1
|
Kim H, Kim D. Numerical study of the induction of intratumoral apoptosis under microwave ablation by changing slot length of microwave coaxial antenna. Med Biol Eng Comput 2024; 62:2177-2187. [PMID: 38488930 DOI: 10.1007/s11517-024-03068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
Recent advances in technology have led to an increase in the detection of previously undetected deep-located tumor tissue. As a result, the medical field is using a variety of methods to treat deep-located tumors, and minimally invasive treatment techniques are being explored. In this study, therapeutic effect of microwave ablation (MWA) on tumor generated inside liver tissue was analyzed through numerical analysis. The distribution of electromagnetic fields in biological tissues emitted by microwave coaxial antenna (MCA) was calculated through the wave equation, and the thermal behavior of the tissue was analyzed through the Pennes bioheat equation. Among various treatment conditions constituting MWA, tumor radius and the slot length inside the MCA were changed, and the resulting treatment effect was quantitatively confirmed through three apoptotic variables. As a result, each tumor radius has optimal power condition for MWA, 2.6W, 2.4W, and 3.0W respectively. This study confirmed optimal therapeutic conditions for MWA. Three apoptotic variables were used to quantitatively identify apoptotic temperature maintenance inside tumor tissue and thermal damage to surrounding normal tissue. The findings of this study are expected to serve as a standard for treatment based on actual MWA treatment.
Collapse
Affiliation(s)
- Hyunjung Kim
- Department of Mechanical Engineering, Ajou University, Gyeonggi-do, Suwon-si, 16499, Korea
| | - Donghyuk Kim
- Department of Mechanical Engineering, Ajou University, Gyeonggi-do, Suwon-si, 16499, Korea.
| |
Collapse
|
2
|
Fang Z, Wu C, Cao L, Wang T, Hong X, Moser MAJ, Zhang W, Zhang B. Development of non-invasive flexible directional microwave ablation for central lung cancer: a simulation study. Phys Med Biol 2024; 69:09NT04. [PMID: 38527368 DOI: 10.1088/1361-6560/ad3795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Transbronchial microwave ablation (MWA) with flexible antennas has gradually become an attractive alternative to percutaneous MWA for lung cancer due to its characteristic of non-invasiveness. However, flexible antennas for the precision ablation of lung tumors that are adjacent to critical bronchial structures are still not available. In this study, a non-invasive flexible directional (FD) antenna for early stage central lung tumors surrounding the bronchia was proposed. A comprehensive numerical MWA model with the FD antenna was developed in a real human-sized left lung model. The structure of the antenna and the treatment protocol were optimized by a generic algorithm for the precision ablation of two cases of early stage central lung cancer (i.e. spherical-like and ellipsoidal tumors). The electromagnetic efficiency of the optimized antenna was also improved by implementing an optimizedπ-matching network for impedance matching. The results indicate that the electromagnetic energy of MWA can be restricted to a particular area for precision ablation of specific lung tumors using the FD antenna. This study contributes to the field of lung cancer management with MWA.
