1
|
Ahmadi N, Fathalilou M, Rezazadeh G. Neo-Hookean modeling of nonlinear coupled behavior in circular plates supported by micro-pillars. Sci Rep 2024; 14:25428. [PMID: 39455874 PMCID: PMC11512035 DOI: 10.1038/s41598-024-76528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
In the contemporary era, the enhancement of wearable capacitive sensors is achieved through the utilization of polymeric micropillars as filler materials between electrode plates. To gain a deeper understanding of the dynamic response of the system, nonlinear coupled governing equations of a circular microplate motion resting on an array of polymeric micropillars have been derived. These equations are used to model the system's behavior. In addition, the squeezing motion of the micro-pillars is characterized using the incompressible Neo-Hookean model. Both static and dynamic responses, including transient and steady-state solutions, are investigated in detail by discretizing over spatial coordinates using a weak formulation approach. A frequency response analysis is conducted using a continuation-based method. This entails expanding the steady-state solution using a Fourier transform and employing the energy balance principle. The unknown coefficients of the expansion series are calculated using a gradient descent-based learning approach that is physically motivated. Furthermore, a dynamic step size strategy for frequency increments is employed to effectively follow the solution path. This strategy is implemented via the ARC length method. In this study, we examine the impact of varying PDMS (polydimethylsiloxane) hydrogel mechanical and geometrical configurations. It can be reasonably concluded that the mechanical properties of the pillars and the geometrical configuration of the circular plate and micropillars have a significant impact on the maximum tolerable pressure, fast transient response, and frequency response analysis.
Collapse
Affiliation(s)
- Nima Ahmadi
- Department of Mechanical Engineering, National University of Skill (NUS), Tehran, Iran
| | | | - Ghader Rezazadeh
- Mechanical Engineering Department, Urmia University, Urmia, Iran.
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
2
|
Lai H, Huo X, Han Y, Hu M, Kong X, Yin J, Qian J. Electrowriting patterns and electric field harness directional cell migration for skin wound healing. Mater Today Bio 2024; 26:101083. [PMID: 38757058 PMCID: PMC11097089 DOI: 10.1016/j.mtbio.2024.101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Directional cell migration is a crucial step in wound healing, influenced by electrical and topographic stimulations. However, the underlying mechanism and the combined effects of these two factors on cell migration remain unclear. This study explores cell migration under various combinations of guided straight line (SL) spacing, conductivity, and the relative direction of electric field (EF) and SL. Electrowriting is employed to fabricate conductive (multiwalled carbon nanotube/polycaprolactone (PCL)) and nonconductive (PCL) SL, with narrow (50 μm) and wide (400 μm) spacing that controls the topographic stimulation strength. Results show that various combinations of electrical and topographic stimulation yield significantly distinct effects on cell migration direction and speed; cells migrate fastest with the most directivity in the case of conductive, narrow-spacing SL parallel to EF. A physical model based on intercellular interactions is developed to capture the underlying mechanism of cell migration under SL and EF stimulations, in agreement with experimental observations. In vivo skin wound healing assay further confirmed that the combination of EF (1 V cm-1) and parallelly aligned conductive fibers accelerated the wound healing process. This study presents a promising approach to direct cell migration and enhance wound healing by optimizing synergistic electrical and topographic stimulations.
Collapse
Affiliation(s)
- Huinan Lai
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiaodan Huo
- The State Key Laboratory of Fluid Power Transmission and Control Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Ying Han
- The State Key Laboratory of Fluid Power Transmission and Control Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Minyu Hu
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiangren Kong
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power Transmission and Control Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Jin Qian
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
- The State Key Laboratory of Fluid Power Transmission and Control Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Soliman BG, Longoni A, Major GS, Lindberg GCJ, Choi YS, Zhang YS, Woodfield TBF, Lim KS. Harnessing Macromolecular Chemistry to Design Hydrogel Micro- and Macro-Environments. Macromol Biosci 2024; 24:e2300457. [PMID: 38035637 DOI: 10.1002/mabi.202300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Cell encapsulation within three-dimensional hydrogels is a promising approach to mimic tissues. However, true biomimicry of the intricate microenvironment, biophysical and biochemical gradients, and the macroscale hierarchical spatial organizations of native tissues is an unmet challenge within tissue engineering. This review provides an overview of the macromolecular chemistries that have been applied toward the design of cell-friendly hydrogels, as well as their application toward controlling biophysical and biochemical bulk and gradient properties of the microenvironment. Furthermore, biofabrication technologies provide the opportunity to simultaneously replicate macroscale features of native tissues. Biofabrication strategies are reviewed in detail with a particular focus on the compatibility of these strategies with the current macromolecular toolkit described for hydrogel design and the challenges associated with their clinical translation. This review identifies that the convergence of the ever-expanding macromolecular toolkit and technological advancements within the field of biofabrication, along with an improved biological understanding, represents a promising strategy toward the successful tissue regeneration.
