5-10 mm tall) free-standing objects ranging from simple tall cylinders, hemispheres, bifurcated 'Y'-shaped and 'S'-shaped hollow tubes, and cylinders with compartments without the need for support and/or a fugitive phase. Studies with human nasal chondrocytes showed that the CANA bioink is amenable to the incorporation of high density of cells (30 million/mL) without impact on printability. Furthermore, printed cells showed high viability and underwent mitosis which is necessary for promoting remodeling processes. The ability to print complex structures with high cell densities, combined with excellent cell and tissue biocompatibility of CA bodes well for the exploitation of CANA bioinks as a versatile 3D-bioprinting platform for the clinical translation of regenerative paradigms.
Collapse
Affiliation(s)
- Yawei Gu
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; (Y.G.); (B.S.); (A.F.)
| | - Benjamin Schwarz
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; (Y.G.); (B.S.); (A.F.)
| | - Aurelien Forget
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; (Y.G.); (B.S.); (A.F.)
| | - Andrea Barbero
- Tissue Engineering Laboratory, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (A.B.); (I.M.)
| | - Ivan Martin
- Tissue Engineering Laboratory, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (A.B.); (I.M.)
| | - V. Prasad Shastri
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; (Y.G.); (B.S.); (A.F.)
| |
Collapse
|
43
|
Abstract
The field of tissue engineering has advanced over the past decade, but the largest impact on human health should be achieved with the transition of engineered solid organs to the clinic. The number of patients suffering from solid organ disease continues to increase, with over 100 000 patients on the U.S. national waitlist and approximately 730 000 deaths in the United States resulting from end-stage organ disease annually. While flat, tubular, and hollow nontubular engineered organs have already been implanted in patients, in vitro formation of a fully functional solid organ at a translatable scale has not yet been achieved. Thus, one major goal is to bioengineer complex, solid organs for transplantation, composed of patient-specific cells. Among the myriad of approaches attempted to engineer solid organs, 3D bioprinting offers unmatched potential. This review highlights the structural complexity which must be engineered at nano-, micro-, and mesostructural scales to enable organ function. We showcase key advances in bioprinting solid organs with complex vascular networks and functioning microstructures, advances in biomaterials science that have enabled this progress, the regulatory hurdles the field has yet to overcome, and cutting edge technologies that bring us closer to the promise of engineered solid organs.
Collapse
Affiliation(s)
- Adam M Jorgensen
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
44
|
Adhikari J, Roy A, Das A, Ghosh M, Thomas S, Sinha A, Kim J, Saha P. Effects of Processing Parameters of 3D Bioprinting on the Cellular Activity of Bioinks. Macromol Biosci 2020; 21:e2000179. [PMID: 33017096 DOI: 10.1002/mabi.202000179] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
In this review, few established cell printing techniques along with their parameters that affect the cell viability during bioprinting are considered. 3D bioprinting is developed on the principle of additive manufacturing using biomaterial inks and bioinks. Different bioprinting methods impose few challenges on cell printing such as shear stress, mechanical impact, heat, laser radiation, etc., which eventually lead to cell death. These factors also cause alteration of cells phenotype, recoverable or irrecoverable damages to the cells. Such challenges are not addressed in detail in the literature and scientific reports. Hence, this review presents a detailed discussion of several cellular bioprinting methods and their process-related impacts on cell viability, followed by probable mitigation techniques. Most of the printable bioinks encompass cells within hydrogel as scaffold material to avoid the direct exposure of the harsh printing environment on cells. However, the advantages of printing with scaffold-free cellular aggregates over cell-laden hydrogels have emerged very recently. Henceforth, optimal and favorable crosslinking mechanisms providing structural rigidity to the cell-laden printed constructs with ideal cell differentiation and proliferation, are discussed for improved understanding of cell printing methods for the future of organ printing and transplantation.
