1
|
Chen H, Wang X, Li C, Xu X, Wang G. Characterization of individual spores of two biological insecticides, Bacillus thuringiensis and Lysinibacillus sphaericus, in response to glutaraldehyde using single-cell optical approaches. Arch Microbiol 2024; 206:227. [PMID: 38642141 DOI: 10.1007/s00203-024-03941-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/22/2024]
Abstract
Bacillus thuringiensis (Bt) and Lysinibacillus sphaericus (Ls) are the most widely used microbial insecticides. Both encounter unfavorable environmental factors and pesticides in the field. Here, the responses of Bt and Ls spores to glutaraldehyde were characterized using Raman spectroscopy and differential interference contrast imaging at the single-cell level. Bt spores were more sensitive to glutaraldehyde than Ls spores under prolonged exposure: <1.0% of Bt spores were viable after 10 min of 0.5% (v/v) glutaraldehyde treatment, compared to ~ 20% of Ls spores. The Raman spectra of glutaraldehyde-treated Bt and Ls spores were almost identical to those of untreated spores; however, the germination process of individual spores was significantly altered. The time to onset of germination, the period of rapid Ca2+-2,6-pyridinedicarboxylic acid (CaDPA) release, and the period of cortex hydrolysis of treated Bt spores were significantly longer than those of untreated spores, with dodecylamine germination being particularly affected. Similarly, the germination of treated Ls spores was significantly prolonged, although the prolongation was less than that of Bt spores. Although the interiors of Bt and Ls spores were undamaged and CaDPA did not leak, proteins and structures involved in spore germination could be severely damaged, resulting in slower and significantly prolonged germination. This study provides insights into the impact of glutaraldehyde on bacterial spores at the single cell level and the variability in spore response to glutaraldehyde across species and populations.
Collapse
Affiliation(s)
- Huanjun Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Xiaochun Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Cuimei Li
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Xiaoling Xu
- Agriculture and Food Engineering College, Baise University, Baise, Guangxi, 533000, China
| | - Guiwen Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China.
| |
Collapse
|
2
|
Deng L, Kumar J, Rose R, McIntyre W, Fabris D. Analyzing RNA posttranscriptional modifications to decipher the epitranscriptomic code. MASS SPECTROMETRY REVIEWS 2024; 43:5-38. [PMID: 36052666 DOI: 10.1002/mas.21798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The discovery of RNA silencing has revealed that non-protein-coding sequences (ncRNAs) can cover essential roles in regulatory networks and their malfunction may result in severe consequences on human health. These findings have prompted a general reassessment of the significance of RNA as a key player in cellular processes. This reassessment, however, will not be complete without a greater understanding of the distribution and function of the over 170 variants of the canonical ribonucleotides, which contribute to the breathtaking structural diversity of natural RNA. This review surveys the analytical approaches employed for the identification, characterization, and detection of RNA posttranscriptional modifications (rPTMs). The merits of analyzing individual units after exhaustive hydrolysis of the initial biopolymer are outlined together with those of identifying their position in the sequence of parent strands. Approaches based on next generation sequencing and mass spectrometry technologies are covered in depth to provide a comprehensive view of their respective merits. Deciphering the epitranscriptomic code will require not only mapping the location of rPTMs in the various classes of RNAs, but also assessing the variations of expression levels under different experimental conditions. The fact that no individual platform is currently capable of meeting all such demands implies that it will be essential to capitalize on complementary approaches to obtain the desired information. For this reason, the review strived to cover the broadest possible range of techniques to provide readers with the fundamental elements necessary to make informed choices and design the most effective possible strategy to accomplish the task at hand.
