1
|
Yu W, Hu L, Wei Y, Xue C, Liu Y, Xie H. Advances of novel hydrogels in the healing process of alveolar sockets. BIOMATERIALS ADVANCES 2025; 173:214280. [PMID: 40086007 DOI: 10.1016/j.bioadv.2025.214280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Tooth extraction is a common oral surgical procedure that often leads to delayed alveolar socket healing due to the complexity of the oral microenvironment, which can hinder the patient's aesthetic and functional recovery. Effective alveolar socket healing requires a multidisciplinary approach. Recent advancements in materials science and bioengineering have facilitated the development of innovative strategies, with hydrogels emerging as ideal restorative materials for alveolar socket repair due to their superior properties. This review provides an overview of recent advances in hydrogels for alveolar socket healing, focusing on their classification, physical properties (e.g., mechanical strength, swelling behavior, degradation rate, and injectability), biological functions, and applications in relevant animal models. Specifically, the bone-regenerative and antimicrobial properties of hydrogels are highlighted. Furthermore, this review identifies future directions and addresses challenges associated with the clinical application of hydrogels in extraction socket healing.
Collapse
Affiliation(s)
- Wenqing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Liwei Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yige Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Chengyu Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yunfei Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, PR China.
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
2
|
Bechtel GN, Sugerman GP, Eades T, Malinowska Z, Bush AM, Saber H, Parekh SH, Rausch MK. Mechano-Lysis in Whole Blood Clots: On How Mechanics Affect Clot Lysis, and How Lysis Affects Clot Mechanics. Adv Healthc Mater 2025; 14:e2403389. [PMID: 39981775 DOI: 10.1002/adhm.202403389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/05/2025] [Indexed: 02/22/2025]
Abstract
Thromboembolic diseases are a significant cause of mortality and are clinically treated enzymatically with tissue plasminogen activator (tPA). Interestingly, prior studies in fibrin fibers and fibrin gels have demonstrated that thrombolysis may be mechanically sensitive. This study aims to expand mechano-lytic studies to whole blood clots. Furthermore, this study investigates not only how mechanics impacts lysis but also how lysis impacts mechanics. Therefore, clots made from whole human blood are exposed to tPA while the clots are either stretched or unstretched. After, the resulting degree of clot lysis is measured by weighing the clots and by measuring the concentration of D-dimer in the surrounding bath. Additionally, each clot's mechanical properties are measured. This study finds that mechanical stretch accelerates loss in clot weight but does not impact the lysis rate as measured by D-dimer. Moreover, lysis not only removes clot volume but also reduces the remaining clot's stiffness and toughness. In summary, tPA-induced lysis of whole clot appears mechanically insensitive, but stretch reduces clot weight. Furthermore, results show that thrombolysis weakens clot. This suggests that thrombolysis may increase the risk of secondary embolizations but may also ease clot removal during thrombectomy, for example.
Collapse
Affiliation(s)
- Grace N Bechtel
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Gabriella P Sugerman
- Department of Biomedical Engineering, San José State University, San Jose, CA, 95192, USA
| | - Tatum Eades
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Zuzanna Malinowska
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Adam M Bush
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hamidreza Saber
- Department of Neurology and Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sapun H Parekh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Manuel K Rausch
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
3
|
Purohit SS, Biswal A, Mohapatra P, Khamari O, Dash K, Mishra M, Biswal SB, Nayak S, Swain SK. Lysozyme/N-GQD loaded carboxymethyl cellulose hydrogels for healing of excision wounds in Drosophila and Sprague Dawley rats. Int J Biol Macromol 2025; 306:141638. [PMID: 40037441 DOI: 10.1016/j.ijbiomac.2025.141638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Delayed healing and fibrosis at the wound site present significant challenges in the wound care industry, often leading to complications such as infections, chronic wounds, and impaired tissue regeneration. Therefore, there is a critical need for advanced wound dressing materials that promote faster healing, prevent bacterial infections, and support effective tissue repair. This study aims to develop a Lysozyme (Lys)-based wound dressing with enhanced wound closure rates by incorporating nitrogen-doped graphene quantum dots (N-GQDs) as a functionalized nanofiller to strengthen its antibacterial properties. The wound dressing, formulated with a carboxymethyl cellulose (CMC) crosslinked polyvinylpyrrolidone (PVP) matrix, creates a porous structure that enhances swelling capacity and water vapor transmission rates (WVTR), while cytotoxicity studies confirm its biocompatibility, showing 100 % cell viability in HCT 116 and MCF7 cell lines. The in vivo wound healing performance of the designed nanocomposite hydrogel reflects complete wound closure in 5 h for Drosophila Melanogaster, aided by the shorter life span and faster metabolic processes in Drosophila, and 14 days in Sprague Dawley rat models. These results qualify the material as a promising candidate for wound dressing applications, bridging the gap between material science and medical science for effective wound management.