Collapse
Affiliation(s)
- Jaideep Adhikari
- J. Adhikari, A. Das, Dr. A. Sinha, M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Avinava Roy
- A. Roy, Dr. M. Ghosh, Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Anindya Das
- J. Adhikari, A. Das, Dr. A. Sinha, M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Manojit Ghosh
- A. Roy, Dr. M. Ghosh, Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Sabu Thomas
- Prof. S. Thomas, School of Chemical Sciences, MG University, Kottayam, Kerala, 686560, India
| | - Arijit Sinha
- J. Adhikari, A. Das, Dr. A. Sinha, M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Jinku Kim
- Prof. J. Kim, Department of Bio and Chemical Engineering, Hongik University, Sejong, 30016, South Korea
| | - Prosenjit Saha
- Dr. P. Saha, Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, Arch Water Front Building, Salt Lake City, Kolkata, 700091, India
| |
Collapse
|
45
|
Li Y, Rehbock C, Nachev M, Stamm J, Sures B, Blaeser A, Barcikowski S. Matrix-specific mechanism of Fe ion release from laser-generated 3D-printable nanoparticle-polymer composites and their protein adsorption properties. NANOTECHNOLOGY 2020; 31:405703. [PMID: 32434157 DOI: 10.1088/1361-6528/ab94da] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanocomposites have been widely applied in medical device fabrication and tissue-engineering applications. In this context, the release of metal ions as well as protein adsorption capacity are hypothesized to be two key processes directing nanocomposite-cell interactions. The objective of this study is to understand the polymer-matrix effects on ion release kinetics and their relations with protein adsorption. Laser ablation in macromolecule solutions was employed for synthesizing Au and Fe nanoparticle-loaded nanocomposites based on thermoplastic polyurethane (TPU) and alginate. Confocal microscopy revealed a three-dimensional homogeneous dispersion of laser-generated nanoparticles in the polymer. The physicochemical properties revealed a pronounced dependence upon embedding of Fe and Au nanoparticles in both polymer matrices. Interestingly, the total Fe ion concentration released from alginate gels under static conditions decreased with increasing mass loadings, a phenomenon only found in the Fe-alginate system and not in the Cu/Zn-alginate and Fe-TPU control system (where the effects were proportioonal to the nanoparticle load). A detailed mechanistic examination of iron the ion release process revealed that it is probably not the redox potential of metals and diffusion of metal ions alone, but also the solubility of nano-metal oxides and affinity of metal ions for alginate that lead to the special release behaviors of iron ions from alginate gels. The amount of adsorbed bovine serum albumin (BSA) and collagen I on the surface of both the alginate and TPU composites was significantly increased in contrast to the unloaded control polymers and could be correlated with the concentration of released Fe ions and the porosity of composites, but was independent of the global surface charge. Interestingly, these effects were already highly pronounced at minute loadings with Fe nanoparticles down to 200 ppm. Moreover, the laser-generated Fe or Au nanoparticle-loaded alginate composites were shown to be a suitable bioink for 3D printing. These findings are potentially relevant for ion-sensitive bio-responses in cell differentiation, endothelisation, vascularisation, or wound healing.
Collapse
Affiliation(s)
- Yaya Li
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 5-7, Essen 45141, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini A. Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002931. [PMID: 32734720 PMCID: PMC7754762 DOI: 10.1002/smll.202002931] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Indexed: 05/15/2023]
Abstract
Three-dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as tissue models. To develop biomimetic and sustainable 3D constructs, several important processing aspects need to be considered, among which crosslinking is most important for achieving desirable biomechanical stability of printed structures, which is reflected in subsequent behavior and use of these constructs. In this work, crosslinking methods used in 3D bioprinting studies are reviewed, parameters that affect bioink chemistry are discussed, and the potential toward improving crosslinking outcomes and construct performance is highlighted. Furthermore, current challenges and future prospects are discussed. Due to the direct connection between crosslinking methods and properties of 3D bioprinted structures, this Review can provide a basis for developing necessary modifications to the design and manufacturing process of advanced tissue-like constructs in future.
Collapse
Affiliation(s)
- Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics, California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics, California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California, USA
| |
Collapse
|
47
|
Mancha Sánchez E, Gómez-Blanco JC, López Nieto E, Casado JG, Macías-García A, Díaz Díez MA, Carrasco-Amador JP, Torrejón Martín D, Sánchez-Margallo FM, Pagador JB. Hydrogels for Bioprinting: A Systematic Review of Hydrogels Synthesis, Bioprinting Parameters, and Bioprinted Structures Behavior. Front Bioeng Biotechnol 2020; 8:776. [PMID: 32850697 PMCID: PMC7424022 DOI: 10.3389/fbioe.2020.00776] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
Nowadays, bioprinting is rapidly evolving and hydrogels are a key component for its success. In this sense, synthesis of hydrogels, as well as bioprinting process, and cross-linking of bioinks represent different challenges for the scientific community. A set of unified criteria and a common framework are missing, so multidisciplinary research teams might not efficiently share the advances and limitations of bioprinting. Although multiple combinations of materials and proportions have been used for several applications, it is still unclear the relationship between good printability of hydrogels and better medical/clinical behavior of bioprinted structures. For this reason, a PRISMA methodology was conducted in this review. Thus, 1,774 papers were retrieved from PUBMED, WOS, and SCOPUS databases. After selection, 118 papers were analyzed to extract information about materials, hydrogel synthesis, bioprinting process, and tests performed on bioprinted structures. The aim of this systematic review is to analyze materials used and their influence on the bioprinting parameters that ultimately generate tridimensional structures. Furthermore, a comparison of mechanical and cellular behavior of those bioprinted structures is presented. Finally, some conclusions and recommendations are exposed to improve reproducibility and facilitate a fair comparison of results.
