1
|
Corsten MF, Heggermont W, Papageorgiou AP, Deckx S, Tijsma A, Verhesen W, van Leeuwen R, Carai P, Thibaut HJ, Custers K, Summer G, Hazebroek M, Verheyen F, Neyts J, Schroen B, Heymans S. The microRNA-221/-222 cluster balances the antiviral and inflammatory response in viral myocarditis. Eur Heart J 2015. [DOI: 10.1093/eurheartj/ehv321] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Aims
Viral myocarditis (VM) is an important cause of heart failure and sudden cardiac death in young healthy adults; it is also an aetiological precursor of dilated cardiomyopathy. We explored the role of the miR-221/-222 family that is up-regulated in VM.
Methods and results
Here, we show that microRNA-221 (miR-221) and miR-222 levels are significantly elevated during acute VM caused by Coxsackievirus B3 (CVB3). Both miRs are expressed by different cardiac cells and by infiltrating inflammatory cells, but their up-regulation upon myocarditis is mostly exclusive for the cardiomyocyte. Systemic inhibition of miR-221/-222 in mice increased cardiac viral load, prolonged the viraemic state, and strongly aggravated cardiac injury and inflammation. Similarly, in vitro, overexpression of miR-221 and miR-222 inhibited enteroviral replication, whereas knockdown of this miR-cluster augmented viral replication. We identified and confirmed a number of miR-221/-222 targets that co-orchestrate the increased viral replication and inflammation, including ETS1/2, IRF2, BCL2L11, TOX, BMF, and CXCL12. In vitro inhibition of IRF2, TOX, or CXCL12 in cardiomyocytes significantly dampened their inflammatory response to CVB3 infection, confirming the functionality of these targets in VM and highlighting the importance of miR-221/-222 as regulators of the cardiac response to VM.
Conclusions
The miR-221/-222 cluster orchestrates the antiviral and inflammatory immune response to viral infection of the heart. Its inhibition increases viral load, inflammation, and overall cardiac injury upon VM.
Collapse
Affiliation(s)
- Maarten F Corsten
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
| | - Ward Heggermont
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
- Center for Molecular and Vascular Research, University of Leuven, Leuven B-3000, Belgium
- Department of Internal Medicine, Service of Cardiology, University Hospitals Leuven, Leuven B-3000, Belgium
| | - Anna-Pia Papageorgiou
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
- Center for Molecular and Vascular Research, University of Leuven, Leuven B-3000, Belgium
| | - Sophie Deckx
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
| | - Aloys Tijsma
- Rega Institute for Medical Research, University of Leuven, Leuven B-3000, Belgium
| | - Wouter Verhesen
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
| | - Rick van Leeuwen
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
| | - Paolo Carai
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
- Center for Molecular and Vascular Research, University of Leuven, Leuven B-3000, Belgium
| | - Hendrik-Jan Thibaut
- Rega Institute for Medical Research, University of Leuven, Leuven B-3000, Belgium
| | - Kevin Custers
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
| | - Georg Summer
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
| | - Mark Hazebroek
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
| | - Fons Verheyen
- Electron Microscopy Unit, Maastricht University, Maastricht AZ-6202, The Netherlands
| | - Johan Neyts
- Rega Institute for Medical Research, University of Leuven, Leuven B-3000, Belgium
| | - Blanche Schroen
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
| | - Stephane Heymans
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, Maastricht AZ-6202, The Netherlands
- Center for Molecular and Vascular Research, University of Leuven, Leuven B-3000, Belgium
| |
Collapse
|
2
|
Gu M, Lin G, Lai Q, Zhong B, Liu Y, Mi Y, Chen H, Wang B, Fan L, Hu C. Ctenopharyngodon idella IRF2 plays an antagonistic role to IRF1 in transcriptional regulation of IFN and ISG genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:103-112. [PMID: 25463511 DOI: 10.1016/j.dci.2014.11.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
