1
|
Ko YG, Smith Callahan LA, Ma PX. Biodegradable Honeycomb-Mimic Scaffolds Consisting of Nanofibrous Walls. Macromol Biosci 2024; 24:e2300540. [PMID: 38456554 DOI: 10.1002/mabi.202300540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/17/2024] [Indexed: 03/09/2024]
Abstract
The scaffold is a porous three-dimensional (3D) material that supports cell growth and tissue regeneration. Such 3D structures should be generated with simple techniques and nontoxic ingredients to mimic bio-environment and facilitate tissue regeneration. In this work, simple but powerful techniques are demonstrated for the fabrication of lamellar and honeycomb-mimic scaffolds with poly(L-lactic acid). The honeycomb-mimic scaffolds with tunable pore size ranging from 70 to 160 µm are fabricated by crystal needle-guided thermally induced phase separation in a directional freezing apparatus. The compressive modulus of the honeycomb-mimic scaffold is ≈4 times higher than that of scaffold with randomly oriented pore structure. The fabricated honeycomb-mimic scaffold exhibits a hierarchical structure from nanofibers to micro-/macro-tubular structures. Pre-osteoblast MC3T3-E1 cells cultured on the honeycomb-mimic nanofibrous scaffolds exhibit an enhanced osteoblastic phenotype, with elevated expression levels of osteogenic marker genes, than those on either porous lamellar scaffolds or porous scaffolds with randomly oriented pores. The advanced techniques for the fabrication of the honeycomb-mimic structure may potentially be used for a wide variety of advanced functional materials.
Collapse
Affiliation(s)
- Young Gun Ko
- Department of Chemical Engineering and Materials Science, Sangmyung University, Hongjimun 2-gil 20, Jongno-gu, Seoul, 03016, Republic of Korea
| | | | - Peter X Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Allahyari Z, Gaborski TR. Engineering cell-substrate interactions on porous membranes for microphysiological systems. LAB ON A CHIP 2022; 22:2080-2089. [PMID: 35593461 DOI: 10.1039/d2lc00114d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microphysiological systems are now widely used to recapitulate physiological and pathological microenvironments in order to study and understand a variety of cellular processes as well as drug delivery and stem cell differentiation. Central to many of these systems are porous membranes that enable tissue barrier formation as well as compartmentalization while still facilitating small molecule diffusion, cellular transmigration and cell-cell communication. The role or impact of porous membranes on the cells cultured upon them has not been widely studied or reviewed. Although many chemical and physical substrate characteristics have been shown to be effective in controlling and directing cellular behavior, the influence of pore characteristics and the ability to engineer porous membranes to influence these responses is not fully understood. In this mini-review, we show that many studies point to a multiphasic cell-substrate response, where increasing pore sizes and pore-pore spacing generally leads to improved cell-substrate interactions. However, the smallest pores in the nano-scale sometimes promote the strongest cell-substrate interactions, while the very largest micron-scale pores hinder cell-substrate interactions. This synopsis provides an insight into the importance of membrane pores in controlling cellular responses, and may help with the design and utilization of porous membranes for induction of desired cell processes in the development of biomimetic platforms.
Collapse
Affiliation(s)
- Zahra Allahyari
- Department of Microsystems Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA.
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA
| | - Thomas R Gaborski
- Department of Microsystems Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA.
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA
| |
Collapse
|
3
|
Wu X, Li L, Wang L, Lei Z, Yang F, Liu R, Wang Y, Peng K, Wang Z. Cell spreading behaviors on hybrid nanopillar and nanohole arrays. NANOTECHNOLOGY 2021; 33:045101. [PMID: 34087811 DOI: 10.1088/1361-6528/ac084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Although nanopillars (NPs) provide a promising tool for capturing tumor cells, the effect of mixing NPs with other nanopatterns on cell behavior remains to be further studied. In this paper, a method of fabricating silicon nanoscale topographies by combining laser interference lithography with metal assisted chemical etching was introduced to investigate the behaviors and pseudopodia of A549 cells on the topologies. It was found that cells had a limited manner in spreading with small cell areas on the silicon nanopillar (SiNP) arrays, but a good manner in spreading with large cell areas on the silicon nanohole (SiNH) arrays. When on the hybrid SiNP/SiNH arrays, cells had medium cell areas and they arranged orderly along the boundaries of SiNPs and SiNHs, as well as 80% of cells displayed a preference for SiNPs over SiNHs. Furthermore, the lamellipodia and filopodia are dominant in the hybrid SiNP/SiNH and SiNP arrays, respectively, both of them are dominant in the SiNH arrays. In addition, the atomic force acoustic microscopy was also employed to detect the subsurface features of samples. The results suggest that the hybrid SiNP/SiNH arrays have a targeted trap and elongation effect on cells. The findings provide a promising method in designing hybrid nanostructures for efficient tumor cell traps, as well as regulating the cell behaviors and pseudopodia.