Collapse
Affiliation(s)
- Shuvendu Shuvankar Purohit
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Anuradha Biswal
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Priyaranjan Mohapatra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Ojaswini Khamari
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Kalpanarani Dash
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Sashi Bhusan Biswal
- Department of Pharmacology, Veer Surendra Sai Institute of Medical Science and Research, Burla, Sambalpur 768018, Odisha, India
| | - Sunanda Nayak
- Department of Phathology, Veer Surendra Sai Institute of Medical Science and Research, Burla, Sambalpur 768018, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India.
| |
Collapse
|
4
|
Gordon ER, Trager MH, Samie FH, Humphreys TR. Part 2: Management of intraoperative and perioperative bleeding. J Am Acad Dermatol 2025; 92:407-416. [PMID: 38750938 DOI: 10.1016/j.jaad.2024.01.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 02/26/2025]
Abstract
With an increase in number of patients on antithrombotic therapies, management of bleeding during dermatologic surgery is increasingly important. As described in Part 1, perioperative discontinuation of antithrombotic therapies may increase the risk of embolic events thus the risks and benefits must be weighed carefully when deciding whether to continue or suspend therapy. However, continuing oral anticoagulants may result in increased intraoperative and postoperative bleeding. Here we describe various methods to effectively achieve hemostasis which include (1) mechanical methods to compress the vasculature, (2) pharmacologic agents that induce vasoconstriction, (3) physiologic agents that augment clot formation, and (4) physical agents that promote platelet aggregation.
Collapse
Affiliation(s)
- Emily R Gordon
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Megan H Trager
- Department of Dermatology, Columbia University Irving Medical Center, New York, New York.
| | - Faramarz H Samie
- Department of Dermatology, Columbia University Irving Medical Center, New York, New York
| | - Tatyana R Humphreys
- Department of Dermatology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
He W, Ding F, Zhang L, Liu W. In situ osteogenic activation of mesenchymal stem cells by the blood clot biomimetic mechanical microenvironment. Nat Commun 2025; 16:1162. [PMID: 39880808 PMCID: PMC11779924 DOI: 10.1038/s41467-025-56513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Blood clots (BCs) play a crucial biomechanical role in promoting osteogenesis and regulating mesenchymal stem cell (MSC) function and fate. This study shows that BC formation enhances MSC osteogenesis by activating Itgb1/Fak-mediated focal adhesion and subsequent Runx2-mediated bone regeneration. Notably, BC viscoelasticity regulates this effect by modulating Runx2 nuclear translocation. To mimic this property, a viscoelastic peptide bionic hydrogel named BCgel was developed, featuring a nanofiber network, Itgb1 binding affinity, BC-like viscoelasticity, and biosafety. The anticipated efficacy of BCgel is demonstrated by its ability to induce nuclear translocation of Runx2 and promote bone regeneration in both in vitro experiments and in vivo bone defect models with blood clot defect, conducted on rats as well as beagles. This study offers insights into the mechano-transduction mechanisms of MSCs during osteogenesis and presents potential guidelines for the design of viscoelastic hydrogels in bone regenerative medicine.