Collapse
Affiliation(s)
- Zheng Fang
- Intelligent Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, People's Republic of China
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Chen Wu
- Intelligent Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, People's Republic of China
| | - Lin Cao
- Department of Automatic Control and Systems Engineering, the University of Sheffield, Sheffield, United Kingdom
| | - Tao Wang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaowu Hong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
- Research Institute of Fudan University, Ningbo, People's Republic of China
| | - Michael A J Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, Canada
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Bing Zhang
- Intelligent Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Alemaryeen A, Noghanian S. A Survey of the Thermal Analysis of Implanted Antennas for Wireless Biomedical Devices. MICROMACHINES 2023; 14:1894. [PMID: 37893331 PMCID: PMC10609145 DOI: 10.3390/mi14101894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
Wireless implantable biomedical devices (IBDs) are emerging technologies used to enhance patient treatment and monitoring. The performance of wireless IBDs mainly relies on their antennas. Concerns have emerged regarding the potential of wireless IBDs to unintentionally cause tissue heating, leading to potential harm to surrounding tissue. The previous literature examined temperature estimations and specific absorption rates (SAR) related to IBDs, mainly within the context of thermal therapy applications. Often, these studies consider system parameters such as frequency, input power, and treatment duration without isolating their individual impacts. This paper provides an extensive literature review, focusing on key antenna design parameters affecting heat distribution in IBDs. These parameters encompass antenna design, treatment settings, testing conditions, and thermal modeling. The research highlights that input power has the most significant impact on localized temperature, with operating frequency ranked as the second most influential factor. While emphasizing the importance of understanding tissue heating and optimizing antennas for improved power transfer, these studies also illuminate existing knowledge gaps. Excessive tissue heat can lead to harmful effects such as vaporization, carbonization, and irreversible tissue changes. To ensure patient safety and reduce expenses linked to clinical trials, employing simulation-driven approaches for IBD antenna design and optimization is essential.
Collapse
Affiliation(s)
- Ala Alemaryeen
- Department of Computer Engineering and Communication, Tafila Technical University, Tafila 66110, Jordan
| | | |
Collapse
|
4
|
In Vitro Measurement and Mathematical Modeling of Thermally-Induced Injury in Pancreatic Cancer Cells. Cancers (Basel) 2023; 15:cancers15030655. [PMID: 36765619 PMCID: PMC9913239 DOI: 10.3390/cancers15030655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Thermal therapies are under investigation as part of multi-modality strategies for the treatment of pancreatic cancer. In the present study, we determined the kinetics of thermal injury to pancreatic cancer cells in vitro and evaluated predictive models for thermal injury. Cell viability was measured in two murine pancreatic cancer cell lines (KPC, Pan02) and a normal fibroblast (STO) cell line following in vitro heating in the range 42.5-50 °C for 3-60 min. Based on measured viability data, the kinetic parameters of thermal injury were used to predict the extent of heat-induced damage. Of the three thermal injury models considered in this study, the Arrhenius model with time delay provided the most accurate prediction (root mean square error = 8.48%) for all cell lines. Pan02 and STO cells were the most resistant and susceptible to hyperthermia treatments, respectively. The presented data may contribute to studies investigating the use of thermal therapies as part of pancreatic cancer treatment strategies and inform the design of treatment planning strategies.
Collapse
|
5
|
Bottiglieri A, Brace C, O’Halloran M, Farina L. MWA Performed at 5.8 GHz through 'Side Firing' Approach: An Exploratory Study. SENSORS (BASEL, SWITZERLAND) 2022; 22:9320. [PMID: 36502019 PMCID: PMC9735527 DOI: 10.3390/s22239320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Recent studies have shown that ablation techniques have the potential to eradicate adrenal adenomas while preserving the functionalities of the adrenal gland and the surrounding anatomical structures. This study explores a new microwave ablation (MWA) approach operating at 5.8 GHz and using anatomical and dielectric characteristics of the target tissue to create directional heating patterns. Numerical simulations are executed in planar and 3D adrenal models, considering two energy doses. The numerical study is refined accounting for the vaporization of the tissue water content. Ex vivo experimental evaluations on porcine adrenal models complete the study. The numerical and experimental results show that spherical ablation zones are able to cover the target for both energy doses considered. Nonetheless, most of the non-targeted tissues can be preserved from excessive heating when low energy level is used. Numerical models accounting for water vaporization are capable to foresee the experimental temperature values. This study shows that the proposed MWA directional approach operating at 5.8 GHz can be considered for creating effective and selective ablation zones.