Collapse
Affiliation(s)
- L Deng
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - J Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - R Rose
- Department of Advanced Research Technologies, New York University Langone Health Center, New York, USA
| | - W McIntyre
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Daniele Fabris
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
3
|
Cui T, Liu G, Zhang W, Zhu X, Leng J, Hao XQ, Mao P, Song MP. Metal-organic supramolecular nanoarchitectures by Ru(II) bis-(terpyridine)-bridged pillar[5]arene dimers with triphenylamine. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Khater IM, Nabi IR, Hamarneh G. A Review of Super-Resolution Single-Molecule Localization Microscopy Cluster Analysis and Quantification Methods. PATTERNS (NEW YORK, N.Y.) 2020; 1:100038. [PMID: 33205106 PMCID: PMC7660399 DOI: 10.1016/j.patter.2020.100038] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Single-molecule localization microscopy (SMLM) is a relatively new imaging modality, winning the 2014 Nobel Prize in Chemistry, and considered as one of the key super-resolution techniques. SMLM resolution goes beyond the diffraction limit of light microscopy and achieves resolution on the order of 10-20 nm. SMLM thus enables imaging single molecules and study of the low-level molecular interactions at the subcellular level. In contrast to standard microscopy imaging that produces 2D pixel or 3D voxel grid data, SMLM generates big data of 2D or 3D point clouds with millions of localizations and associated uncertainties. This unprecedented breakthrough in imaging helps researchers employ SMLM in many fields within biology and medicine, such as studying cancerous cells and cell-mediated immunity and accelerating drug discovery. However, SMLM data quantification and interpretation methods have yet to keep pace with the rapid advancement of SMLM imaging. Researchers have been actively exploring new computational methods for SMLM data analysis to extract biosignatures of various biological structures and functions. In this survey, we describe the state-of-the-art clustering methods adopted to analyze and quantify SMLM data and examine the capabilities and shortcomings of the surveyed methods. We classify the methods according to (1) the biological application (i.e., the imaged molecules/structures), (2) the data acquisition (such as imaging modality, dimension, resolution, and number of localizations), and (3) the analysis details (2D versus 3D, field of view versus region of interest, use of machine-learning and multi-scale analysis, biosignature extraction, etc.). We observe that the majority of methods that are based on second-order statistics are sensitive to noise and imaging artifacts, have not been applied to 3D data, do not leverage machine-learning formulations, and are not scalable for big-data analysis. Finally, we summarize state-of-the-art methodology, discuss some key open challenges, and identify future opportunities for better modeling and design of an integrated computational pipeline to address the key challenges.
Collapse
Affiliation(s)
- Ismail M. Khater
- Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Ivan Robert Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ghassan Hamarneh
- Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
5
|
Doh JK, Chang YH, Enns CA, Lόpez CS, Beatty KE. Imaging VIPER-labeled Cellular Proteins by Correlative Light and Electron Microscopy. Bio Protoc 2019; 9:e3414. [PMID: 33654913 PMCID: PMC7853974 DOI: 10.21769/bioprotoc.3414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 01/02/2023] Open
Abstract
Advances in fluorescence microscopy (FM), electron microscopy (EM), and correlative light and EM (CLEM) offer unprecedented opportunities for studying diverse proteins and nanostructures involved in fundamental cell biology. It is now possible to visualize and quantify the spatial organization of cellular proteins and other macromolecules by FM, EM, and CLEM. However, tagging and tracking cellular proteins across size scales is restricted by the scarcity of methods for attaching appropriate reporter chemistries to target proteins. Namely, there are few genetic tags compatible with EM. To overcome these issues we developed Versatile Interacting Peptide (VIP) tags, genetically-encoded peptide tags that can be used to image proteins by fluorescence and EM. VIPER, a VIP tag, can be used to label cellular proteins with bright, photo-stable fluorophores for FM or electron-dense nanoparticles for EM. In this Bio-Protocol, we provide an instructional guide for implementing VIPER for imaging a cell-surface receptor by CLEM. This protocol is complemented by two other Bio-Protocols outlining the use of VIPER ( Doh et al., 2019a and 2019b).
