1
|
El-Sawaf AK, El-Moslamy SH, Kamoun EA, Hossain K. Green synthesis of trimetallic CuO/Ag/ZnO nanocomposite using Ziziphus spina-christi plant extract: characterization, statistically experimental designs, and antimicrobial assessment. Sci Rep 2024; 14:19718. [PMID: 39181914 PMCID: PMC11344774 DOI: 10.1038/s41598-024-67579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024] Open
Abstract
In this study, Ziziphus spina christi leaves was used to synthesize a trimetallic CuO/Ag/ZnO nanocomposite by a simple and green method. Many characterizations e.g. FTIR, UV-vis DRS, SEM-EDX, TEM, XRD, zeta-size analysis, and DLS, were used to confirm green-synthesized trimetallic CuO/Ag/ZnO nanocomposite. The green, synthesized trimetallic CuO/Ag/ZnO nanocomposite exhibited a spherical dot-like structure, with an average particle size of around 7.11 ± 0.67 nm and a zeta potential of 21.5 mV. An extremely homogeneous distribution of signals, including O (79.25%), Cu (13.78%), Zn (4.42%), and Ag (2.55%), is evident on the surface of green-synthetic nanocomposite, according to EDX data. To the best of our knowledge, this is the first study to effectively use an industrially produced green trimetallic CuO/Ag/ZnO nanocomposite as a potent antimicrobial agent by employing different statistically experimental designs. The highest yield of green synthetic trimetallic CuO/Ag/ZnO nanocomposite was (1.65 mg/mL), which was enhanced by 1.85 and 5.7 times; respectively, by using the Taguchi approach in comparison to the Plackett-Burman strategy and basal condition. A variety of assays techniques were utilized to evaluate the antimicrobial capabilities of the green-synthesized trimetallic CuO/Ag/ZnO nanocomposite at a 200 µg/mL concentration against multidrug-resistant human pathogens. After a 36-h period, the tested 200 µg/mL of the green-synthetic trimetallic CuO/Ag/ZnO nanocomposite effectively reduced the planktonic viable counts of the studied bacteria, Escherichia coli and Staphylococcus aureus, which showed the highest percentage of biofilm reduction (98.06 ± 0.93 and 97.47 ± 0.65%; respectively).
Collapse
Affiliation(s)
- Ayman K El-Sawaf
- Department of Chemistry College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Shahira H El-Moslamy
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt
| | - Elbadawy A Kamoun
- Polymeric Materials Research Department, Advance Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt.
| | - Kaizar Hossain
- Department of Environmental Science, Asutosh College, University of Calcutta, 92 Shyama Prasad Mukherjee Rd, Jatin Das Park, Bhowanipore, Kolkata, W.B., India
| |
Collapse
|
2
|
Moors E, Sharma V, Tian F, Javed B. Surface-Modified Silver Nanoparticles and Their Encapsulation in Liposomes Can Treat MCF-7 Breast Cancer Cells. J Funct Biomater 2023; 14:509. [PMID: 37888174 PMCID: PMC10607499 DOI: 10.3390/jfb14100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Silver nanoparticles (AgNPs) have emerged as a promising tool for cancer treatment due to their unique physicochemical and biological properties. However, their clinical applications are limited by their potential cytotoxicity caused due to oxidation stress and non-specific cellular uptake pathways. To overcome these barriers, surface modifications of AgNPs have been proposed as an effective strategy to enhance their biocompatibility and specificity toward cancer cells. In this study, AgNPs were synthesised using the chemical reduction method and subsequently conjugated with various capping agents such as Polyvinylpyrrolidone (PVP) and Bovine Serum Albumin (BSA). Further, this study involves the synthesis of liposomes by using dipalmitoyl phosphatidylcholine lipid (DPPC) and cholesterol to increase the biocompatibility and bioavailability of AgNPs to MCF-7 breast cancer cells. In vitro, cytotoxicity studies were performed to determine which surface modification method exhibited the highest cytotoxic effect on the MCF-7 breast cancer cells, which was determined through the MTT assay. The AgNPs conjugated with BSA exhibited the highest cytotoxicity at the lowest dosage, with an IC50 of 2.5 μL/mL. The BSA-AgNPs induced a dose-dependent rise in cytotoxicity through the enhancement of nucleophilic dissolution of the AgNPs in cancer cells. In comparison, the unmodified AgNPs had an IC50 value of 3.0 μL/mL, while the PVP-modified AgNPs had an IC50 of 4.24 μL/mL. AgNPs encapsulated in liposomes had an IC50 value of 5.08 μL/mL, which shows that the encapsulation of AgNPs in liposomes controls their entry into cancer cells. The findings of this research have provided insights into the potential use of surface-modified AgNPs and liposomal encapsulated AgNPs as novel therapeutic tools to overcome the conventional treatment limitations of breast cancer cells.