Collapse
Affiliation(s)
- Anna Bottiglieri
- Electrical and Electronic Engineering, National University of Ireland Galway, H91 TK33 Galway, Ireland
- Translational Medical Device Lab, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Christopher Brace
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
- Department of Radiology, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
| | - Martin O’Halloran
- Translational Medical Device Lab, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Laura Farina
- Translational Medical Device Lab, National University of Ireland Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
6
|
Pfannenstiel A, Iannuccilli J, Cornelis FH, Dupuy DE, Beard WL, Prakash P. Shaping the future of microwave tumor ablation: a new direction in precision and control of device performance. Int J Hyperthermia 2022; 39:664-674. [DOI: 10.1080/02656736.2021.1991012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Austin Pfannenstiel
- Precision Microwave Inc, Manhattan, KS, USA
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Jason Iannuccilli
- Department of Diagnostic Imaging, Division of Interventional Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Francois H. Cornelis
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Damian E. Dupuy
- Diagnostic Imaging, Brown University, Radiology, Cape Cod Hospital, MA, USA
| | - Warren L. Beard
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, USA
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
7
|
Sebek J, Cappiello G, Rahmani G, Zeinali N, Keating M, Fayemiwo M, Harkin J, McDaid L, Gardiner B, Sheppard D, Senanayake R, Gurnell M, O’Halloran M, Dennedy MC, Prakash P. Image-based computer modeling assessment of microwave ablation for treatment of adrenal tumors. Int J Hyperthermia 2022; 39:1264-1275. [PMID: 36137605 PMCID: PMC9820798 DOI: 10.1080/02656736.2022.2125590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To assess the feasibility of delivering microwave ablation for targeted treatment of aldosterone producing adenomas using image-based computational models. METHODS We curated an anonymized dataset of diagnostic 11C-metomidate PET/CT images of 14 patients with aldosterone producing adenomas (APA). A semi-automated approach was developed to segment the APA, adrenal gland, and adjacent organs within 2 cm of the APA boundary. The segmented volumes were used to implement patient-specific 3D electromagnetic-bioheat transfer models of microwave ablation with a 2.45 GHz directional microwave ablation applicator. Ablation profiles were quantitatively assessed based on the extent of the APA target encompassed by an ablative thermal dose, while limiting thermal damage to the adjacent normal adrenal tissue and sensitive critical structures. RESULTS Across the 14 patients, adrenal tumor volumes ranged between 393 mm3 and 2,395 mm3. On average, 70% of the adrenal tumor volumes received an ablative thermal dose of 240CEM43, while limiting thermal damage to non-target structures, and thermally sparing 83.5-96.4% of normal adrenal gland. Average ablation duration was 293 s (range: 60-600 s). Simulations indicated coverage of the APA with an ablative dose was limited when the axis of the ablation applicator was not well aligned with the major axis of the targeted APA. CONCLUSIONS Image-based computational models demonstrate the potential for delivering microwave ablation to APA targets within the adrenal gland, while limiting thermal damage to surrounding non-target structures.
Collapse
Affiliation(s)
- Jan Sebek
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Grazia Cappiello
- Translational Medical Devices Lab, National University of Ireland, Galway, Republic of Ireland
| | - George Rahmani
- Department of Radiology, Galway University Hospitals, Galway, Republic Ireland
| | - Nooshin Zeinali
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Muireann Keating
- School of Medicine, National University of Ireland, Galway, Republic Ireland
| | - Michael Fayemiwo
- School of Computing, Engineering, and Intelligent Systems, Ulster University, Londonderry, Northern Ireland
| | - Jim Harkin
- School of Computing, Engineering, and Intelligent Systems, Ulster University, Londonderry, Northern Ireland
| | - Liam McDaid
- School of Computing, Engineering, and Intelligent Systems, Ulster University, Londonderry, Northern Ireland
| | - Bryan Gardiner
- School of Computing, Engineering, and Intelligent Systems, Ulster University, Londonderry, Northern Ireland
| | - Declan Sheppard
- Department of Radiology, Galway University Hospitals, Galway, Republic Ireland
| | | | - Mark Gurnell
- Institute of Metabolic Science, University of Cambridge, United Kingdom
| | - Martin O’Halloran
- Translational Medical Devices Lab, National University of Ireland, Galway, Republic of Ireland
| | - M. Conall Dennedy
- School of Medicine, National University of Ireland, Galway, Republic Ireland
| | - Punit Prakash
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA.,Author to whom correspondence should be addressed: Punit Prakash, 3078 Engineering Hall, 1701D Platt St, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