Collapse
Affiliation(s)
- Xiaomin Wu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Li Li
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Lu Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Zecheng Lei
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Fan Yang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Ri Liu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Ying Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Kuiqing Peng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zuobin Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| |
Collapse
|
4
|
Gao H, Xiao J, Wei Y, Yang H, Zou F. Manipulating Mesenchymal Stem Cell Differentiation on Nanopattern Constructed through Cell-Mediated Mineralization. ACS APPLIED BIO MATERIALS 2021; 4:5727-5734. [PMID: 35006735 DOI: 10.1021/acsabm.1c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The extracellular matrix microenvironment, including chemical constituents and topological structure, plays key role in regulating the cell behavior, such as adhesion, proliferation, differentiation, apoptosis, etc. Until now, to investigate the relationship between surface texture and cell response, various ordered patterns have been prepared on the surface of different matrixes, whereas almost all these strategies depend on advanced instruments or severe synthesis conditions. Herein, cell-mediated mineralization method has been applied to construct nanopattern on the surface of β-TCP scaffold. The formation process, morphology, and composition of the final pattern were characterized, and a possible mineralization mechanism has been proposed. Moreover, the cell behavior on the nanopattern has been investigated, and the results showed that the mouse bone marrow mesenchyme stem cells (mBMSCs) display good affinity with the nanopattern, which was manifested by the good proliferation and osteogenic differentiation status of cells. The synthetic strategy may shed light to construct advanced topological structures on other matrixes for bone repair.
Collapse
Affiliation(s)
- Huichang Gao
- School of Medicine, South China University of Technology, Guangzhou 510006, China.,National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Jin Xiao
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yingqi Wei
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Hui Yang
- School of Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Fen Zou
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Cheng Y, Zhu S, Pang SW. Directing osteoblastic cell migration on arrays of nanopillars and nanoholes with different aspect ratios. LAB ON A CHIP 2021; 21:2206-2216. [PMID: 33876172 DOI: 10.1039/d1lc00104c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To realize highly directional guidance for cell migration, both micro- and nano-scale topographies were studied to better understand and mimic the complex extracellular matrix environment. Polydimethylsiloxane-based platforms with micro- and nano-topographies were developed to systematically study their guidance effects on cell migration behaviors. Compared to microtopography such as flat surface or grating, nanotopographies such as nanoholes and nanopillars could promote the generation of filopodia and extension of long protrusions with increased migration speed for MC3T3-E1 cells. Although cells on the grating structures showed lower migration speed, more directional cell migration was achieved due to their anisotropic topography compared to nanohole or nanopillar arrays with isotropic structures. To further enhance the cell migration directionality, the nanotopographies were patterned in grating arrangements and the results showed that both nanoholes and nanopillars in grating arrangements introduced more directional cell migration compared to gratings. The effects of physical dimensions of the nanotopographies on cell migration were studied and the results showed that there was less cell elongation and less directional migration of the nanoholes in grating arrangements with increasing depth of nanoholes. However, the nanopillars in grating arrangements showed more cell elongation, more directional migration, and higher migration speed with increasing height of the nanopillars. Platforms with nanopillars in grating arrangements and large height could be used to control cell migration speed and directionality, which could potentially lead to cell sorting and screening.
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Electrical Engineering, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Shuyan Zhu
- Department of Electrical Engineering, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Stella W Pang
- Department of Electrical Engineering, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
6
|
Ye G, Bao F, Zhang X, Song Z, Liao Y, Fei Y, Bunpetch V, Heng BC, Shen W, Liu H, Zhou J, Ouyang H. Nanomaterial-based scaffolds for bone tissue engineering and regeneration. Nanomedicine (Lond) 2020; 15:1995-2017. [PMID: 32812486 DOI: 10.2217/nnm-2020-0112] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The global incidence of bone tissue injuries has been increasing rapidly in recent years, making it imperative to develop suitable bone grafts for facilitating bone tissue regeneration. It has been demonstrated that nanomaterials/nanocomposites scaffolds can more effectively promote new bone tissue formation compared with micromaterials. This may be attributed to their nanoscaled structural and topological features that better mimic the physiological characteristics of natural bone tissue. In this review, we examined the current applications of various nanomaterial/nanocomposite scaffolds and different topological structures for bone tissue engineering, as well as the underlying mechanisms of regeneration. The potential risks and toxicity of nanomaterials will also be critically discussed. Finally, some considerations for the clinical applications of nanomaterials/nanocomposites scaffolds for bone tissue engineering are mentioned.