Collapse
Affiliation(s)
- Wangxiao He
- Department of Stomatology, Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China.
- Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
| | - Fan Ding
- Department of Stomatology, Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China
| | - Liqiang Zhang
- Department of Stomatology, Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China
| | - Wenjia Liu
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China.
- Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
| |
Collapse
|
6
|
Alshehri AM, Wilson OC. Biomimetic Hydrogel Strategies for Cancer Therapy. Gels 2024; 10:437. [PMID: 39057460 PMCID: PMC11275631 DOI: 10.3390/gels10070437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Recent developments in biomimetic hydrogel research have expanded the scope of biomedical technologies that can be used to model, diagnose, and treat a wide range of medical conditions. Cancer presents one of the most intractable challenges in this arena due to the surreptitious mechanisms that it employs to evade detection and treatment. In order to address these challenges, biomimetic design principles can be adapted to beat cancer at its own game. Biomimetic design strategies are inspired by natural biological systems and offer promising opportunities for developing life-changing methods to model, detect, diagnose, treat, and cure various types of static and metastatic cancers. In particular, focusing on the cellular and subcellular phenomena that serve as fundamental drivers for the peculiar behavioral traits of cancer can provide rich insights into eradicating cancer in all of its manifestations. This review highlights promising developments in biomimetic nanocomposite hydrogels that contribute to cancer therapies via enhanced drug delivery strategies and modeling cancer mechanobiology phenomena in relation to metastasis and synergistic sensing systems. Creative efforts to amplify biomimetic design research to advance the development of more effective cancer therapies will be discussed in alignment with international collaborative goals to cure cancer.
Collapse
Affiliation(s)
- Awatef M. Alshehri
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064, USA
- Department of Nanomedicine, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdelaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia;
| | - Otto C. Wilson
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
7
|
Sugerman GP, Bechtel GN, Malinowska Z, Parekh SH, Rausch MK. Mechanical properties of clot made from human and bovine whole blood differ significantly. J Mech Behav Biomed Mater 2024; 154:106508. [PMID: 38513312 DOI: 10.1016/j.jmbbm.2024.106508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/24/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Thromboembolism - that is, clot formation and the subsequent fragmentation of clot - is a leading cause of death worldwide. Clots' mechanical properties are critical determinants of both the embolization process and the pathophysiological consequences thereof. Thus, understanding and quantifying the mechanical properties of clots is important to our ability to treat and prevent thromboembolic disease. However, assessing these properties from in vivo clots is experimentally challenging. Therefore, we and others have turned to studying in vitro clot mimics instead. Unfortunately, there are significant discrepancies in the reported properties of these clot mimics, which have been hypothesized to arise from differences in experimental techniques and blood sources. The goal of our current work is therefore to compare the mechanical behavior of clots made from the two most common sources, human and bovine blood, using the same experimental techniques. To this end, we tested clots under pure shear with and without initial cracks, under cyclic loading, and under stress relaxation. Based on these data, we computed and compared stiffness, strength, work-to-rupture, fracture toughness, relaxation time constants, and prestrain. While clots from both sources behaved qualitatively similarly, they differed quantitatively in almost every metric. We also correlated each mechanical metric to measures of blood composition. Thereby, we traced this inter-species variability in clot mechanics back to significant differences in hematocrit, but not platelet count. Thus, our work suggests that the results of past studies that have used bovine blood to make in vitro mimics - without adjusting blood composition - should be interpreted carefully. Future studies about the mechanical properties of blood clots should focus on human blood alone.
