1
|
Sampaio‐Pinto V, Janssen J, Chirico N, Serra M, Alves PM, Doevendans PA, Voets IK, Sluijter JPG, van Laake LW, van Mil A. A Roadmap to Cardiac Tissue-Engineered Construct Preservation: Insights from Cells, Tissues, and Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008517. [PMID: 34048090 PMCID: PMC11468174 DOI: 10.1002/adma.202008517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Worldwide, over 26 million patients suffer from heart failure (HF). One strategy aspiring to prevent or even to reverse HF is based on the transplantation of cardiac tissue-engineered (cTE) constructs. These patient-specific constructs aim to closely resemble the native myocardium and, upon implantation on the diseased tissue, support and restore cardiac function, thereby preventing the development of HF. However, cTE constructs off-the-shelf availability in the clinical arena critically depends on the development of efficient preservation methodologies. Short- and long-term preservation of cTE constructs would enable transportation and direct availability. Herein, currently available methods, from normothermic- to hypothermic- to cryopreservation, for the preservation of cardiomyocytes, whole-heart, and regenerative materials are reviewed. A theoretical foundation and recommendations for future research on developing cTE construct specific preservation methods are provided. Current research suggests that vitrification can be a promising procedure to ensure long-term cryopreservation of cTE constructs, despite the need of high doses of cytotoxic cryoprotective agents. Instead, short-term cTE construct preservation can be achieved at normothermic or hypothermic temperatures by administration of protective additives. With further tuning of these promising methods, it is anticipated that cTE construct therapy can be brought one step closer to the patient.
Collapse
Affiliation(s)
- Vasco Sampaio‐Pinto
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Regenerative Medicine CenterUniversity Medical Center UtrechtUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Jasmijn Janssen
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Regenerative Medicine CenterUniversity Medical Center UtrechtUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Nino Chirico
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Regenerative Medicine CenterUniversity Medical Center UtrechtUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Margarida Serra
- IBETInstituto de Biologia Experimental e TecnológicaApartado 12Oeiras2781‐901Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - Paula M. Alves
- IBETInstituto de Biologia Experimental e TecnológicaApartado 12Oeiras2781‐901Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - Pieter A. Doevendans
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Netherlands Heart InstituteP.O. Box 19258Utrecht3501 DGThe Netherlands
| | - Ilja K. Voets
- Laboratory of Self‐Organizing Soft MatterDepartment of Chemical Engineering and Chemistry & Institute of Complex Molecular Systems (ICMS)Eindhoven University of Technology (TUE)Groene Loper 3Eindhoven5612 AEThe Netherlands
| | - Joost P. G. Sluijter
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Regenerative Medicine CenterUniversity Medical Center UtrechtUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Linda W. van Laake
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Regenerative Medicine CenterUniversity Medical Center UtrechtUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Alain van Mil
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Regenerative Medicine CenterUniversity Medical Center UtrechtUppsalalaan 8Utrecht3584 CTThe Netherlands
| |
Collapse
|
2
|
Pflaum M, Merhej H, Peredo A, De A, Dipresa D, Wiegmann B, Wolkers W, Haverich A, Korossis S. Hypothermic preservation of endothelialized gas-exchange membranes. Artif Organs 2020; 44:e552-e565. [PMID: 32666514 DOI: 10.1111/aor.13776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/02/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
Endothelialization of the blood contacting surfaces of blood-contacting medical devices, such as cardiovascular prostheses or biohybrid oxygenators, represents a plausible strategy for increasing their hemocompatibility. Nevertheless, isolation and expansion of autologous endothelial cells (ECs) usually requires multiple processing steps and time to obtain sufficient cell numbers. This excludes endothelialization from application in acute situations. Off-the-shelf availability of cell-seeded biohybrid devices could be potentially facilitated by hypothermic storage. In this study, the survival of cord-blood-derived endothelial colony forming cells (ECFCs) that were seeded onto polymethylpentene (PMP) gas-exchange membranes and stored for up to 2 weeks in different commercially available and commonly used preservation media was measured. While storage at 4°C in normal growth medium (EGM-2) for 3 days resulted in massive disruption of the ECFC monolayer and a significant decline in viability, ECFC monolayers preserved in Chillprotec could recover after up to 14 days with negligible effects on their integrity and viability. ECFC monolayers preserved in Celsior, HTS-FRS, or Rokepie medium showed a significant decrease in viability after 7 days or longer periods. These results demonstrated the feasibility of hypothermic preservation of ECFC monolayers on gas-exchange membranes for up to 2 weeks, with potential application on the preservation of pre-endothelialized oxygenators and further biohybrid cardiovascular devices.
Collapse
Affiliation(s)
- Michael Pflaum
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Hayan Merhej
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ariana Peredo
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Adim De
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Daniele Dipresa
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, BREATH, Hannover Medical School, Hannover, Germany
| | - Willem Wolkers
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany.,Institute of Multiphase Processes, Faculty of Mechanical Engineering, Leibniz University Hannover, Hannover, Germany.,Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine, Hannover, Germany
| | - Axel Haverich
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, BREATH, Hannover Medical School, Hannover, Germany
| | - Sotirios Korossis
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, BREATH, Hannover Medical School, Hannover, Germany.,Cardiopulmonary Regenerative Engineering (CARE) Group, Centre for Biological Engineering (CBE), Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|