Collapse
Affiliation(s)
- Ellenor Moors
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, D07 H6K8 Dublin, Ireland
- Nanolab, FOCAS Research Institute, Technological University Dublin, D08 CKP1 Dublin, Ireland
| | - Vinayak Sharma
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, D07 H6K8 Dublin, Ireland
- Nanolab, FOCAS Research Institute, Technological University Dublin, D08 CKP1 Dublin, Ireland
| | - Furong Tian
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, D07 H6K8 Dublin, Ireland
- Nanolab, FOCAS Research Institute, Technological University Dublin, D08 CKP1 Dublin, Ireland
| | - Bilal Javed
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, D07 H6K8 Dublin, Ireland
- Nanolab, FOCAS Research Institute, Technological University Dublin, D08 CKP1 Dublin, Ireland
- RELX Elsevier, D18 X6N2 Dublin, Ireland
| |
Collapse
|
3
|
Khashan AA, Dawood Y, Khalaf YH. Green chemistry and anti-inflammatory activity of silver nanoparticles using aqueous curcumin extract. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
4
|
Khan M, Sohail, Raja NI, Asad MJ, Mashwani ZUR. Antioxidant and hypoglycemic potential of phytogenic cerium oxide nanoparticles. Sci Rep 2023; 13:4514. [PMID: 36934168 PMCID: PMC10024689 DOI: 10.1038/s41598-023-31498-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/13/2023] [Indexed: 03/20/2023] Open
Abstract
Plants provide humans with more than just food and shelter; they are also a major source of medications. The purpose of this research was to investigate the antioxidant and hypoglycemic potential of green synthesized CeONPs using Mentha royleana leaves extract. The morphological and physicochemical features of CeONPs were evaluated by UV-Visible spectrophotometry, Scanning Electron Microscopy, Energy Dispersive X-rays and Fourier-transform infrared spectrometry, Dynamic light scattering, Atomic Force Microscopy, Zeta Potential. The average size range of synthesized CeONPs diameter between 46 and 56 nm, crystalline in shape, with Polydispersity index value of 0.2 and subatomic particles mean diameter was 4.5-9.1 nm. The antioxidant capability of CeONPs was assessed using DPPH, ABTS+, hydrogen peroxide, hydroxyl radical scavenging, and reducing power tests. The hypoglycemic potential of CeONPs was investigated using alpha-amylase, alpha-glucosidase, glucose absorption by yeast cells, and antisucrase. The effective concentrations were 500 and 1000 µg/ml found good in suppressing radical species. To explore the hypoglycemic potential of CeONPs, alpha-amylase, alpha-glucosidase, glucose absorption by yeast cell, and antisucrase assays were performed. Glucose absorb by yeast cells assay was tested for three distinct glucose concentrations: 5 mmol/L, 10 mmol/L, and 25 mmol/L. Green synthesize CeONPs showed a dose-dependent response, higher concentrations of CeONPs imposed a stronger inhibitory impact on the catalytic site of enzymes. This study suggest that CeONPs could possibly binds to the charge carrying species and act as competitive inhibitor which slow down the enzyme substrate reaction and prevents enzymatic degradation. The study's findings were outstanding, which bodes well for future medicinal applications of CeONPs.