Collapse
Affiliation(s)
- Gabriella P Sugerman
- University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton St, Austin, TX 78712, United States of America
| | - Grace N Bechtel
- University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton St, Austin, TX 78712, United States of America
| | - Zuzanna Malinowska
- University of Texas at Austin, Department of Aerospace Engineering & Engineering Mechanics, 2617 Wichita St, Austin, TX 78712, United States of America
| | - Sapun H Parekh
- University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton St, Austin, TX 78712, United States of America
| | - Manuel K Rausch
- University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton St, Austin, TX 78712, United States of America; University of Texas at Austin, Department of Aerospace Engineering & Engineering Mechanics, 2617 Wichita St, Austin, TX 78712, United States of America; University of Texas at Austin, Department of Mechanical Engineering, 204 E Dean Keeton St, Austin, TX 78712, United States of America; University of Texas at Austin, Oden Institute for Computational Engineering and Sciences, 201 E 24th St, Austin, TX 78712, United States of America.
| |
Collapse
|
8
|
Ram E, Zager Y, Carter D, Saukhat O, Anteby R, Nachmany I, Horesh N. A Prospective, Single-Arm Study to Evaluate the Safety and Efficacy of an Autologous Blood Clot Product in the Treatment of Anal Fistula. Dis Colon Rectum 2024; 67:541-548. [PMID: 38149981 PMCID: PMC10901226 DOI: 10.1097/dcr.0000000000003190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
BACKGROUND Surgical treatment of complex perianal fistula is technically challenging, associated with risk of failure, and may require multiple procedures. In recent years, several biologic agents have been developed for permanently eradicating anal fistulous disease with variable success. In this study, the treatment is an autologous whole-blood product created from the patients' blood. It forms a provisional matrix that was found to be safe and effective in healing acute and chronic cutaneous wounds. OBJECTIVE The study aimed to assess the efficacy and safety of an autologous blood clot product as a treatment for transsphincteric perianal fistulas. DESIGN A prospective single-arm study. SETTINGS A single tertiary medical center. PATIENTS Patients with simple or complex transsphincteric fistulas confirmed by MRI were included in the study. Cause was either cryptoglandular or Crohn's disease related (in the absence of active luminal bowel disease). INTERVENTION The outpatient procedure was performed under general anesthesia and consisted of: 1) physical debridement and cleansing of the fistula tract; 2) suture closure of the internal opening; and 3) instillation of the autologous blood clot product into the entire tract. MAIN OUTCOME MEASURES Safety and efficacy at 6- and 12-months after surgery. RESULTS Fifty-three patients (77% men) with a median age of 42 (20-72) years were included in the study. Three patients withdrew consent, and 1 patient was lost to follow-up. At the time of this interim analysis, 49 and 33 patients completed the 6- and 12-month follow-up period. Thirty-four of the 49 patients achieved complete healing (69%) at 6 months, but 20 of the 33 patients (60%) achieved healing after 1 year. All patients who achieved healing at 6 months remained healed at the 1-year mark. In a subgroup analysis of patients with Crohn's disease, 7 of 9 patients completed 1-year follow-up, with 5 patients (71%) achieving clinical remission. No major side effects or postoperative complications were noted, but 2 adverse events occurred (admission for pain control and coronavirus 2019 infection). LIMITATIONS Noncomparative single-arm pilot study. CONCLUSIONS Treatment with an autologous blood clot product in perianal fistular disease was found to be feasible and safe, with an acceptable healing rate in both cryptoglandular and Crohn's disease fistula-in-ano. Further comparative assessment is required to determine its potential role in the treatment paradigm of fistula-in-ano. See Video Abstract . BRAZO PARA EVALUAR LA SEGURIDAD Y EFICACIA DE RDVER, UN COGULO DE SANGRE AUTLOGO, EN EL TRATAMIENTO DE LA FSTULA ANAL ANTECEDENTES:El tratamiento quirúrgico de la fístula perianal compleja es técnicamente desafiante, se asocia con riesgo de fracaso y puede requerir múltiples procedimientos. En los últimos años, se han desarrollado varios agentes biológicos con el fin de erradicar permanentemente la enfermedad fistulosa anal con éxito variable. El tratamiento RD2-Ver.02 es un producto de sangre total autólogo creado a partir de la sangre de los pacientes, que forma una matriz provisional que resultó segura y