Collapse
Affiliation(s)
- Guo Ye
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Fangyuan Bao
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xianzhu Zhang
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zhe Song
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Youguo Liao
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Yang Fei
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Varitsara Bunpetch
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Boon Chin Heng
- School of Stomatology, Peking University, Beijing, PR China
| | - Weiliang Shen
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| | - Hua Liu
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| | - Jing Zhou
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| | - Hongwei Ouyang
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| |
Collapse
|
7
|
Zhang K, Xiao X, Wang X, Fan Y, Li X. Topographical patterning: characteristics of current processing techniques, controllable effects on material properties and co-cultured cell fate, updated applications in tissue engineering, and improvement strategies. J Mater Chem B 2019; 7:7090-7109. [PMID: 31702754 DOI: 10.1039/c9tb01682a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Topographical patterning has recently attracted lots of attention in regulating cell fate, understanding the mechanism of cell-microenvironment interactions, and solving the great issues of regenerative medicine. The introduced patterns offer topographical cues that can affect the reconstruction of the cytoskeleton or stimulate cell membrane receptors. Numerous studies have focused on these effects on cell behavior including attachment, migration, proliferation, and differentiation. In this review, five aspects of topographical patterning are discussed: (1) the process of typical micro-/nanotechniques and their advantages and limitations; (2) the effects of patterning on the mechanical properties and surface properties of substrates; (3) the influences of micro-/nanopatterns on the behavior of mesenchymal stem cells, as well as the underlying mechanisms; (4) the application of patterns to solve the issues of targeted organs (e.g., skin, nerves, blood vessels, bones, and heart). In the end, future perspectives that would help promote the efficiency of topographical patterning are proposed.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiongfu Xiao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China and Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
8
|
Hansel C, Crowder SW, Cooper S, Gopal S, João Pardelha da Cruz M, de Oliveira Martins L, Keller D, Rothery S, Becce M, Cass AEG, Bakal C, Chiappini C, Stevens MM. Nanoneedle-Mediated Stimulation of Cell Mechanotransduction Machinery. ACS NANO 2019; 13:2913-2926. [PMID: 30829469 PMCID: PMC6439438 DOI: 10.1021/acsnano.8b06998] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/21/2019] [Indexed: 05/21/2023]
Abstract
Biomaterial substrates can be engineered to present topographical signals to cells which, through interactions between the material and active components of the cell membrane, regulate key cellular processes and guide cell fate decisions. However, targeting mechanoresponsive elements that reside within the intracellular domain is a concept that has only recently emerged. Here, we show that mesoporous silicon nanoneedle arrays interact simultaneously with the cell membrane, cytoskeleton, and nucleus of primary human cells, generating distinct responses at each of these cellular compartments. Specifically, nanoneedles inhibit focal adhesion maturation at the membrane, reduce tension in the cytoskeleton, and lead to remodeling of the nuclear envelope at sites of impingement. The combined changes in actin cytoskeleton assembly, expression and segregation of the nuclear lamina, and localization of Yes-associated protein (YAP) correlate differently from what is canonically observed upon stimulation at the cell membrane, revealing that biophysical cues directed to the intracellular space can generate heretofore unobserved mechanosensory responses. These findings highlight the ability of nanoneedles to study and direct the phenotype of large cell populations simultaneously, through biophysical interactions with multiple mechanoresponsive components.
Collapse
Affiliation(s)
- Catherine
S. Hansel
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Spencer W. Crowder
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Samuel Cooper
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
- Chester Beatty
Laboratories, Institute for Cancer Research, London SW3 6JB, U.K.
| | - Sahana Gopal
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Maria João Pardelha da Cruz
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de
Lisboa, 1649-004 Lisbon, Portugal
| | - Leonardo de Oliveira Martins
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Debora Keller
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stephen Rothery
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michele Becce
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anthony E. G. Cass
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chris Bakal
- Chester Beatty
Laboratories, Institute for Cancer Research, London SW3 6JB, U.K.
| | - Ciro Chiappini
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Molly M. Stevens
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Lim J, Choi A, Kim HW, Yoon H, Park SM, Tsai CHD, Kaneko M, Kim DS. Constrained Adherable Area of Nanotopographic Surfaces Promotes Cell Migration through the Regulation of Focal Adhesion via Focal Adhesion Kinase/Rac1 Activation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14331-14341. [PMID: 29649358 DOI: 10.1021/acsami.7b18954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cell migration is crucial in physiological and pathological processes such as embryonic development and wound healing; such migration is strongly guided by the surrounding nanostructured extracellular matrix. Previous studies have extensively studied the cell migration on anisotropic nanotopographic surfaces; however, only a few studies have reported cell migration on isotropic nanotopographic surfaces. We herein, for the first time, propose a novel concept of adherable area on cell migration using isotropic nanopore surfaces with sufficient nanopore depth by adopting a high aspect ratio. As the pore size of the nanopore surface was controlled to 200, 300, and 400 nm in a fixed center-to-center distance of 480 nm, it produced 86, 68, and 36% of adherable area, respectively, on the fabricated surface. A meticulous investigation of the cell migration in response to changes in the constrained adherable area of the nanotopographic surface showed 1.4-, 1.5-, and 1.6-fold increase in migration speeds and a 1.4-, 2-, and 2.5-fold decrease in the number of focal adhesions as the adherable area was decreased to 86, 68, and 36%, respectively. Furthermore, a strong activation of FAK/Rac1 signaling was observed to be involved in the promoted cell migration. These results suggest that the reduced adherable area promotes cell migration through decreasing the FA formation, which in turn upregulates FAK/Rac1 activation. The findings in this study can be utilized to control the cell migration behaviors, which is a powerful tool in the research fields involving cell migration such as promoting wound healing and tissue repair.