Collapse
Affiliation(s)
- Julia K. Doh
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Caroline A. Enns
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Claudia S. Lόpez
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon 97239, USA
- Multiscale Microscopy Core, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Kimberly E. Beatty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
6
|
Vinegoni C, Feruglio PF, Gryczynski I, Mazitschek R, Weissleder R. Fluorescence anisotropy imaging in drug discovery. Adv Drug Deliv Rev 2019; 151-152:262-288. [PMID: 29410158 PMCID: PMC6072632 DOI: 10.1016/j.addr.2018.01.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/15/2022]
Abstract
Non-invasive measurement of drug-target engagement can provide critical insights in the molecular pharmacology of small molecule drugs. Fluorescence polarization/fluorescence anisotropy measurements are commonly employed in protein/cell screening assays. However, the expansion of such measurements to the in vivo setting has proven difficult until recently. With the advent of high-resolution fluorescence anisotropy microscopy it is now possible to perform kinetic measurements of intracellular drug distribution and target engagement in commonly used mouse models. In this review we discuss the background, current advances and future perspectives in intravital fluorescence anisotropy measurements to derive pharmacokinetic and pharmacodynamic measurements in single cells and whole organs.
Collapse
Affiliation(s)
- Claudio Vinegoni
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paolo Fumene Feruglio
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Ignacy Gryczynski
- University of North Texas Health Science Center, Institute for Molecular Medicine, Fort Worth, TX, United States
| | - Ralph Mazitschek
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Liu H, Ye Z, Wang X, Wei L, Xiao L. Molecular and living cell dynamic assays with optical microscopy imaging techniques. Analyst 2019; 144:859-871. [PMID: 30444498 DOI: 10.1039/c8an01420e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Generally, the message elucidated by the conventional analytical methods overlooks the heterogeneity of single objects, where the behavior of individual molecules is shielded. With the advent of optical microscopy imaging techniques, it is possible to identify, visualize and track individual molecules or nanoparticles under a biological environment with high temporal and spatial resolution. In this work, we summarize the commonly adopted optical microscopy techniques for bio-analytical assays in living cells, including total internal reflection fluorescence microscopy (TIRFM), super-resolution optical microscopy (SRM), and dark-field optical microscopy (DFM). The basic principles of these methods and some recent interesting applications in molecular detection and single-particle tracking are introduced. Moreover, the development in high-dimensional optical microscopy to achieve three-dimensional (3-D) as well as sub-diffraction localization and tracking of biomolecules is also highlighted.
Collapse
Affiliation(s)
- Hua Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | | | | | | | | |
Collapse
|
8
|
Single-molecule studies beyond optical imaging: Multi-parameter single-molecule spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2018. [DOI: 10.1016/j.jphotochemrev.2017.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Knorr G, Kozma E, Schaart JM, Németh K, Török G, Kele P. Bioorthogonally Applicable Fluorogenic Cyanine-Tetrazines for No-Wash Super-Resolution Imaging. Bioconjug Chem 2018; 29:1312-1318. [DOI: 10.1021/acs.bioconjchem.8b00061] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Troian-Gautier L, Mugeniwabagara E, Fusaro L, Cauët E, Kirsch-De Mesmaeker A, Luhmer M. Photo-CIDNP Reveals Different Protonation Sites Depending on the Primary Step of the Photoinduced Electron-/Proton-Transfer Process with Ru(II) Polyazaaromatic Complexes. J Am Chem Soc 2017; 139:14909-14912. [DOI: 10.1021/jacs.7b09513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ludovic Troian-Gautier