Collapse
Affiliation(s)
- Maarij Khan
- Department of Botany, Pir Mehr Ali Shah (PMAS)-Arid Agriculture University, Rawalpindi, Pakistan
| | - Sohail
- Institute of Biology/Plant Physiology, Humboldt-Universität Zü Berlin, Berlin, Germany.
| | - Naveed Iqbal Raja
- Department of Botany, Pir Mehr Ali Shah (PMAS)-Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Javaid Asad
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, Pir Mehr Ali Shah (PMAS)-Arid Agriculture University, Rawalpindi, Pakistan.
| |
Collapse
|
5
|
Green biosynthesis of berberine-mediated silver nanorods: Their protective and antidiabetic effects in streptozotocin-induced diabetic rats. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2022.100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
6
|
Satti SH, Raja NI, Ikram M, Oraby HF, Mashwani ZUR, Mohamed AH, Singh A, Omar AA. Plant-Based Titanium Dioxide Nanoparticles Trigger Biochemical and Proteome Modifications in Triticum aestivum L. under Biotic Stress of Puccinia striiformis. Molecules 2022; 27:4274. [PMID: 35807519 PMCID: PMC9268011 DOI: 10.3390/molecules27134274] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we evaluated bioinspired titanium dioxide nanoparticles (TiO2 NPs) that elicited biochemical and proteome modifications in wheat plants under the biotic stress caused by Puccinia striiformis f. sp. tritici (Pst). Biosynthesis of TiO2 NPs was confirmed using UV-Vis spectrophotometry, energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. We found that the nanoparticles with crystalline nature were smaller than 100 nm. The results of FTIR analysis showed the presence of potential functional groups exhibiting O-H, N-H, C-C, and Ti-O stretching. The TiO2 NPs of different concentrations (20, 40, 60, and 80 mg L-1) were exogenously applied to wheat plants under the biotic stress caused by Pst, which is responsible for yellow stripe rust disease. The results of the assessment of disease incidence and percent disease index displayed time- and dose-dependent responses. The 40 mg L-1 TiO2 NPs were the most effective in decreasing disease severity. The bioinspired TiO2 NPs were also evaluated for enzymatic (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)), and nonenzymatic metabolites (total proline, phenolic, and flavonoid contents) in wheat plants under stripe rust stress. The 40 mg L-1 TiO2 NPs were effective in eliciting biochemical modifications to reduce biotic stress. We further evaluated the effects of TiO2 NPs through gel- and label-free liquid chromatography-mass spectrometry (LC-MS) proteome analysis. We performed proteome analysis of infected wheat leaves and leaves treated with 40 mg L-1 TiO2 NPs under stripe rust stress. The functional classification of the proteins showed downregulation of proteins related to protein and carbohydrate metabolism, as well as of photosynthesis in plants under biotic stress. An upregulation of stress-related proteins was observed, including the defense mechanisms and primary metabolic pathways in plants treated with 40 mg L-1 TiO2 NPs under stress. The experimental results showed the potential of applying biogenic TiO2 NPs to combat fungal diseases of wheat plants and provided insight into the protein expression of plants in response to biotic stress.
Collapse
Affiliation(s)
- Seema Hassan Satti
- Department of Botany, Pir Mehr Ali Shah (PMAS) Arid Agriculture University, Rawalpindi 46300, Pakistan; (N.I.R.); (M.I.); (Z.-U.-R.M.)
| | - Naveed Iqbal Raja
- Department of Botany, Pir Mehr Ali Shah (PMAS) Arid Agriculture University, Rawalpindi 46300, Pakistan; (N.I.R.); (M.I.); (Z.-U.-R.M.)
| | - Muhammad Ikram
- Department of Botany, Pir Mehr Ali Shah (PMAS) Arid Agriculture University, Rawalpindi 46300, Pakistan; (N.I.R.); (M.I.); (Z.-U.-R.M.)
| | - Hesham F. Oraby
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 24381, Saudi Arabia
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, Pir Mehr Ali Shah (PMAS) Arid Agriculture University, Rawalpindi 46300, Pakistan; (N.I.R.); (M.I.); (Z.-U.-R.M.)