Collapse
Affiliation(s)
- Jiwon Lim
- Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu , Pohang , Gyeongbuk 37673 , Korea
| | - Andrew Choi
- Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu , Pohang , Gyeongbuk 37673 , Korea
| | - Hyung Woo Kim
- Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu , Pohang , Gyeongbuk 37673 , Korea
| | - Hyungjun Yoon
- Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu , Pohang , Gyeongbuk 37673 , Korea
| | - Sang Min Park
- Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu , Pohang , Gyeongbuk 37673 , Korea
| | - Chia-Hung Dylan Tsai
- Department of Mechanical Engineering , Osaka University , 1-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Makoto Kaneko
- Department of Mechanical Engineering , Osaka University , 1-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Dong Sung Kim
- Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu , Pohang , Gyeongbuk 37673 , Korea
| |
Collapse
|
10
|
Sobreiro-Almeida R, Tamaño-Machiavello MN, Carvalho EO, Cordón L, Doria S, Senent L, Correia DM, Ribeiro C, Lanceros-Méndez S, Sabater I Serra R, Gomez Ribelles JL, Sempere A. Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates. Int J Mol Sci 2017; 18:ijms18112391. [PMID: 29137121 PMCID: PMC5713360 DOI: 10.3390/ijms18112391] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/22/2022] Open
Abstract
The aim of this work was to determine the influence of the biomaterial environment on human mesenchymal stem cell (hMSC) fate when cultured in supports with varying topography. Poly(vinylidene fluoride) (PVDF) culture supports were prepared with structures ranging between 2D and 3D, based on PVDF films on which PVDF microspheres were deposited with varying surface density. Maintenance of multipotentiality when cultured in expansion medium was studied by flow cytometry monitoring the expression of characteristic hMSCs markers, and revealed that cells were losing their characteristic surface markers on these supports. Cell morphology was assessed by scanning electron microscopy (SEM). Alkaline phosphatase activity was also assessed after seven days of culture on expansion medium. On the other hand, osteoblastic differentiation was monitored while culturing in osteogenic medium after cells reached confluence. Osteocalcin immunocytochemistry and alizarin red assays were performed. We show that flow cytometry is a suitable technique for the study of the differentiation of hMSC seeded onto biomaterials, giving a quantitative reliable analysis of hMSC-associated markers. We also show that electrosprayed piezoelectric poly(vinylidene fluoride) is a suitable support for tissue engineering purposes, as hMSCs can proliferate, be viable and undergo osteogenic differentiation when chemically stimulated.
Collapse
Affiliation(s)
- R Sobreiro-Almeida
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
| | - M N Tamaño-Machiavello
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - E O Carvalho
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
| | - L Cordón
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain.
| | - S Doria
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - L Senent
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain.
- Hematology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain.
| | - D M Correia
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- Centro/Departamento de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - C Ribeiro
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - S Lanceros-Méndez
- BCMaterials, Parque Científico y Tecnológico de Bizkaia, 48160 Derio, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - R Sabater I Serra
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain.
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain.
| | - J L Gomez Ribelles
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain.
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain.
| | - A Sempere
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain.
- Hematology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain.
| |
Collapse
|
11
|
Cha KJ, Kong SY, Lee JS, Kim HW, Shin JY, La M, Han BW, Kim DS, Kim HJ. Cell density-dependent differential proliferation of neural stem cells on omnidirectional nanopore-arrayed surface. Sci Rep 2017; 7:13077. [PMID: 29026125 PMCID: PMC5638797 DOI: 10.1038/s41598-017-13372-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 09/22/2017] [Indexed: 11/09/2022] Open
Abstract
Recently, the importance of surface nanotopography in the determination of stem cell fate and behavior has been revealed. In the current study, we generated polystyrene cell-culture dishes with an omnidirectional nanopore arrayed surface (ONAS) (diameter: 200 nm, depth: 500 nm, center-to-center distance: 500 nm) and investigated the effects of nanotopography on rat neural stem cells (NSCs). NSCs cultured on ONAS proliferated better than those on the flat surface when cell density was low and showed less spontaneous differentiation during proliferation in the presence of mitogens. Interestingly, NSCs cultured on ONAS at clonal density demonstrated a propensity to generate neurospheres, whereas those on the flat surface migrated out, proliferated as individuals, and spread out to attach to the surface. However, the differential patterns of proliferation were cell density-dependent since the distinct phenomena were lost when cell density was increased. ONAS modulated cytoskeletal reorganization and inhibited formation of focal adhesion, which is generally observed in NSCs grown on flat surfaces. ONAS appeared to reinforce NSC-NSC interaction, restricted individual cell migration and prohibited NSC attachment to the nanopore surface. These data demonstrate that ONAS maintains NSCs as undifferentiated while retaining multipotency and is a better topography for culturing low density NSCs.