8
|
Donlon P, Dennedy MC. Thermal ablation in adrenal disorders: a discussion of the technology, the clinical evidence and the future. Curr Opin Endocrinol Diabetes Obes 2021; 28:291-302. [PMID: 33741778 PMCID: PMC8183491 DOI: 10.1097/med.0000000000000627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW To summarise the emerging role of thermal ablation as a therapeutic modality in the management of functioning adrenal tumours and metastases to the adrenal gland. RECENT FINDINGS Observational evidence has demonstrated the benefit of thermal ablation in (i) resolving adrenal endocrinopathy arising from benign adenomas, (ii) treating solitary metastases to the adrenal and (iii) controlling metastatic adrenocortical carcinoma and phaeochromocytoma/paraganglioma. SUMMARY Microwave thermal ablation offers a promising, minimally invasive therapeutic modality for the management of functioning adrenocortical adenomas and adrenal metastases. Appropriate technological design, treatment planning and choice of imaging modality are necessary to overcome technical challenges associated with this emerging therapeutic approach.
Collapse
Affiliation(s)
- Padraig Donlon
- Adrenal Research Laboratory, The Discipline of Pharmacology and Therapeutics, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Ireland
| | | |
Collapse
|
9
|
Huang H, Zhang L, Moser MAJ, Zhang W, Zhang B. A review of antenna designs for percutaneous microwave ablation. Phys Med 2021; 84:254-264. [PMID: 33773908 DOI: 10.1016/j.ejmp.2021.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 12/15/2022] Open
Abstract
Microwave (MW) antenna is a key element in microwave ablation (MWA) treatments as the means that energy is delivered in a focused manner to the tumor and its surrounding area. The energy delivered results in a rise in temperature to a lethal level, resulting in cell death in the ablation zone. The delivery of energy and hence the success of MWA is closely dependent on the structure of the antennas. Therefore, three design criteria, such as expected ablation zone pattern, efficiency of energy delivery, and minimization of the diameter of the antennas have been the focus along the evolution of the MW antenna. To further improve the performance of MWA in the treatment of various tumors through inventing novel antennas, this article reviews the state-of-the-art and summarizes the development of MW antenna designs regarding the three design criteria.
Collapse
Affiliation(s)
- Hangming Huang
- Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Lifeng Zhang
- Department of General Surgery, the First Affiliated Hospital of Soochow University,Soochow University, Jiangsu, China
| | - Michael A J Moser
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Wenjun Zhang
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Bing Zhang
- Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China.
| |
Collapse
|
10
|
Fallahi H, Sebek J, Prakash P. Broadband Dielectric Properties of Ex Vivo Bovine Liver Tissue Characterized at Ablative Temperatures. IEEE Trans Biomed Eng 2020; 68:90-98. [PMID: 32746009 DOI: 10.1109/tbme.2020.2996825] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate the thermal and frequency dependence of dielectric properties of ex vivo liver tissue - relative permittivity and effective conductivity - over the frequency range 500 MHz to 6 GHz and temperatures ranging from 20 to 130 °C. METHODS We measured the dielectric properties of fresh ex vivo bovine liver tissue using the open-ended coaxial probe method (n = 15 samples). Numerical optimization techniques were utilized to obtain parametric models for characterizing changes in broadband dielectric properties as a function of temperature and thermal isoeffective dose. The effect of heating tissue at rates over the range 6.4-16.9 °C/min was studied. The measured dielectric properties were used in simulations of microwave ablation to assess changes in simulated antenna return loss compared to experimental measurements. RESULTS Across all frequencies, both relative permittivity and effective conductivity dropped sharply over the temperature range 89 - 107 °C. Below 91 °C, the slope of the effective conductivity changes from positive values at lower frequencies (0.5-1.64 GHz) to negative values at higher frequencies (1.64-6 GHz). The maximum achieved correlation values between transient reflection coefficients from measurements and simulations ranged between 0.83 - 0.89 and 0.68 - 0.91, respectively, when using temperature-dependent and thermal-dose dependent dielectric property parameterizations. CONCLUSION We have presented experimental measurements and parametric models for characterizing changes in dielectric properties of bovine liver tissue at ablative temperatures. SIGNIFICANCE The presented dielectric property models will contribute to the development of ablation systems operating at frequencies other than 2.45 GHz, as well as broadband techniques for monitoring growth of microwave ablation zones.