Interferon Regulatory Factors (IRFs) make up a family of transcription factors involved in transcriptional regulation of type I IFN and IFN-stimulated genes (ISG) in cells. In the present study, an IRF2 gene (termed CiIRF2, JX628585) was cloned and characterized from grass carp (Ctenopharyngodon idella). The full-length cDNA of CiIRF2 is 1809 bp in length, with the largest open reading frame (ORF) of 981 bp encoding a putative protein of 326 amino acids. CiIRF2 contains a conserved DNA-binding domain (DBD) in N-terminal and a non-conserved C-terminal region. Protein sequence analysis revealed that CiIRF2 shares significant homology to the known IRF2 counterparts. Phylogenetic reconstruction confirmed its closer evolutionary relationship with other fish counterparts, especially with zebra fish IRF2. CiIRF2 was ubiquitously expressed at low level in all tested grass carp tissues and significantly up-regulated except in brain following poly I:C 6-12 h post stimulation. In order to understand fish innate immune and resistance to virus diseases, recombinant CiIRF2 with His-tag was over-expressed in BL21 Escherichia coli, and the expressed protein was purified by affinity chromatography with Ni-NTA His-Bind Resin. Promoter sequences of grass carp type I IFN gene (CiIFN) and two ISG genes (CiPKR and CiPKZ) were amplified and cloned. In vitro, gel mobility shift assays were employed to analyze the interaction of CiIRF2 protein with promoters of CiIFN, CiPKR and CiPKZ respectively. The results showed that CiIRF2 bound to these promoters with high affinity by means of its DBD. Afterwards, recombinant plasmids of pGL3-CiIFN, pGL3-CiPKR and pGL3-CiPKZ were constructed and transiently co-transfected with pcDNA3.1-CiIRF2 or pcDNA3.1-CiIRF1 respectively into C. idella kidney (CIK) cells. Dual-luciferase reporter assays demonstrated that CiIRF2 down-regulates the transcription activity of CiIFN, CiPKR and CiPKZ genes in CIK cells. To further understand the function of fish IRF2, expression plasmids (pcDNA3.1-IRF2 and pcDNA3.1-IRF1) were transiently co-transfected with pGL3-IFN or pGL3-CiPKZ into CIK cells, respectively. The results revealed that CiIRF2 plays an antagonistic role to CiIRF1 in transcriptional regulation of IFN and ISG genes.
Collapse
Affiliation(s)
- Meihui Gu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Gang Lin
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Qinan Lai
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Bin Zhong
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yong Liu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yichuan Mi
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Huarong Chen
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Binhua Wang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Lihua Fan
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
3
|
Frenz T, Graalmann L, Detje CN, Döring M, Grabski E, Scheu S, Kalinke U. Independent of Plasmacytoid Dendritic Cell (pDC) infection, pDC Triggered by Virus-Infected Cells Mount Enhanced Type I IFN Responses of Different Composition as Opposed to pDC Stimulated with Free Virus. THE JOURNAL OF IMMUNOLOGY 2014; 193:2496-503. [DOI: 10.4049/jimmunol.1400215] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Dionne KR, Galvin JM, Schittone SA, Clarke P, Tyler KL. Type I interferon signaling limits reoviral tropism within the brain and prevents lethal systemic infection. J Neurovirol 2011; 17:314-26. [PMID: 21671121 PMCID: PMC3163031 DOI: 10.1007/s13365-011-0038-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/02/2011] [Accepted: 05/09/2011] [Indexed: 12/24/2022]
Abstract
In vivo and ex vivo models of reoviral encephalitis were utilized to delineate the contribution of type I interferon (IFN) to the host’s defense against local central nervous system (CNS) viral infection and systemic viral spread. Following intracranial (i.c.) inoculation with either serotype 3 (T3) or serotype 1 (T1) reovirus, increased expression of IFN-α, IFN-β, and myxovirus-resistance protein (Mx1; a prototypical IFN stimulated gene) was observed in mouse brain tissue. Type I IFN receptor deficient mice (IFNAR−/−) had accelerated lethality, compared to wildtype (B6wt) controls, following i.c. T1 or T3 challenge. Although viral titers in the brain and eyes of reovirus infected IFNAR−/− mice were significantly increased, these mice did not develop neurologic signs or brain injury. In contrast, increased reovirus titers in peripheral tissues (liver, spleen, kidney, heart, and blood) of IFNAR−/− mice were associated with severe intestinal and liver injury. These results suggest that reovirus-infected IFNAR−/− mice succumb to peripheral disease rather than encephalitis per se. To investigate the potential role of type I IFN in brain tissue, brain slice cultures (BSCs) were prepared from IFNAR−/− mice and B6wt controls for ex vivo T3 reovirus infection. Compared to B6wt controls, reoviral replication and virus-induced apoptosis were enhanced in IFNAR−/− BSCs indicating that a type I IFN response, initiated by resident CNS cells, mediates innate viral immunity within the brain. T3 reovirus tropism was extended in IFNAR−/− brains to include dentate neurons, ependymal cells, and meningeal cells indicating that reovirus tropism within the CNS is dependent upon type I interferon signaling.