Collapse
Affiliation(s)
- Bram G Soliman
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Alessia Longoni
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
| | - Gretel S Major
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Gabriella C J Lindberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02115, USA
| | - Tim B F Woodfield
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Khoon S Lim
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- School of Medical Sciences, University of Sydney, Sydney, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia
| |
Collapse
|
4
|
Quan Y, Huang Z, Wang Y, Liu Y, Ding S, Zhao Q, Chen X, Li H, Tang Z, Zhou B, Zhou Y. Coupling of static ultramicromagnetic field with elastic micropillar-structured substrate for cell response. Mater Today Bio 2023; 23:100831. [PMID: 37881448 PMCID: PMC10594574 DOI: 10.1016/j.mtbio.2023.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
Micropillars have emerged as promising tools for a wide range of biological applications, while the influence of magnetic fields on cell behavior regulation has been increasingly recognized. However, the combined effect of micropillars and magnetic fields on cell behaviors remains poorly understood. In this study, we investigated the responses of H9c2 cells to ultramicromagnetic micropillar arrays using NdFeB as the tuned magnetic particles. We conducted a comparative analysis between PDMS micropillars and NdFeB/PDMS micropillars to assess their impact on cell function. Our results revealed that H9c2 cells exhibited significantly enhanced proliferation and notable cytoskeletal rearrangements on the ultramicromagnetic micropillars, surpassing the effects observed with pure PDMS micropillars. Immunostaining further indicated that cells cultured on ultramicromagnetic micropillars displayed heightened contractility compared to those on PDMS micropillars. Remarkably, the ultramicromagnetic micropillars also demonstrated the ability to decrease reactive oxygen species (ROS) levels, thereby preventing F-actin degeneration. Consequently, this study introduces ultramicromagnetic micropillars as a novel tool for the regulation and detection of cell behaviors, thus paving the way for advanced investigations in tissue engineering, single-cell analysis, and the development of flexible sensors for cellular-level studies.
Collapse
Affiliation(s)
- Yue Quan
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Ziyu Huang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Yuxin Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Yu Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Sen Ding
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Qian Zhao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Haifeng Li
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| |
Collapse
|
5
|
Wang H, Xia Y, Zhang Z, Xie Z. 3D gradient printing based on digital light processing. J Mater Chem B 2023; 11:8883-8896. [PMID: 37694441 DOI: 10.1039/d3tb00763d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
3D gradient printing is a type of fabrication technique that builds three-dimensional objects with gradually changing properties. Gradient digital light processing based 3D printing has garnered considerable attention in recent years. This function-oriented technology precisely manipulates the performance of different positions of materials and prints them as a monolithic structure to realize specific functions. This review presents a conceptual understanding of gradient properties, covering an overview of current techniques and materials that can produce gradient structures, as well as their limitations and challenges. The principle of digital light processing (DLP) technology and feasible strategies for 3D gradient printing to overcome any barriers are also presented. Additionally, this review discusses the promising future of 4D bioprinting systems based on DLP printing.
Collapse
Affiliation(s)
- Han Wang
- Chien-Shiung Wu College, Southeast University, Nanjing, 211102, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, 210096, China
| | - Yu Xia
- Chien-Shiung Wu College, Southeast University, Nanjing, 211102, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, 210096, China
- School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Zixuan Zhang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, 210096, China
| | - Zhuoying Xie
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, 210096, China
| |
Collapse
|
6
|
Zhou P, Qin L, Ge Z, Xie B, Huang H, He F, Ma S, Ren L, Shi J, Pei S, Dong G, Qi Y, Lan F. Design of chemically defined synthetic substrate surfaces for the in vitro maintenance of human pluripotent stem cells: A review. J Biomed Mater Res B Appl Biomater 2022; 110:1968-1990. [PMID: 35226397 DOI: 10.1002/jbm.b.35034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/11/2022]
Abstract
Human pluripotent stem cells (hPSCs) have the potential of long-term self-renewal and differentiation into nearly all cell types in vitro. Prior to the downstream applications, the design of chemically defined synthetic substrates for the large-scale proliferation of quality-controlled hPSCs is critical. Although great achievements have been made, Matrigel and recombinant proteins are still widely used in the fundamental research and clinical applications. Therefore, much effort is still needed to improve the performance of synthetic substrates in the culture of hPSCs, realizing their commercial applications. In this review, we summarized the design of reported synthetic substrates and especially their limitations in terms of cell culture. Moreover, much attention was paid to the development of promising peptide displaying surfaces. Besides, the biophysical regulation of synthetic substrate surfaces as well as the three-dimensional culture systems were described.