Collapse
|
11
|
Faridi P, Keselman P, Fallahi H, Prakash P. Experimental assessment of microwave ablation computational modeling with MR thermometry. Med Phys 2020; 47:3777-3788. [PMID: 32506550 DOI: 10.1002/mp.14318] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Computational models are widely used during the design and characterization of microwave ablation (MWA) devices, and have been proposed for pretreatment planning. Our objective was to assess three-dimensional (3D) transient temperature and ablation profiles predicted by MWA computational models with temperature profiles measured experimentally using magnetic resonance (MR) thermometry in ex vivo bovine liver. MATERIALS AND METHODS We performed MWA in ex vivo tissue under MR guidance using a custom, 2.45 GHz water-cooled applicator. MR thermometry data were acquired for 2 min prior to heating, during 5-10 min microwave exposures, and for 3 min following heating. Fiber-optic temperature sensors were used to validate the accuracy of MR temperature measurements. A total of 13 ablation experiments were conducted using 30-50 W applied power at the applicator input. MWA computational models were implemented using the finite element method, and incorporated temperature-dependent changes in tissue physical properties. Model-predicted ablation zone extents were compared against MRI-derived Arrhenius thermal damage maps using the Dice similarity coefficient (DSC). RESULTS Prior to heating, the observed standard deviation of MR temperature data was in the range of 0.3-0.7°C. Mean absolute error between MR temperature measurements and fiber-optic temperature probes during heating was in the range of 0.5-2.8°C. The mean DSC between model-predicted ablation zones and MRI-derived Arrhenius thermal damage maps for 13 experimental set-ups was 0.95. When comparing simulated and experimentally (i.e. using MRI) measured temperatures, the mean absolute error (MAE %) relative to maximum temperature change was in the range 5%-8.5%. CONCLUSION We developed a system for characterizing 3D transient temperature and ablation profiles with MR thermometry during MWA in ex vivo liver tissue, and applied the system for experimental validation of MWA computational models.
Collapse
Affiliation(s)
- Pegah Faridi
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Paul Keselman
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Hojjatollah Fallahi
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Punit Prakash
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
12
|
Donlon PT, Fallahi H, Beard WL, Shahzad A, Heflin L, Cox W, Bloomberg B, Lillich JD, Ganta CK, O'Sullivan GJ, Ruvio G, O'Shea PM, O'Halloran M, Prakash P, Dennedy MC. Using microwave thermal ablation to develop a subtotal, cortical-sparing approach to the management of primary aldosteronism. Int J Hyperthermia 2020; 36:905-914. [PMID: 31466482 DOI: 10.1080/02656736.2019.1650205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Objective: To investigate the feasibility and efficacy of localized, subtotal, cortical-sparing microwave thermal ablation (MTA) as a potential curative management for primary aldosteronism. The study investigated with equal importance the selected ablation of small volumes of adrenal cortex while sparing adjacent cortex. Method: An in-vivo study was carried out in swine (n = 8) where MTA was applied under direct visualization, to the adrenal glands at 45 W or 70 W for 60 s, using a lateral, side-firing probe and a non-penetrative approach. Animals were survived for 48 h post-procedurally. Animals were investigated for markers of histological, immunohistochemical and biochemical evidence of adrenal function and adrenal damage by assessing samples drawn intra-operatively and at the time of euthanasia. Results: Selected MTA (70 W for 60 s) successfully ablated small adrenocortical volumes (∼0.8 cm3) characterized by coagulative necrosis and abnormal expression of functional markers (CYP11B1 and CYP17). Non-ablated, adjacent cortex was not affected and preserved normal expression of functional markers, without increased expression of markers of heat damage (HSP-70 and HMGB-1). Limited adrenal medullary damage was demonstrated histologically, clinically and biochemically. Conclusion: MTA offers potential as an efficient methodology for delivering targeted subtotal cortical-sparing adrenal ablation. Image-guided targeted MTA may also represent a safe future modality for curative management of PA, in the setting of both unilateral and bilateral disease.