Collapse
Affiliation(s)
- Kalen R Dionne
- Medical Scientist Training Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
5
|
Ooms LS, Kobayashi T, Dermody TS, Chappell JD. A post-entry step in the mammalian orthoreovirus replication cycle is a determinant of cell tropism. J Biol Chem 2010; 285:41604-13. [PMID: 20978124 DOI: 10.1074/jbc.m110.176255] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian reoviruses replicate in a broad range of hosts, cells, and tissues. These viruses display strain-dependent variation in tropism for different types of cells in vivo and ex vivo. Early steps in the reovirus life cycle, attachment, entry, and disassembly, have been identified as pivotal points of virus-cell interaction that determine the fate of infection, either productive or abortive. However, in studies of the differential capacity of reovirus strains type 1 Lang and type 3 Dearing to replicate in Madin-Darby canine kidney (MDCK) cells, we found that replication efficiency is regulated at a late point in the viral life cycle following primary transcription and translation. Results of genetic studies using recombinant virus strains show that reovirus tropism for MDCK cells is primarily regulated by replication protein μ2 and further influenced by the viral RNA-dependent RNA polymerase protein, λ3, depending on the viral genetic background. Furthermore, μ2 residue 347 is a critical determinant of replication efficiency in MDCK cells. These findings indicate that components of the reovirus replication complex are mediators of cell-selective viral replication capacity at a post-entry step. Thus, reovirus cell tropism may be determined at early and late points in the viral replication program.
Collapse
Affiliation(s)
- Laura S Ooms
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
6
|
Narlikar L, Sakabe NJ, Blanski AA, Arimura FE, Westlund JM, Nobrega MA, Ovcharenko I. Genome-wide discovery of human heart enhancers. Genome Res 2010; 20:381-92. [PMID: 20075146 DOI: 10.1101/gr.098657.109] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The various organogenic programs deployed during embryonic development rely on the precise expression of a multitude of genes in time and space. Identifying the cis-regulatory elements responsible for this tightly orchestrated regulation of gene expression is an essential step in understanding the genetic pathways involved in development. We describe a strategy to systematically identify tissue-specific cis-regulatory elements that share combinations of sequence motifs. Using heart development as an experimental framework, we employed a combination of Gibbs sampling and linear regression to build a classifier that identifies heart enhancers based on the presence and/or absence of various sequence features, including known and putative transcription factor (TF) binding specificities. In distinguishing heart enhancers from a large pool of random noncoding sequences, the performance of our classifier is vastly superior to four commonly used methods, with an accuracy reaching 92% in cross-validation. Furthermore, most of the binding specificities learned by our method resemble the specificities of TFs widely recognized as key players in heart development and differentiation, such as SRF, MEF2, ETS1, SMAD, and GATA. Using our classifier as a predictor, a genome-wide scan identified over 40,000 novel human heart enhancers. Although the classifier used no gene expression information, these novel enhancers are strongly associated with genes expressed in the heart. Finally, in vivo tests of our predictions in mouse and zebrafish achieved a validation rate of 62%, significantly higher than what is expected by chance. These results support the existence of underlying cis-regulatory codes dictating tissue-specific transcription in mammalian genomes and validate our enhancer classifier strategy as a method to uncover these regulatory codes.