eficaz para curar heridas cutáneas agudas y crónicas.OBJETIVO:Evaluar la eficacia y seguridad de RD2-Ver.02 como tratamiento para las fístulas perianales transesfinterianas.DISEÑO:Un estudio prospectivo de un solo brazo.LUGARES:Un único centro médico terciario.PACIENTES:Se incluyeron en el estudio pacientes con fístulas transesfinterianas simples o complejas confirmadas mediante resonancia magnética. La etiología fue criptoglandular o relacionada con la enfermedad de Crohn (en ausencia de enfermedad intestinal luminal activa).INTERVENCIÓN:El procedimiento ambulatorio se realizó bajo anestesia general y consistió en: 1) desbridamiento físico y limpieza del trayecto fistuloso; 2) cierre con sutura de la abertura interna; y 3) instilación de RD2-Ver.02 en todo el tracto.PRINCIPALES MEDIDAS DE VALORACIÓN:Seguridad y eficacia a los 6 y 12 meses después de la cirugía.RESULTADOS:Se incluyeron en el estudio 53 pacientes (77% varones) con una mediana de edad de 42 (20-72) años. Tres pacientes retiraron su consentimiento y un paciente se perdió durante el seguimiento. En el momento de este análisis intermedio, 49 y 33 pacientes completaron el período de seguimiento de 6 y 12 meses, respectivamente. Treinta y cuatro (34) pacientes lograron una curación completa (69%) a los 6 meses, mientras que 20 de 33 pacientes (60%) lograron una curación después de un año. Todos los pacientes que lograron la curación a los 6 meses permanecieron curados al año. En un análisis de subgrupos de pacientes con enfermedad de Crohn, 7/9 pacientes completaron un seguimiento de un año y 5 pacientes (71%) alcanzaron la remisión clínica. No se observaron efectos secundarios importantes ni complicaciones postoperatorias, mientras que ocurrieron 2 eventos adversos (ingreso para control del dolor e infección por COVID-19).LIMITACIONES:Estudio piloto no comparativo de un solo brazo.CONCLUSIONES:Se encontró que el tratamiento con RD2-Ver.02 en la enfermedad fístula perianal es factible y seguro, con una tasa de curación aceptable tanto en la fístula criptoglandular como en la de Crohn en el ano. Se requiere una evaluación comparativa adicional para determinar su papel potencial en el paradigma de tratamiento de la fístula anal. (Pre-proofed version ).
Collapse
Affiliation(s)
- Edward Ram
- Department of General Surgery B and Transplantation, Sheba Medical Hospital Center, Tel Hashomer, Ramat Gan, Israel
| | - Yaniv Zager
- Department of General Surgery B and Transplantation, Sheba Medical Hospital Center, Tel Hashomer, Ramat Gan, Israel
| | - Dan Carter
- Department of Gastroenterology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Olga Saukhat
- Department of Radiology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Roi Anteby
- Department of General Surgery B and Transplantation, Sheba Medical Hospital Center, Tel Hashomer, Ramat Gan, Israel
| | - Ido Nachmany
- Department of General Surgery B and Transplantation, Sheba Medical Hospital Center, Tel Hashomer, Ramat Gan, Israel
| | - Nir Horesh
- Department of General Surgery B and Transplantation, Sheba Medical Hospital Center, Tel Hashomer, Ramat Gan, Israel
| |
Collapse
|
9
|
Gounden V, Singh M. Hydrogels and Wound Healing: Current and Future Prospects. Gels 2024; 10:43. [PMID: 38247766 PMCID: PMC10815795 DOI: 10.3390/gels10010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
The care and rehabilitation of acute and chronic wounds have a significant social and economic impact on patients and global health. This burden is primarily due to the adverse effects of infections, prolonged recovery, and the associated treatment costs. Chronic wounds can be treated with a variety of approaches, which include surgery, negative pressure wound therapy, wound dressings, and hyperbaric oxygen therapy. However, each of these strategies has an array of limitations. The existing dry wound dressings lack functionality in promoting wound healing and exacerbating pain by adhering to the wound. Hydrogels, which are commonly polymer-based and swell in water, have been proposed as potential remedies due to their ability to provide a moist environment that facilitates wound healing. Their unique composition enables them to absorb wound exudates, exhibit shape adaptability, and be modified to incorporate active compounds such as growth factors and antibacterial compounds. This review provides an updated discussion of the leading natural and synthetic hydrogels utilized in wound healing, details the latest advancements in hydrogel technology, and explores alternate approaches in this field. Search engines Scopus, PubMed, Science Direct, and Web of Science were utilized to review the advances in hydrogel applications over the last fifteen years.