Collapse
Affiliation(s)
- Kyoung Je Cha
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31 Hyoja-dong Nam-gu, Pohang, 790-784, South Korea.,Ultimate Fabrication Technology Group, Korea Institute of Industrial Technology (KITECH), Techno sunhwan-ro Yuga-myeon Dalseong-gun, Deagu, 711-880, South Korea
| | - Sun-Young Kong
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong Dongjak-gu, Seoul, 156-756, South Korea
| | - Ji Soo Lee
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong Dongjak-gu, Seoul, 156-756, South Korea
| | - Hyung Woo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31 Hyoja-dong Nam-gu, Pohang, 790-784, South Korea
| | - Jae-Yeon Shin
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong Dongjak-gu, Seoul, 156-756, South Korea
| | - Moonwoo La
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31 Hyoja-dong Nam-gu, Pohang, 790-784, South Korea.,Molds & Dies R&D Group, Korea Institute of Industrial Technology (KITECH), 156 Gaetbeol-ro, Yeonsu-gu, Incheon, 406-840, South Korea
| | - Byung Woo Han
- Department of Biochemistry, College of pharmacy, Seoul National University, San 56-1 Sillim-dong Gwanak-gu, Seoul, 151-742, South Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31 Hyoja-dong Nam-gu, Pohang, 790-784, South Korea.
| | - Hyun-Jung Kim
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong Dongjak-gu, Seoul, 156-756, South Korea.
| |
Collapse
|
12
|
Gencturk E, Mutlu S, Ulgen KO. Advances in microfluidic devices made from thermoplastics used in cell biology and analyses. BIOMICROFLUIDICS 2017; 11:051502. [PMID: 29152025 PMCID: PMC5654984 DOI: 10.1063/1.4998604] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/11/2017] [Indexed: 05/10/2023]
Abstract
Silicon and glass were the main fabrication materials of microfluidic devices, however, plastics are on the rise in the past few years. Thermoplastic materials have recently been used to fabricate microfluidic platforms to perform experiments on cellular studies or environmental monitoring, with low cost disposable devices. This review describes the present state of the development and applications of microfluidic systems used in cell biology and analyses since the year 2000. Cultivation, separation/isolation, detection and analysis, and reaction studies are extensively discussed, considering only microorganisms (bacteria, yeast, fungi, zebra fish, etc.) and mammalian cell related studies in the microfluidic platforms. The advantages/disadvantages, fabrication methods, dimensions, and the purpose of creating the desired system are explained in detail. An important conclusion of this review is that these microfluidic platforms are still open for research and development, and solutions need to be found for each case separately.
Collapse
Affiliation(s)
- Elif Gencturk
- Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342 Istanbul, Turkey
| | - Senol Mutlu
- Department of Electrical and Electronics Engineering, BUMEMS Laboratory, Bogazici University, 34342 Istanbul, Turkey
| | - Kutlu O Ulgen
- Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|
13
|
Buch-Månson N, Spangenberg A, Gomez LPC, Malval JP, Soppera O, Martinez KL. Rapid Prototyping of Polymeric Nanopillars by 3D Direct Laser Writing for Controlling Cell Behavior. Sci Rep 2017; 7:9247. [PMID: 28835653 PMCID: PMC5569057 DOI: 10.1038/s41598-017-09208-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/21/2017] [Indexed: 11/13/2022] Open
Abstract
Mammalian cells have been widely shown to respond to nano- and microtopography that mimics the extracellular matrix. Synthetic nano- and micron-sized structures are therefore of great interest in the field of tissue engineering, where polymers are particularly attractive due to excellent biocompatibility and versatile fabrication methods. Ordered arrays of polymeric pillars provide a controlled topographical environment to study and manipulate cells, but processing methods are typically either optimized for the nano- or microscale. Here, we demonstrate polymeric nanopillar (NP) fabrication using 3D direct laser writing (3D DLW), which offers a rapid prototyping across both size regimes. The NPs are interfaced with NIH3T3 cells and the effect of tuning geometrical parameters of the NP array is investigated. Cells are found to adhere on a wide range of geometries, but the interface depends on NP density and length. The Cell Interface with Nanostructure Arrays (CINA) model is successfully extended to predict the type of interface formed on different NP geometries, which is found to correlate with the efficiency of cell alignment along the NPs. The combination of the CINA model with the highly versatile 3D DLW fabrication thus holds the promise of improved design of polymeric NP arrays for controlling cell growth.