Collapse
Affiliation(s)
- Enrique Mancha Sánchez
- Bioengineering and Health Technologies Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| | - J. Carlos Gómez-Blanco
- Bioengineering and Health Technologies Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| | - Esther López Nieto
- Stem Cells Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| | - Javier G. Casado
- Stem Cells Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| | | | - María A. Díaz Díez
- School of Industrial Engineering, University of Extremadura, Badajoz, Spain
| | | | | | | | - J. Blas Pagador
- Bioengineering and Health Technologies Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| |
Collapse
|
48
|
Bioprinting of Alginate-Encapsulated Pre-osteoblasts in PLGA/β-TCP Scaffolds Enhances Cell Retention but Impairs Osteogenic Differentiation Compared to Cell Seeding after 3D-Printing. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Prendergast ME, Burdick JA. Recent Advances in Enabling Technologies in 3D Printing for Precision Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902516. [PMID: 31512289 DOI: 10.1002/adma.201902516] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Advances in areas such as data analytics, genomics, and imaging have revealed individual patient complexities and exposed the inherent limitations of generic therapies for patient treatment. These observations have also fueled the development of precision medicine approaches, where therapies are tailored for the individual rather than the broad patient population. 3D printing is a field that intersects with precision medicine through the design of precision implants with patient-directed shapes, structures, and materials or for the development of patient-specific in vitro models that can be used for screening precision therapeutics. Toward their success, advances in 3D printing and biofabrication technologies are needed with enhanced resolution, complexity, reproducibility, and speed and that encompass a broad range of cells and materials. The overall goal of this progress report is to highlight recent advances in 3D printing technologies that are helping to enable advances important in precision medicine.
Collapse
Affiliation(s)
- Margaret E Prendergast
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, 19104, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, 19104, PA, USA
| |
Collapse
|
50
|
Afghah F, Altunbek M, Dikyol C, Koc B. Preparation and characterization of nanoclay-hydrogel composite support-bath for bioprinting of complex structures. Sci Rep 2020; 10:5257. [PMID: 32210259 PMCID: PMC7093553 DOI: 10.1038/s41598-020-61606-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/26/2020] [Indexed: 11/25/2022] Open
Abstract
Three-dimensional bioprinting of cell-laden hydrogels in a sacrificial support-bath has recently emerged as a potential solution for fabricating complex biological structures. Physical properties of the support-bath strongly influence the bioprinting process and the outcome of the fabricated constructs. In this study, we reported the application of a composite Pluronic-nanoclay support-bath including calcium ions as the crosslinking agent for bioprinting of cell-laden alginate-based hydrogels. By tuning the rheological properties, a shear-thinning composite support-bath with fast self-recovery behavior was yielded, which allowed continuous printing of complex and large-scale structures. The printed structures were easily and efficiently harvested from the support-bath without disturbing their shape fidelity. Moreover, the results showed that support-bath assisted bioprinting process did not influence the viability of cells encapsulated within hydrogel. This study demonstrates that Pluronic-nanoclay support-bath can be utilized for bioprinting of complex, cell-laden constructs for vascular and other tissue engineering applications.
Collapse
Affiliation(s)
- Ferdows Afghah
- Sabanci Nanotechnology Research and Application Center, Istanbul, 34956, Turkey
- Sabanci University Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey
| | - Mine Altunbek
- Sabanci Nanotechnology Research and Application Center, Istanbul, 34956, Turkey
| | - Caner Dikyol
- Sabanci Nanotechnology Research and Application Center, Istanbul, 34956, Turkey
- Sabanci University Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey
| | - Bahattin Koc
- Sabanci Nanotechnology Research and Application Center, Istanbul, 34956, Turkey.
- Sabanci University Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey.
- Sabanci University Integrated Manufacturing Technologies Research and Application Center, Istanbul, 34906, Turkey.
| |
Collapse
|