Collapse
Affiliation(s)
- Leelavati Narlikar
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health (NIH), Bethesda, Maryland 20894, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Pautz A, Rauschkolb P, Schmidt N, Art J, Oelze M, Wenzel P, Förstermann U, Daiber A, Kleinert H. Effects of nitroglycerin or pentaerithrityl tetranitrate treatment on the gene expression in rat hearts: evidence for cardiotoxic and cardioprotective effects. Physiol Genomics 2009; 38:176-85. [PMID: 19417013 DOI: 10.1152/physiolgenomics.00035.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Nitroglycerin (NTG) and pentaerithrityl tetranitrate (PETN) are organic nitrates used in the treatment of angina pectoris, myocardial infarction, and congestive heart failure. Recent data show marked differences in the effects of NTG and PETN on the generation of reactive oxygen species. These differences are attributed to different effects of NTG and PETN on the expression of antioxidative proteins like the heme oxygenase-I. To analyze the expressional effects of NTG and PETN in a more comprehensive manner we performed whole genome expression profiling experiments using cardiac total RNA from NTG- or PETN-treated rats and DNA microarrays containing oligonucleotides representing 27,044 rat gene transcripts. The data obtained show that NTG and PETN together significantly modify the expression of >1,600 genes (NTG 532, PETN 1212). However, the expression of only a small group of these genes (68) was modified by both treatments, indicating marked differences in the expressional effects of NTG and PETN. NTG treatment resulted in the enhanced expression of genes that are believed to be markers for cardiotoxic processes. In addition, NTG treatment reduced the expression of genes described to code for cardioprotective proteins. In sharp contrast, PETN treatment enhanced the expression of cardioprotective genes and reduced the expression of genes believed to perform cardiotoxic effects. In conclusion, our data suggest that NTG treatment results in the induction of cardiotoxic gene expression networks leading to an activation of mechanisms that result in pathological changes in cardiomyocytes. In contrast, PETN treatment seems to activate gene expression networks that result in cardioprotective effects.
Collapse
Affiliation(s)
- Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Reovirus activates transforming growth factor beta and bone morphogenetic protein signaling pathways in the central nervous system that contribute to neuronal survival following infection. J Virol 2009; 83:5035-45. [PMID: 19279118 DOI: 10.1128/jvi.02433-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Viral infections of the central nervous system (CNS) are important causes of worldwide morbidity and mortality, and understanding how viruses perturb host cell signaling pathways will facilitate identification of novel antiviral therapies. We now show that reovirus infection activates transforming growth factor beta (TGF-beta) and bone morphogenetic protein (BMP) signaling in a murine model of encephalitis in vivo. TGF-beta receptor I (TGF-beta RI) expression is increased and its downstream signaling factor, SMAD3, is activated in the brains of reovirus-infected mice. TGF-beta signaling is neuroprotective, as inhibition with a TGF-beta RI inhibitor increases death of infected neurons. Similarly, BMP receptor I expression is increased and its downstream signaling factor, SMAD1, is activated in reovirus-infected neurons in the brains of infected mice in vivo. Activated SMAD1 and SMAD3 were both detected in regions of brain infected by reovirus, but activated SMAD1 was found predominantly in uninfected neurons in close proximity to infected neurons. Treatment of reovirus-infected primary mouse cortical neurons with a BMP agonist reduced apoptosis. These data provide the first evidence for the activation of TGF-beta and BMP signaling pathways following neurotropic viral infection and suggest that these signaling pathways normally function as part of the host's protective innate immune response against CNS viral infection.
Collapse
|
9
|
Lapadat R, Debiasi RL, Johnson GL, Tyler KL, Shah I. Genes Induced by Reovirus Infection Have a Distinct Modular Cis-Regulatory Architecture. Curr Genomics 2005; 6:501-513. [PMID: 23335855 DOI: 10.2174/138920205775067675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The availability of complete genomes and global gene expression profiling has greatly facilitated analysis of complex genetic regulatory systems. We describe the use of a bioinformatics strategy for analyzing the cis-regulatory design of genes diferentially regulated during viral infection of a target cell. The large-scale transcriptional activity of human embryonic kidney (HEK293) cells to reovirus (serotype 3 Abney) infection was measured using the Affymetrix HU-95Av2 gene array. Comparing the 2000 base pairs of 5' upstream sequence for the most differentially expressed genes revealed highly preserved sequence regions, which we call "modules". Higher-order patterns of modules, called "super-modules", were significantly over-represented in the 5' upstream regions of transcriptionally responsive genes. These supermodules contain binding sites for multiple transcription factors and tend to define the role of genes in processes associated with reovirus infection. The supermodular design encodes a cis-regulatory logic for transducing upstream signaling for the control of expression of genes involved in similar biological processes. In the case of reovirus infection, these processes recapitulate the integrated response of cells including signal transduction, transcriptional regulation, cell cycle control, and apoptosis. The computational strategies described for analyzing gene expression data to discover cis-regulatory features and associating them with pathological processes represents a novel approach to studying the interaction of a pathogen with its target cells.
Collapse
Affiliation(s)
- R Lapadat
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, Colorado
| | | | | | | | | |
Collapse
|