Collapse
Affiliation(s)
- Nina Buch-Månson
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry and Nano-science Center, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Arnaud Spangenberg
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS - UMR 7361, Université de Haute Alsace, 15 rue Jean Starcky, Mulhouse, France.
| | - Laura Piedad Chia Gomez
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS - UMR 7361, Université de Haute Alsace, 15 rue Jean Starcky, Mulhouse, France
| | - Jean-Pierre Malval
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS - UMR 7361, Université de Haute Alsace, 15 rue Jean Starcky, Mulhouse, France
| | - Olivier Soppera
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS - UMR 7361, Université de Haute Alsace, 15 rue Jean Starcky, Mulhouse, France
| | - Karen L Martinez
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry and Nano-science Center, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
14
|
Seo HR, Joo HJ, Kim DH, Cui LH, Choi SC, Kim JH, Cho SW, Lee KB, Lim DS. Nanopillar Surface Topology Promotes Cardiomyocyte Differentiation through Cofilin-Mediated Cytoskeleton Rearrangement. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16803-16812. [PMID: 28497946 DOI: 10.1021/acsami.7b01555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoscaled surface patterning is an emerging potential method of directing the fate of stem cells. We adopted nanoscaled pillar gradient patterned cell culture plates with three diameter gradients [280-360 (GP 280/360), 200-280 (GP 200/280), and 120-200 nm (GP 120/200)] and investigated their cell fate-modifying effect on multipotent fetal liver kinase 1-positive mesodermal precursor cells (Flk1+ MPCs) derived from embryonic stem cells. We observed increased cell proliferation and colony formation of the Flk1+ MPCs on the nanopattern plates. Interestingly, the 200-280 nm-sized (GP 200/280) pillar surface dramatically increased cardiomyocyte differentiation and expression of the early cardiac marker gene Mesp1. The gradient nanopattern surface-induced cardiomyocytes had cardiac sarcomeres with mature cardiac gene expression. We observed Vinculin and p-Cofilin-mediated cytoskeleton reorganization during this process. In summary, the gradient nanopattern surface with 200-280 nm-sized pillars enhanced cardiomyocyte differentiation in Flk1+ MPCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sung Woo Cho
- Division of Cardiology, Department of Internal Medicine, Inje University College of Medicine, Seoul Paik Hospital , 9 Mareunnae-ro, Jung-gu, Seoul 04551, Republic of Korea
| | | | | |
Collapse
|
15
|
Ding S, Kingshott P, Thissen H, Pera M, Wang PY. Modulation of human mesenchymal and pluripotent stem cell behavior using biophysical and biochemical cues: A review. Biotechnol Bioeng 2016; 114:260-280. [DOI: 10.1002/bit.26075] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/27/2016] [Accepted: 08/07/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sheryl Ding
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | | | - Martin Pera
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
- CSIRO Manufacturing; Clayton Victoria Australia
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
- Graduate Institute of Nanomedicine and Medical Engineering; College of Biomedical Engineering; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
16
|
Jung AR, Kim RY, Kim HW, Shrestha KR, Jeon SH, Cha KJ, Park YH, Kim DS, Lee JY. Nanoengineered Polystyrene Surfaces with Nanopore Array Pattern Alters Cytoskeleton Organization and Enhances Induction of Neural Differentiation of Human Adipose-Derived Stem Cells. Tissue Eng Part A 2016; 21:2115-24. [PMID: 25919423 DOI: 10.1089/ten.tea.2014.0346] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human adipose-derived stem cells (hADSCs) can differentiate into various cell types depending on chemical and topographical cues. One topographical cue recently noted to be successful in inducing differentiation is the nanoengineered polystyrene surface containing nanopore array-patterned substrate (NP substrate), which is designed to mimic the nanoscale topographical features of the extracellular matrix. In this study, efficacies of NP and flat substrates in inducing neural differentiation of hADSCs were examined by comparing their substrate-cell adhesion rates, filopodia growth, nuclei elongation, and expression of neural-specific markers. The polystyrene nano Petri dishes containing NP substrates were fabricated by a nano injection molding process using a nickel electroformed nano-mold insert (Diameter: 200 nm. Depth of pore: 500 nm. Center-to-center distance: 500 nm). Cytoskeleton and filopodia structures were observed by scanning electron microscopy and F-actin staining, while cell adhesion was tested by vinculin staining after 24 and 48 h of seeding. Expression of neural specific markers was examined by real-time quantitative polymerase chain reaction and immunocytochemistry. Results showed that NP substrates lead to greater substrate-cell adhesion, filopodia growth, nuclei elongation, and expression of neural specific markers compared to flat substrates. These results not only show the advantages of NP substrates, but they also suggest that further study into cell-substrate interactions may yield great benefits for biomaterial engineering.