- Laboratoire
de Chimie Organique et Photochimie (CP 160/08), ‡Laboratoire de Résonance
Magnétique Nucléaire Haute Résolution (CP 160/08), and §Service de Chimie
Quantique et Photophysique (CP 160/09), Université libre de Bruxelles, 50 av. F. D. Roosevelt, B-1050 Brussels, Belgium
| | - Epiphanie Mugeniwabagara
- Laboratoire
de Chimie Organique et Photochimie (CP 160/08), ‡Laboratoire de Résonance
Magnétique Nucléaire Haute Résolution (CP 160/08), and §Service de Chimie
Quantique et Photophysique (CP 160/09), Université libre de Bruxelles, 50 av. F. D. Roosevelt, B-1050 Brussels, Belgium
| | - Luca Fusaro
- Laboratoire
de Chimie Organique et Photochimie (CP 160/08), ‡Laboratoire de Résonance
Magnétique Nucléaire Haute Résolution (CP 160/08), and §Service de Chimie
Quantique et Photophysique (CP 160/09), Université libre de Bruxelles, 50 av. F. D. Roosevelt, B-1050 Brussels, Belgium
| | - Emilie Cauët
- Laboratoire
de Chimie Organique et Photochimie (CP 160/08), ‡Laboratoire de Résonance
Magnétique Nucléaire Haute Résolution (CP 160/08), and §Service de Chimie
Quantique et Photophysique (CP 160/09), Université libre de Bruxelles, 50 av. F. D. Roosevelt, B-1050 Brussels, Belgium
| | - Andrée Kirsch-De Mesmaeker
- Laboratoire
de Chimie Organique et Photochimie (CP 160/08), ‡Laboratoire de Résonance
Magnétique Nucléaire Haute Résolution (CP 160/08), and §Service de Chimie
Quantique et Photophysique (CP 160/09), Université libre de Bruxelles, 50 av. F. D. Roosevelt, B-1050 Brussels, Belgium
| | - Michel Luhmer
- Laboratoire
de Chimie Organique et Photochimie (CP 160/08), ‡Laboratoire de Résonance
Magnétique Nucléaire Haute Résolution (CP 160/08), and §Service de Chimie
Quantique et Photophysique (CP 160/09), Université libre de Bruxelles, 50 av. F. D. Roosevelt, B-1050 Brussels, Belgium
| |
Collapse
|
11
|
Wall MJ, Corrêa SAL. The mechanistic link between Arc/Arg3.1 expression and AMPA receptor endocytosis. Semin Cell Dev Biol 2017; 77:17-24. [PMID: 28890421 DOI: 10.1016/j.semcdb.2017.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023]
Abstract
The activity-regulated cytoskeleton associated protein (Arc/Arg3.1) plays a key role in determining synaptic strength through facilitation of AMPA receptor (AMPAR) endocytosis. Although there is considerable data on the mechanism by which Arc induction controls synaptic plasticity and learning behaviours, several key mechanistic questions remain. Here we review data on the link between Arc expression and the clathrin-mediated endocytic pathway which internalises AMPARs and discuss the significance of Arc binding to the clathrin adaptor protein 2 (AP-2) and to endophilin/dynamin. We consider which AMPAR subunits are selected for Arc-mediated internalisation, implications for synaptic function and consider Arc as a therapeutic target.
Collapse
Affiliation(s)
- Mark J Wall
- School of Life Sciences, University of Warwick, United Kingdom.
| | - Sonia A L Corrêa
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, United Kingdom.
| |
Collapse
|
12
|
Yaron T, Klein A, Duadi H, Fridman M. Temporal superresolution based on a localization microscopy algorithm. APPLIED OPTICS 2017; 56:D24-D28. [PMID: 28375384 DOI: 10.1364/ao.56.000d24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigate the resolution limits of time lenses based on a four-wave mixing process and present a superresolution technique in the time domain based on a localization microscopy algorithm. Our temporal superresolution technique retrieves features shorter by a factor of 2 than the resolution limit of the system. We present both measured and calculated results of the superresolution scheme and present calculated superresolution of input signals with higher complexity.