| | - Azza H. Mohamed
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Ajit Singh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia;
| | - Ahmad A. Omar
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- Citrus Research and Education Center (CREC), Institute of Food and Agricultural Sciences (UF/IFAS), University of Florida, Lake Alfred, FL 33850, USA
| |
Collapse
|
7
|
Sohail, Sawati L, Ferrari E, Stierhof YD, Kemmerling B, Mashwani ZUR. Molecular Effects of Biogenic Zinc Nanoparticles on the Growth and Development of Brassica napus L. Revealed by Proteomics and Transcriptomics. FRONTIERS IN PLANT SCIENCE 2022; 13:798751. [PMID: 35548317 PMCID: PMC9082993 DOI: 10.3389/fpls.2022.798751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
Plants are indispensable on earth and their improvement in terms of food security is a need of time. The current study has been designed to investigate how biogenic zinc nanoparticles (Zn NPs) can improve the growth and development of Brassica napus L. In this study, Zn NPs were synthesized utilizing Mentha arvensis aqueous extracts, and their morphological and optical properties were assessed using UV-Visible spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The synthesized Zn NPs were irregular in shape, indicating aggregation in pattern, with an average particle size of 30 nm, while XRD analysis revealed the crystalline structure of nanoparticles. The growth and development of B. napus varieties (Faisal canola and Shiralee) were assessed after foliar treatments with different concentrations of biogenic Zn NPs. In B. napus varieties, exposure to 15 mg/L Zn NPs dramatically increased chlorophyll, carotenoid content, and biomass accumulation. Similarly, proteomic analyses, on the other hand, revealed that proteins associated with photosynthesis, transport, glycolysis, and stress response in both Brassica varieties were substantially altered. Such exposure to Zn NPs, differential expression of genes associated with photosynthesis, ribosome structural constituents, and oxidative stress response were considerably upregulated in B. napus var. (Faisal and Shiralee canola). The results of this study revealed that foliar applications of biogenic Zn NPs influence the transcriptome and protein profiling positively, therefore stimulating plant growth and development.
Collapse
Affiliation(s)
- Sohail
- Department of Botany, Pir Mehr Ali Shah (PMAS)-Arid Agriculture University, Rawalpindi, Pakistan
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
- Institute of Biology/Plant Physiology, Humboldt-University Zü Berlin, Berlin, Germany
| | - Laraib Sawati
- Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, Pakistan
| | - Elenora Ferrari
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - York-Dieter Stierhof
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Birgit Kemmerling
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Zia-ur-Rehman Mashwani
- Department of Botany, Pir Mehr Ali Shah (PMAS)-Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
8
|
Batool SU, Javed B, Sohail, Zehra SS, Mashwani ZUR, Raja NI, Khan T, ALHaithloul HAS, Alghanem SM, Al-Mushhin AAM, Hashem M, Alamri S. Exogenous Applications of Bio-fabricated Silver Nanoparticles to Improve Biochemical, Antioxidant, Fatty Acid and Secondary Metabolite Contents of Sunflower. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1750. [PMID: 34361136 PMCID: PMC8308146 DOI: 10.3390/nano11071750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
The present study involved the bio-fabrication of silver nanoparticles (AgNPs) by using the Euphorbia helioscopia L. leaves aqueous extract to improve the production of secondary metabolites in industrially important sunflower (Helianthus annuus L.) plants. Phyto-fabrication of AgNPs was confirmed by using spectrophotometry, SEM imaging and X-ray diffraction analysis. The morphological and optical characterization manifested that the AgNPs are crystalline and exist in the size range of 30-100 nm. Various concentrations (10, 20, 40, 60, 80 and 100 mg/L) of AgNPs were applied in combinations on sunflower seeds and crop plants. The effects of biosynthesized AgNPs were evaluated for agro-morphological parameters (plant height, flowering initiation and seed weight), biochemical metabolites (chlorophyll, proline, soluble sugar, amino acid and protein contents) and enzymatic activities (superoxide dismutase and ascorbate peroxidase) in sunflower and 60 mg/L concentration of AgNPs on sunflower seeds and foliar sprays on plants in combination were found to be effective to elicit biochemical modifications to improve secondary metabolites. It was also observed experimentally that 60 mg/L concentration of AgNPs improved the biochemical, fatty acid and enzymatic attributes of sunflower plants, which in turn improved the plant agro-morphological parameters. Near-infrared spectroscopic analysis results confirmed the improvement in the seed quality, oil contents and fatty acid composition (palmitic acid, oleic acid and linoleic acid) after the applications of AgNPs. The findings of the present investigation confirm the exogenous applications of bio-fabricated AgNPs in combinations on seeds and plants to improve the plant yield, seed quality and secondary metabolite contents of the sunflower plants.