Collapse
Affiliation(s)
- Ae Ryang Jung
- 1 Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea , Seoul, Korea
| | - Richard Y Kim
- 1 Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea , Seoul, Korea
| | - Hyung Woo Kim
- 2 Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang, Korea
| | - Kshitiz Raj Shrestha
- 1 Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea , Seoul, Korea
| | - Seung Hwan Jeon
- 1 Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea , Seoul, Korea
| | - Kyoung Je Cha
- 2 Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang, Korea
| | - Yong Hyun Park
- 1 Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea , Seoul, Korea
| | - Dong Sung Kim
- 2 Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang, Korea
| | - Ji Youl Lee
- 1 Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea , Seoul, Korea
| |
Collapse
|
17
|
Zhang H, Yang S, Masako N, Lee DJ, Cooper LF, Ko CC. Proliferation of preosteoblasts on TiO 2 nanotubes is FAK/RhoA related. RSC Adv 2015; 5:38117-38124. [PMID: 26090090 PMCID: PMC4467958 DOI: 10.1039/c4ra16803h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Topographies promote surface-dependent behaviors which may positively influence peri-implant bone healing. In this study the topological effects of TiO2 nanotubes (TNTs) on aspects of preosteoblast behavior was investigated. Specifically, we hypothesize that TNTs can influence cell proliferation of preosteoblasts through cell adhesion and related modulation of FAK and RhoA. By culturing MC3T3-E1 cells on TNTs with different diameters (40nm and 150nm diameters), topography-dependent modulation in cell morphology and cell growth were observed. The average spreading area of the cell on Flat Ti, 40nm TNTs and 150nm TNTs were respectively 2176.05 μm2, 1510.44 μm2 and 800.72 μm2. Proliferation increased among cells cultured on the 150nm TNTs (28.6%) compared with on Flat Ti (17.06%). The expression of FAK was 86.2% down regulated superimposition of TNTs topography. RhoA expression only slightly decreased (45.9%). Increasing TNT diameter enhanced initial adherent cell growth, which was relevant to the increased RhoA-to-FAK ratio in the cell. Increased TNT diameter was associated with higher ratio and greater proliferation in the first 24 hours. These findings not only support our hypothesis, but suggest that RhoA might be critically involved in TNTs mediated cell proliferation. Future investigation using functional gain and loss of RhoA may further reveal its mechanism.
Collapse
Affiliation(s)
- He Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Hi gher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, China
| | - Sheng Yang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Hi gher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, China
| | - Nagasawa Masako
- Division of Bioprosthodontics, Department of Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan ; NC Oral Health Institute, School of Dentistry, University of North Carolina, CB #7454, Chapel Hill, NC 27599, USA
| | - Dong Joon Lee
- NC Oral Health Institute, School of Dentistry, University of North Carolina, CB #7454, Chapel Hill, NC 27599, USA
| | - Lyndon F Cooper
- NC Oral Health Institute, School of Dentistry, University of North Carolina, CB #7454, Chapel Hill, NC 27599, USA ; Department of Prosthodontics, School of Dentistry, University of North Carolina, CB #7450, Chapel Hill, NC 27599-7450, USA
| | - Ching-Chang Ko
- NC Oral Health Institute, School of Dentistry, University of North Carolina, CB #7454, Chapel Hill, NC 27599, USA ; Department of Orthodontics, School of Dentistry, University of North Carolina, CB #7450, Chapel Hill, NC 27599-7450, USA
| |
Collapse
|
18
|
Low-aspect ratio nanopatterns on bioinert alumina influence the response and morphology of osteoblast-like cells. Biomaterials 2015; 62:58-65. [PMID: 26022980 DOI: 10.1016/j.biomaterials.2015.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/12/2015] [Accepted: 05/16/2015] [Indexed: 11/22/2022]
Abstract
Topographical features on the nanometer scale are known to influence cellular behavior. The response of specific cell types to various types of surface structures is currently still being investigated. Alumina ceramics play an important role as biomaterials, e.g., in medical and dental applications. In this study, we investigated the influence of nanoscale surface features with low aspect ratio (< 0.1) on the response of osteoblast-like MG-63 cells. To this end, low-energy ion irradiation was employed to produce shallow nanoscale ripple patterns on Al2O3(0001) surfaces with lateral periodicities of 24 nm and 179 nm and heights of only 0.7 and 11.5 nm, respectively. The nanopatterning was found to increase the proliferation of MG-63 cells and may lead to pseudopodia alignment along the ripples. Furthermore, focal adhesion behavior and cell morphology were analyzed. We found that MG-63 cells are able to recognize surface nanopatterns with extremely low vertical variations of less than 1 nm. In conclusion, it is shown that surface topography in the sub-nm range significantly influences the response of osteoblast-like cells.
Collapse
|
19
|
Lim EK, Keem JO, Yun HS, Jung J, Chung BH. Smart nanoprobes for the detection of alkaline phosphatase activity during osteoblast differentiation. Chem Commun (Camb) 2015; 51:3270-2. [DOI: 10.1039/c4cc09620g] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanoparticle-conjugated fluorescent hydroxyapatite (AuFHAp) was developed as a smart nanoprobe for measuring alkaline phosphatase (ALP) activity.
Collapse
Affiliation(s)
- Eun-Kyung Lim
- BioNanotechnology Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
- BioNano Health Guard Research Center
| | - Joo Oak Keem
- BioNano Health Guard Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
| | - Hui-suk Yun
- Powder & Ceramics Division
- Korea Institute of Materials Science (KIMS)
- Changwon 642-831
- Republic of Korea
| | - Jinyoung Jung
- BioNanotechnology Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
- BioNano Health Guard Research Center
| | - Bong Hyun Chung
- BioNanotechnology Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
- BioNano Health Guard Research Center
| |
Collapse
|
20
|
Shou G, Dong L, Wang X, Cheng K, Weng W. Enhanced biological performance on nano-microstructured surfaces assembled by SrTiO3 cubic nanocrystals. RSC Adv 2015. [DOI: 10.1039/c5ra14696h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Controlling protein adsorption on material surfaces can offer significant opportunities in terms of engineering the material–cell interactions.