Collapse
|
13
|
Kuhnke K, Große C, Merino P, Kern K. Atomic-Scale Imaging and Spectroscopy of Electroluminescence at Molecular Interfaces. Chem Rev 2017; 117:5174-5222. [DOI: 10.1021/acs.chemrev.6b00645] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Klaus Kuhnke
- Max-Planck-Institut für Festkörperforschung, Stuttgart 70569, Germany
| | - Christoph Große
- Max-Planck-Institut für Festkörperforschung, Stuttgart 70569, Germany
| | - Pablo Merino
- Max-Planck-Institut für Festkörperforschung, Stuttgart 70569, Germany
| | - Klaus Kern
- Max-Planck-Institut für Festkörperforschung, Stuttgart 70569, Germany
- Institut de Physique, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
14
|
Nespovitaya N, Mahou P, Laine RF, Schierle GSK, Kaminski CF. Heparin acts as a structural component of β-endorphin amyloid fibrils rather than a simple aggregation promoter. Chem Commun (Camb) 2017; 53:1273-1276. [PMID: 28067354 PMCID: PMC5436042 DOI: 10.1039/c6cc09770g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/16/2016] [Indexed: 02/02/2023]
Abstract
The aggregation promoter heparin is commonly used to study the aggregation kinetics and biophysical properties of protein amyloids. However, the underlying mechanism for amyloid promotion by heparin remains poorly understood. In the case of the neuropeptide β-endorphin that can reversibly adopt a functional amyloid form in nature, aggregation in the presence of heparin leads to a loss of function. Applying correlative optical super-resolution microscopy methods, we show that heparin incorporates into emerging β-endorphin fibrils forming an integral component and is essential for amyloid templating. This will have direct implications on β-endorphin's normal physiological function and raises concerns on the biological relevance of heparin-promoted amyloid models.
Collapse
Affiliation(s)
- N Nespovitaya
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, Cambridge University, Pembroke Street, Cambridge, CB2 3RA, UK.
| | - P Mahou
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, Cambridge University, Pembroke Street, Cambridge, CB2 3RA, UK.
| | - R F Laine
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, Cambridge University, Pembroke Street, Cambridge, CB2 3RA, UK.
| | - G S Kaminski Schierle
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, Cambridge University, Pembroke Street, Cambridge, CB2 3RA, UK.
| | - C F Kaminski
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, Cambridge University, Pembroke Street, Cambridge, CB2 3RA, UK.
| |
Collapse
|
15
|
Chen W, Young LJ, Lu M, Zaccone A, Ströhl F, Yu N, Kaminski Schierle GS, Kaminski CF. Fluorescence Self-Quenching from Reporter Dyes Informs on the Structural Properties of Amyloid Clusters Formed in Vitro and in Cells. NANO LETTERS 2017; 17:143-149. [PMID: 28073262 PMCID: PMC5338000 DOI: 10.1021/acs.nanolett.6b03686] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/26/2016] [Indexed: 05/26/2023]
Abstract
The characterization of the aggregation kinetics of protein amyloids and the structural properties of the ensuing aggregates are vital in the study of the pathogenesis of many neurodegenerative diseases and the discovery of therapeutic targets. In this article, we show that the fluorescence lifetime of synthetic dyes covalently attached to amyloid proteins informs on the structural properties of amyloid clusters formed both in vitro and in cells. We demonstrate that the mechanism behind such a "lifetime sensor" of protein aggregation is based on fluorescence self-quenching and that it offers a good dynamic range to report on various stages of aggregation without significantly perturbing the process under investigation. We show that the sensor informs on the structural density of amyloid clusters in a high-throughput and quantitative manner and in these aspects the sensor outperforms super-resolution imaging techniques. We demonstrate the power and speed of the method, offering capabilities, for example, in therapeutic screenings that monitor biological self-assembly. We investigate the mechanism and advantages of the lifetime sensor in studies of the K18 protein fragment of the Alzheimer's disease related protein tau and its amyloid aggregates formed in vitro. Finally, we demonstrate the sensor in the study of aggregates of polyglutamine protein, a model used in studies related to Huntington's disease, by performing correlative fluorescence lifetime imaging microscopy and structured-illumination microscopy experiments in cells.
Collapse
|
16
|
Birch D, Mely Y, Wolfbeis O. Building a quality home for fluorescence. Methods Appl Fluoresc 2016; 4:040401. [PMID: 28192288 DOI: 10.1088/2050-6120/4/4/040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David Birch
- The Photophysics Research Group, Centre for Molecular Nanometrology, University of Strathclyde, Department of Physics, SUPA, John Anderson Building, 107 Rottenrow, Glasgow, G4 0NG, UK
| | | | | |
Collapse
|