Collapse
Affiliation(s)
- Syeda Umber Batool
- Department of Chemical and Life Sciences, Qurtuba University of Science & Information Technology, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan;
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Punjab, Pakistan;
| | - Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Punjab, Pakistan;
| | - Sohail
- Institute of Biology/Plant Physiology, Humboldt-University Zü Berlin, 10115 Berlin, Germany;
| | - Syeda Sadaf Zehra
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan;
| | - Zia-ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Punjab, Pakistan;
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Punjab, Pakistan;
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara, Lower Dir 18800, Khyber Pakhtunkhwa, Pakistan;
| | | | | | - Amina A. M. Al-Mushhin
- Department of Biology, College of Sciences and Humanities in AlKharj, Prince Sattam Bin Abdulaziz University, AlKharj 16278, Saudi Arabia;
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (M.H.); (S.A.)
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Saad Alamri
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (M.H.); (S.A.)
| |
Collapse
|
9
|
Ikram M, Javed B, Hassan SWU, Satti SH, Sarwer A, Raja NI, Mashwani ZUR. Therapeutic potential of biogenic titanium dioxide nanoparticles: a review on mechanistic approaches. Nanomedicine (Lond) 2021; 16:1429-1446. [PMID: 34085534 DOI: 10.2217/nnm-2021-0020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Biogenic titanium dioxide nanoparticles have unique size, shape and biochemical functional corona that embellish them with the potential to perform therapeutic actions such as anticancer, antimicrobial, antioxidant, larvicidal and photocatalysis by adopting various mechanistic or physiological approaches at the molecular level. We have provided a detailed overview of some of these physiological mechanisms, including disruption of the electron transport chain, DNA fragmentation, mitochondrial damage, induction of apoptosis, disorganization of the plasma membrane, inhibition of ATP synthase activity, suspension of cellular signaling pathways and inhibition of enzymatic activity. The biogenic synthesis of customized titanium dioxide nanoparticles has future application potentials to do breakthroughs in the pharmaceutical sectors to advance precision medicine and to better explain the disease prognosis and treatment strategies.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Syed Wajeeh Ul Hassan
- Department of General Medicine, Faisalabad Medical University, Faisalabad, Punjab 38000, Pakistan
| | - Seema Hassan Satti
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Abdullah Sarwer
- Department of Internal Medicine, Nawaz Sharif Medical College, University of Gujrat, Gujrat, Punjab 50700, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| |
Collapse
|
10
|
Javed B, Ikram M, Farooq F, Sultana T, Mashwani ZUR, Raja NI. Biogenesis of silver nanoparticles to treat cancer, diabetes, and microbial infections: a mechanistic overview. Appl Microbiol Biotechnol 2021; 105:2261-2275. [PMID: 33591386 DOI: 10.1007/s00253-021-11171-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
Green synthesis of silver nanoparticles (SNPs) by harnessing the natural abilities of plant secondary metabolites has advantages over routine physical and chemical synthetic approaches due to their one-step experimental setup to reduce and stabilize the bulk silver into SNPs, biocompatible nature, and therapeutic significance. The unique size, shape, and biochemical functional corona of SNPs embellish them with the potential to perform therapeutic actions by adopting various mechanistic approaches including but not limited to the disruption of the electron transport chain, mitochondrial damage, DNA fragmentation, inhibition of ATP synthase activity, disorganization of the cell membrane, suspension of cellular signaling pathways, induction of apoptosis, and inhibition of enzymes activity. This review elaborates the biogenic synthesis of SNPs in redox chemical reactions by using plant secondary metabolites found in plant extracts. In addition, it explains the synergistic influence of physicochemical reaction parameters such as the temperature, pH, the concentration of the AgNO3, and the ratio of reactants to affect the reaction kinetics, molecular mechanics, enzymatic catalysis, and protein conformations that aid to affect the size, shape, and potential biochemical corona of nanoparticles. This review also provides up-to-date information on the mechanistic actions that embellish the plant-based SNPs, an anticancer, cytotoxic, antidiabetic, antimicrobial, and antioxidant potential. The mechanistic understanding of the therapeutic actions of SNPs will help in precision medicine to develop customized treatment and healthcare approaches for the welfare of the human population. KEY POINTS: • Significance of the biogenic nanoparticles • Biomedical application potential of the plant-based silver nanoparticles • Mechanism of the anticancer, antidiabetic, and antimicrobial actions of the plant-based silver nanoparticles.