Collapse
Affiliation(s)
- Guohui Shou
- School of Materials Science and Engineering
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou 310027
- China
| | - Lingqing Dong
- School of Materials Science and Engineering
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiaozhao Wang
- School of Materials Science and Engineering
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou 310027
- China
| | - Kui Cheng
- School of Materials Science and Engineering
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou 310027
- China
| | - Wenjian Weng
- School of Materials Science and Engineering
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
21
|
Olivares-Navarrete R, Hyzy SL, Berg ME, Schneider JM, Hotchkiss K, Schwartz Z, Boyan BD. Osteoblast lineage cells can discriminate microscale topographic features on titanium-aluminum-vanadium surfaces. Ann Biomed Eng 2014; 42:2551-61. [PMID: 25227453 PMCID: PMC4239824 DOI: 10.1007/s10439-014-1108-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/03/2014] [Indexed: 01/23/2023]
Abstract
Titanium (Ti) and Ti alloys are used in orthopaedic/spine applications where biological implant fixation, or osseointegration, is required for long-term stability. These implants employ macro-scale features to provide mechanical stability until arthrodesis, features that are too large to influence healing at the cellular level. Micron-scale rough Ti alloy (Ti–6Al–4V) increases osteoblastic differentiation and osteogenic factor production in vitro and increases in vivo bone formation; however, effects of overall topography, including sub-micron scale and nanoscale features, on osteoblast lineage cells are less well appreciated. To address this, Ti6Al4V surfaces with macro/micro/nano-textures were generated using sand blasting and acid etching that had comparable average roughness values but differed in other roughness parameters (total roughness, profile roughness, maximum peak height, maximum valley depth, root-mean-squared roughness, kurtosis, skewness) (#5, #9, and #12). Human mesenchymal stem cells (HMSCs) and normal human osteoblasts (NHOst) were cultured for 7 days on the substrates and then analyzed for alkaline phosphatase activity and osteocalcin content, production of osteogenic local factors, and integrin subunit expression. All three surfaces supported osteoblastic differentiation of HMSCs and further maturation of NHOst cells, but the greatest response was seen on the #9 substrate, which had the lowest skewness and kurtosis. The #9 surface also induced highest expression of α2 and β1 integrin mRNA. HMSCs produced highest levels of ITGAV on #9, suggesting this integrin may play a role for early lineage cells. These results indicate that osteoblast lineage cells are sensitive to specific micro/nanostructures, even when overall macro roughness is comparable and suggest that skewness and kurtosis are important variables.
Collapse
|
22
|
Ding Y, Yang Z, Bi CWC, Yang M, Xu SL, Lu X, Huang N, Huang P, Leng Y. Directing vascular cell selectivity and hemocompatibility on patterned platforms featuring variable topographic geometry and size. ACS APPLIED MATERIALS & INTERFACES 2014; 6:12062-12070. [PMID: 25039647 DOI: 10.1021/am502692k] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
It is great challenge to generate multifunctionality of vascular grafts and stents to enable vascular cell selectivity and improve hemocompatibility. Micro/nanopatterning of vascular implant surfaces for such multifunctionality is a direction to be explored. We developed a novel patterned platform featuring two typical geometries (groove and pillar) and six pattern sizes (0.5-50 μm) in a single substrate to evaluate the response of vascular cells and platelets. Our results indicate that targeted multifunctionality can be indeed instructed by rationally designed surface topography. The pillars nonselectively inhibited the growth of endothelial and smooth muscle cells. By contrast, the grooves displayed selective effects: in a size-dependent manner, the grooves enhanced endothelialization but inhibited the growth of smooth muscle cells. Moreover, our studies suggest that topographic cues can affect response of vascular cells by regulating focal adhesion and stress fiber development, which define cytoskeleton organization and cell shape. Notably, both the grooves and the pillars at 1 μm size drastically reduced platelet adhesion and activation. Taken together, these findings suggest that the topographic pattern featuring 1 μm grooves may be the optimal design of surface multifunctionality that favors vascular cell selectivity and improves hemocompatibility.
Collapse
Affiliation(s)
- Yonghui Ding
- Department of Mechanical and Aerospace Engineering, ‡Division of Life Science, §Division of Biomedical Engineering, and ∥State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Özçelik H, Padeste C, Hasirci V. Systematically organized nanopillar arrays reveal differences in adhesion and alignment properties of BMSC and Saos-2 cells. Colloids Surf B Biointerfaces 2014; 119:71-81. [DOI: 10.1016/j.colsurfb.2014.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|