Collapse
Affiliation(s)
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
10
|
Varner H, Sugerman GP, Rausch MK, Cohen T. Elasticity of whole blood clots measured via Volume Controlled Cavity Expansion. J Mech Behav Biomed Mater 2023; 143:105901. [PMID: 37207527 DOI: 10.1016/j.jmbbm.2023.105901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/21/2023]
Abstract
Measuring and understanding the mechanical properties of blood clots can provide insights into disease progression and the effectiveness of potential treatments. However, several limitations hinder the use of standard mechanical testing methods to measure the response of soft biological tissues, like blood clots. These tissues can be difficult to mount, and are inhomogeneous, irregular in shape, scarce, and valuable. To remedy this, we employ in this work Volume Controlled Cavity Expansion (VCCE), a technique that was recently developed, to measure local mechanical properties of soft materials in their natural environment. Through highly controlled volume expansion of a water bubble at the tip of an injection needle, paired with simultaneous measurement of the resisting pressure, we obtain a local signature of whole blood clot mechanical response. Comparing this data with predictive theoretical models, we find that a 1-term Ogden model is sufficient to capture the nonlinear elastic response observed in our experiments and produces shear modulus values that are comparable to values reported in the literature. Moreover, we find that bovine whole blood stored at 4 °C for greater than 2 days exhibits a statistically significant shift in the shear modulus from 2.53 ± 0.44 kPa on day 2 (N = 13) to 1.23 ± 0.18 kPa on day 3 (N = 14). In contrast to previously reported results, our samples did not exhibit viscoelastic rate sensitivity within strain rates ranging from 0.22 - 21.1 s-1. By surveying existing data on whole blood clots for comparison, we show that this technique provides highly repeatable and reliable results, hence we propose the more widespread adoption of VCCE as a path forward to building a better understanding of the mechanics of soft biological materials.
Collapse
Affiliation(s)
- Hannah Varner
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Gabriella P Sugerman
- Department of Biomedical Engineering, University of Texas at Austin, Austin, 78712, TX, USA
| | - Manuel K Rausch
- Department of Biomedical Engineering, University of Texas at Austin, Austin, 78712, TX, USA; Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, 78712, TX, USA; Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, 78712, TX, USA
| | - Tal Cohen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.