Collapse
Affiliation(s)
- Ping Zhou
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Liying Qin
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhangjie Ge
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Biyao Xie
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Hongxin Huang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Fei He
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Shengqin Ma
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Lina Ren
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiamin Shi
- Department of Laboratory Animal Centre, Changzhi Medical College, Changzhi, China
| | - Suying Pei
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Genxi Dong
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yongmei Qi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Feng Lan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Shenzhen, China
| |
Collapse
|
7
|
Reconstituted basement membrane enables airway epithelium modeling and nanoparticle toxicity testing. Int J Biol Macromol 2022; 204:300-309. [PMID: 35149090 DOI: 10.1016/j.ijbiomac.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/14/2022]
Abstract
Basement membrane (BM) acts as a sheet-like extracellular matrix to support and promote the formation of epithelial and endothelial cell layers. The in vitro reconstruction of the BM is however not easy due to its ultrathin membrane features. This difficulty is overcome by self-assembling type IV collagen and laminin in the porous areas of a monolayer of crosslinked gelatin nanofibers deposited on a honeycomb microframe. Herein, a method is presented to generate airway epithelium by using such an artificial basement membrane (ABM) and human-induced pluripotent stem cells (hiPSCs). Bipolar primordial lung progenitors are firstly induced from hiPSCs and then replated on the ABM for differentiation toward matured airway epithelium under submerged and air-liquid interface culture conditions. As a result, a pseudostratified airway epithelium consisting of several cell types is achieved, showing remarkable apical secretion of MUC5AC proteins and clear advantages over other types of substrates. As a proof of concept, the derived epithelium is used for toxicity test of cadmium telluride (CdTe) nanoparticles (NPs), demonstrating the applicability of ABM-based assays involving hiPSC-derived epithelial cells-based assays.
Collapse
|
8
|
Li S, Yoshioka M, Li J, Liu L, Ye S, Kamei KI, Chen Y. Nanocasting of fibrous morphology on a substrate for long-term propagation of human induced pluripotent stem cells. Biomed Mater 2022; 17. [PMID: 35114658 DOI: 10.1088/1748-605x/ac51b8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/03/2022] [Indexed: 11/12/2022]
Abstract
Human-induced pluripotent stem cells (hiPSCs) can be self-renewed for many generations on nanofibrous substrates. Herein, a casting method is developed to replicate the nanofibrous morphology into a thin layer of polymethylsiloxane (PDMS). The template is obtained by electrospinning and chemical crosslinking of gelatin nanofibers on a glass slide. The replicas of the template are surface-functionalized by gelatin and used for propagation of hiPSCs over tenth generations. The performance of the propagated hiPSCs is checked by immunofluorescence imaging, flowcytometry, and RT-PCR, confirming the utility of the method. The results are also compared with those obtained using electrospun nanofiber substrates. Inherently, the PDMS replicas is of low stiffness and can be reproduced easily. Compared to other patterning techniques, casting is more flexible and cost-effective, suggesting that this method might find applications in cell-based assays that rely on stringent consideration of both substrate stiffness and surface morphology.
Collapse
Affiliation(s)
- Sisi Li
- Chemistry, Ecole Normale Superieure, 24 rue Lhomond, Paris, Île-de-France, 75230, FRANCE
| | - Momoko Yoshioka
- Kyoto University, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Junjun Li
- Institute for Integrated Cell-Material Sciences, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Li Liu
- Kyoto University, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Sixin Ye
- University of Paris, 94276 Le Kremlin Bicêtre, Paris, 75006, FRANCE
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Yong Chen
- Chemistry, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris Cedex 05, Paris, Île-de-France, 75230, FRANCE
| |
Collapse
|
9
|
Recent Advances on Surface-modified Biomaterials Promoting Selective Adhesion and Directional Migration of Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2564-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Abstract
As the crucial non-cellular component of tissues, the extracellular matrix (ECM) provides both physical support and signaling regulation to cells. Some ECM molecules provide a fibrillar environment around cells, while others provide a sheet-like basement membrane scaffold beneath epithelial cells. In this Review, we focus on recent studies investigating the mechanical, biophysical and signaling cues provided to developing tissues by different types of ECM in a variety of developing organisms. In addition, we discuss how the ECM helps to regulate tissue morphology during embryonic development by governing key elements of cell shape, adhesion, migration and differentiation. Summary: This Review discusses our current understanding of how the extracellular matrix helps guide developing tissues by influencing cell adhesion, migration, shape and differentiation, emphasizing the biophysical cues it provides.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| |
Collapse
|
11
|
Effect of oblique polymer pillars on spreading and elongation of rat mesenchymal stem cells. Colloids Surf B Biointerfaces 2019; 183:110485. [PMID: 31499453 DOI: 10.1016/j.colsurfb.2019.110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 11/23/2022]
Abstract
Stiffness and anisotropy of culture substrates are important factors influencing the cell behavior and their responses to external stimuli. Herein, we report a fabrication method of oblique polymer pillars which allow modulating both stiffness and anisotropy of the substrate for spreading and elongation studies of Rat Mesenchymal Stem Cells (RMSCs). Poly (Lactic-co-Glycolic Acid) (PLGA) has been chosen to produce micro-pillars of different heights and different pitches using a combined method of soft-lithography and hot embossing. The stiffness of such pillar substrates varies over a large range so that RMSCs show effectively different spreading behaviors which are also sensitive to the inclining angle of the pillars. Our results showed that with the increase of the pillar height the area of cell spreading decreases but the cell elongation aspect ratio increases. Moreover, cells preferentially elongate along the direction perpendicular to that of the pillars' inclining, which is in agreement with the calculated anisotropy of the pillar substrate stiffness.
Collapse
|