Collapse
Affiliation(s)
- Padraig T Donlon
- Discipline of Pharmacology and Therapeutics, School of Medicine, National University of Ireland , Galway , Ireland
| | - Hojjatollah Fallahi
- Department of Electrical and Computer Engineering, Kansas State University , Manhattan , KS , USA
| | - Warren L Beard
- College of Veterinary Medicine, Kansas State University , Manhattan , KS , USA
| | - Atif Shahzad
- Translational Medical Device Laboratory, Discipline of Medicine, National University of Ireland , Galway , Ireland
| | - Lindsay Heflin
- College of Veterinary Medicine, Kansas State University , Manhattan , KS , USA
| | - Whitney Cox
- Department of Electrical and Computer Engineering, Kansas State University , Manhattan , KS , USA
| | - Brooke Bloomberg
- College of Veterinary Medicine, Kansas State University , Manhattan , KS , USA
| | - James D Lillich
- College of Veterinary Medicine, Kansas State University , Manhattan , KS , USA
| | - Chanran K Ganta
- College of Veterinary Medicine, Kansas State University , Manhattan , KS , USA
| | | | - Giuseppe Ruvio
- Translational Medical Device Laboratory, Discipline of Medicine, National University of Ireland , Galway , Ireland
| | - Paula M O'Shea
- Department of Clinical Biochemistry, Galway University Hospital , Galway , Ireland
| | - Martin O'Halloran
- Translational Medical Device Laboratory, Discipline of Medicine, National University of Ireland , Galway , Ireland
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University , Manhattan , KS , USA
| | - Michael Conall Dennedy
- Discipline of Pharmacology and Therapeutics, School of Medicine, National University of Ireland , Galway , Ireland
| |
Collapse
|
13
|
Millimeter-wave pulsed heating in vitro: cell mortality and heat shock response. Sci Rep 2019; 9:15249. [PMID: 31649300 PMCID: PMC6813304 DOI: 10.1038/s41598-019-51731-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
Millimeter wave (MMW)-induced heating represents a promising alternative for non-invasive hyperthermia of superficial skin cancer, such as melanoma. Pulsed MMW-induced heating of tumors allows for reaching high peak temperatures without overheating surrounding tissues. Herein, for the first time, we evaluate apoptotic and heat shock responses of melanoma cells exposed in vitro to continuous (CW) or pulsed-wave (PW) amplitude-modulated MMW at 58.4 GHz with the same average temperature rise. Using an ad hoc exposure system, we generated 90 min pulse train with 1.5 s pulse duration, period of 20 s, amplitude of 10 °C, and steady-state temperature at the level of cells of 49.2 °C. The activation of Caspase-3 and phosphorylation of HSP27 were investigated using fluorescence microscopy to monitor the spatial variation of cellular response. Our results demonstrate that, under the considered exposure conditions, Caspase-3 activation was almost 5 times greater following PW exposure compared to CW. The relationship between the PW-induced cellular response and SAR-dependent temperature rise was non-linear. Phosphorylation of HSP27 was 58% stronger for PW compared to CW. It exhibits a plateau for the peak temperature ranging from 47.7 to 49.2 °C. Our results provide an insight into understanding of the cellular response to MMW-induced pulsed heating.
Collapse
|