| |
Collapse
|
11
|
Allu I, Kumar Sahi A, Kumari P, Sakhile K, Sionkowska A, Gundu S. A Brief Review on Cerium Oxide (CeO 2NPs)-Based Scaffolds: Recent Advances in Wound Healing Applications. MICROMACHINES 2023; 14:865. [PMID: 37421098 DOI: 10.3390/mi14040865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 07/09/2023]
Abstract
The process of wound healing is complex and involves the interaction of multiple cells, each with a distinct role in the inflammatory, proliferative, and remodeling phases. Chronic, nonhealing wounds may result from reduced fibroblast proliferation, angiogenesis, and cellular immunity, often associated with diabetes, hypertension, vascular deficits, immunological inadequacies, and chronic renal disease. Various strategies and methodologies have been explored to develop nanomaterials for wound-healing treatment. Several nanoparticles such as gold, silver, cerium oxide and zinc possess antibacterial properties, stability, and a high surface area that promotes efficient wound healing. In this review article, we investigate the effectiveness of cerium oxide nanoparticles (CeO2NPs) in wound healing-particularly the effects of reducing inflammation, enhancing hemostasis and proliferation, and scavenging reactive oxygen species. The mechanism enables CeO2NPs to reduce inflammation, modulate the immunological system, and promote angiogenesis and tissue regeneration. In addition, we investigate the efficacy of cerium oxide-based scaffolds in various wound-healing applications for creating a favorable wound-healing environment. Cerium oxide nanoparticles (CeO2NPs) exhibit antioxidant, anti-inflammatory, and regenerative characteristics, enabling them to be ideal wound healing material. Investigations have shown that CeO2NPs can stimulate wound closure, tissue regeneration, and scar reduction. CeO2NPs may also reduce bacterial infections and boost wound-site immunity. However, additional study is needed to determine the safety and efficacy of CeO2NPs in wound healing and their long-term impacts on human health and the environment. The review reveals that CeO2NPs have promising wound-healing properties, but further study is needed to understand their mechanisms of action and ensure their safety and efficacy.
Collapse
Affiliation(s)
- Ishita Allu
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, Telangana, India
| | - Ajay Kumar Sahi
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Jurija Gagarina 11, 87-100 Toruń, Poland
| | - Pooja Kumari
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Karunya Sakhile
- Department of Mechanical & Industrial Engineering, National University of Science and Technology, Muscat 2322, Oman
| | - Alina Sionkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Jurija Gagarina 11, 87-100 Toruń, Poland
- Faculty of Health Sciences, Calisia University, Nowy Świat 4, 62-800 Kalisz, Poland
| | - Shravanya Gundu
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, Telangana, India
| |
Collapse
|
12
|
Hochberg JD, Wirth DM, Pokorski JK. Surface-Modified Melt Coextruded Nanofibers Enhance Blood Clotting In Vitro. Macromol Biosci 2022; 22:e2200292. [PMID: 36122179 DOI: 10.1002/mabi.202200292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/28/2022] [Indexed: 01/15/2023]
Abstract
Blood loss causes an estimated 1.9 million deaths per year globally, making new methods to stop bleeding and promote clot formation immediately following injury paramount. The fabrication of functional hemostatic materials has the potential to save countless lives by limiting bleeding and promoting clot formation following an injury. This work describes the melt manufacturing of poly(ε-caprolactone) nanofibers and their chemical functionalization to produce highly scalable materials with enhanced blood clotting properties. The nanofibers are manufactured using a high throughput melt coextrusion method. Once isolated, the nanofibers are functionalized with polymers that promote blood clotting through surface-initiated atom transfer radical polymerization. The functional nanofibers described herein speed up the coagulation cascade and produce more robust blood clots, allowing for the potential use of these functional nonwoven mats as advanced bandages.
Collapse
Affiliation(s)
- Justin D Hochberg
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - David M Wirth
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
13
|
Prema D, Balashanmugam P, Kumar J, Venkatasubbu GD. Fabrication of GO/ZnO nanocomposite incorporated patch for enhanced wound healing in streptozotocin (STZ) induced diabetic rats. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Abstract
SignificanceFibrin plays a vital role in biology as the fibrous network that stabilizes blood clots and also through interaction with numerous blood components. While much is known about fibrin mechanics, comparatively little is known about how fibrin's mechanics influence its biochemistry. We show that structural changes in fibrin under mechanical tension reduces binding of tissue plasminogen activator, an enzyme that initiates lysis. Furthermore, these structural transitions also led to decreased platelet activation through suppressed binding between platelet integrins and fibrin. Our work shows that fibrin possesses an intrinsic mechano-chemical feedback loop that regulates its bioactivity via molecular structural rearrangements.
Collapse
|