Collapse
Affiliation(s)
- Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan.
| | - Muhammad Ikram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan
| | - Fatima Farooq
- Institute of Industrial Biotechnology, Government College University, Lahore, Punjab, 54000, Pakistan
| | - Tahira Sultana
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan
| |
Collapse
|
11
|
Satti SH, Raja NI, Javed B, Akram A, Mashwani ZUR, Ahmad MS, Ikram M. Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. PLoS One 2021; 16:e0246880. [PMID: 33571310 PMCID: PMC7877615 DOI: 10.1371/journal.pone.0246880] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
The current study involves the biogenesis of titanium dioxide nanoparticles (TiO2 NPs) by using Moringa oleifera Lam. aqueous leaf extract for the reduction of titanium dioxide salt into TiO2 nanoparticles. The biosynthesized TiO2 nanoparticles were observed by using the UV-visible spectrophotometry, SEM, EDX and XRD analytical methods. It was confirmed that the nanoparticles are crystalline and exist in the size range of 10-100 nm. The FTIR analysis confirmed the presence of O-H (hydrogen bonding), N-H (amide), C-C (alkanes) and C-I (Iodo-stretch) functional groups responsible for the stabilization of nanoparticles. Various concentrations (20, 40, 60 and 80 mg/L) of TiO2 NPs were applied exogenously on wheat plants infected with a fungus Bipolaris sorokiniana responsible to cause spot blotch disease at different time intervals. The measurement of disease incidence and percent disease index showed the time-dependent response and 40 mg/L was reported a stable concentration of TiO2 NPs to reduce the disease severity. The effects of biosynthesized TiO2 NPs were also evaluated for agro-morphological (leaf and root surface area, plant fresh and dry weight and yield parameters), physiological (relative water content, membrane stability index and chlorophyll content) and non-enzymatic metabolites (soluble sugar, protein, soluble phenol and flavonoid content) in wheat plants under biotic stress and 40 mg/L concentration of TiO2 NPs was found to be effective to elicit modifications to reduce biotic stress. The current study highlights the significant role of biosynthesized TiO2 NPs in controlling fungal diseases of wheat plants and thus ultimately improving the quality and yield of wheat plants.
Collapse
Affiliation(s)
- Seema Hassan Satti
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Abida Akram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | | | - Muhammad Sheeraz Ahmad
- University Institute of Biochemistry and Biotechnology, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Muhammad Ikram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| |
Collapse
|
12
|
Ikram M, Javed B, Raja NI, Mashwani ZUR. Biomedical Potential of Plant-Based Selenium Nanoparticles: A Comprehensive Review on Therapeutic and Mechanistic Aspects. Int J Nanomedicine 2021; 16:249-268. [PMID: 33469285 PMCID: PMC7811472 DOI: 10.2147/ijn.s295053] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Selenium nanoparticles (SeNPs) have advantages over other nanomaterials because of the promising role of selenium in the stabilization of the immune system and activation of the defense response. The use of SeNPs and their supplements not only have pharmacological significance but also boost and prepare the body's immune system to fight the pathogens. This review summarizes the recent progress in the biogenesis of plant-based SeNPs by using various plant species and the role of secondary metabolites on their biocompatible functioning. Phyto-synthesis of SeNPs results in the synthesis of nanomaterials of various, size, shape and biochemical nature and has advantages over other routine physical and chemical methods because of their biocompatibility, eco-friendly nature and in vivo actions. Unfortunately, the plant-based SeNPs failed to attain considerable attention in the pharmaceutical industry. However, a few studies were performed to explore the therapeutic potential of the SeNPs against various cancer cells, microbial pathogens, viral infections, hepatoprotective actions, diabetic management, and antioxidant approaches. Further, some of the selenium-based drug delivery systems are developed by engineering the SeNPs with the functional ligands to deliver drugs to the targeted sites. This review also provides up-to-date information on the mechanistic actions that the SeNPs adopt to achieve their designated tasks as it may help to develop precision medicine with customized treatment and healthcare for the ailing population.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| |
Collapse
|
13
|
Javed B, Mashwani ZUR, Sarwer A, Raja NI, Nadhman A. Synergistic response of physicochemical reaction parameters on biogenesis of silver nanoparticles and their action against colon cancer and leishmanial cells. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2020; 48:1340-1353. [PMID: 33241944 DOI: 10.1080/21691401.2020.1850467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
Physicochemical parameters include pH, temperature, the concentration of the AgNO3, ratio of reactants, agitation and incubation period that act synergistically and provide a steering force to modulate the biogenesis of nanoparticles by influencing the molecular dynamics, reaction kinetics, protein conformations, and catalysis. The current study involved the bio-fabrication of silver nanoparticles (SNPs) by using the reducing abilities of Mentha longifolia (L.) L. leaves aqueous extract. Spectrophotometric analysis of various biochemical reactions showed that 3 mM of AgNO3 at 120 °C in an acidic pH when mixed in 1-9 ratio of plant extract and AgNO3 respectively, are the optimised conditions for SNPs synthesis. Different analytical techniques confirmed that the nanoparticles are anisotropic and nearly spherical and have a size range of 10-100 nm. The ∼10 µg/ml of SNPs killed ∼66% of Leishmania population and IC50 was measured at 8.73 µg/ml. SRB assay and Annexin V apoptosis assay results showed that the plant aqueous extract and SNPs are not active against HCT116 colon cancer cells and no IC50 (80% survival) was reported. ROS generation was quantified at 0.08 Φ, revealed that the SNPs from M. longifolia can generate free radicals and no photothermal activity was recorded which makes them non-photodynamic.
Collapse
Affiliation(s)
- Bilal Javed
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | | | - Abdullah Sarwer
- Nawaz Sharif Medical College, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, Department of Biotechnology, CECOS University, Peshawar, Pakistan
| |
Collapse
|
14
|
Javed B, Nadhman A, Mashwani ZUR. Optimization, characterization and antimicrobial activity of silver nanoparticles against plant bacterial pathogens phyto-synthesized by Mentha longifolia. MATERIALS RESEARCH EXPRESS 2020; 7:085406. [DOI: 10.1088/2053-1591/abaf19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Abstract
The present study involves the Phyto-synthesis of the colloidal silver nanoparticles (AgNPs) and their applications to biologically control plant bacterial pathogens. The synthesis of AgNPs was monitored by measuring the absorbance and a characteristic surface plasmon resonance (SPR) band was observed at 450 nm. The different reaction conditions such as the temperature, incubation period, the concentration of the silver salt and the pH were optimized using the factorial design of the experiment for the better yield and the synthesis of AgNPs. The microscopic results showed that the AgNPs are anisotropic and nearly spherical and exist in the size range of ∼20–100 nm while the EDX analysis confirmed the presence of the elemental Ag. The x-ray diffraction pattern confirmed that the AgNPs are crystalline. The hydrodynamic diameter of AgNPs has measured in the range of ∼13–35 nm and the average size of a single particle was 15.55 nm. The ability of the AgNPs to biologically control the plant bacterial pathogens was measured in terms of antibacterial activity against gram-negative pathogenic bacterial strains; Pectobacterium carotovorum, Xanthomonas oryzae, Xanthomonas vesicatoria and Ralstonia solanacearum and potential antimicrobial activity were observed between 2–12 μg ml−1. The biocompatibility studies revealed that the AgNPs are highly biocompatible (LD100 208 μg ml−1) against RBCs. These findings endorse the applications of AgNPs to biological control the plant bacterial pathogens and the consumption of the plants treated with NPs is biocompatible for the humans.
Collapse
|