1
|
Errichiello E, Lecca M, Vantaggiato C, Motta Z, Zanotta N, Zucca C, Bertuzzo S, Piubelli L, Pollegioni L, Bonaglia MC. Further evidence supporting the role of GTDC1 in glycine metabolism and neurodevelopmental disorders. Eur J Hum Genet 2024; 32:920-927. [PMID: 38605125 PMCID: PMC11291697 DOI: 10.1038/s41431-024-01603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Copy number variants (CNVs) represent the genetic cause of about 15-20% of neurodevelopmental disorders (NDDs). We identified a ~67 kb de novo intragenic deletion on chromosome 2q22.3 in a female individual showing a developmental encephalopathy characterised by epilepsy, severe intellectual disability, speech delay, microcephaly, and thin corpus callosum with facial dysmorphisms. The microdeletion involved exons 5-6 of GTDC1, encoding a putative glycosyltransferase, whose expression is particularly enriched in the nervous system. In a previous study, a balanced de novo translocation encompassing GTDC1 was reported in a male child with global developmental delay and delayed speech and language development. Based on these premises, we explored the transcriptomic profile of our proband to evaluate the functional consequences of the novel GTDC1 de novo intragenic deletion in relation to the observed neurodevelopmental phenotype. RNA-seq on the proband's lymphoblastoid cell line (LCL) showed expression changes of glycine/serine and cytokine/chemokine signalling pathways, which are related to neurodevelopment and epileptogenesis. Subsequent analysis by ELISA (enzyme-linked immunosorbent assay) and HPLC (high-performance liquid chromatography) revealed increased levels of glycine in the proband's LCL and serum compared to matched controls. Given that an increased level of glycine has been observed in the plasma samples of individuals with Rett syndrome, a condition sharing epilepsy, microcephaly, and intellectual disability with our proband, we proposed that the GTDC1 downregulation is implicated in neurodevelopmental impairment by altering glycine metabolism. Furthermore, our findings expanded the phenotypic spectrum of the novel GTDC1-related condition, including microcephaly and epilepsy among relevant clinical features.
Collapse
Affiliation(s)
- Edoardo Errichiello
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy.
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| | - Mauro Lecca
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Chiara Vantaggiato
- Laboratory of Molecular Biology, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Zoraide Motta
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Nicoletta Zanotta
- Unit of Clinical Neurophysiology and Epilepsy Centre, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Claudio Zucca
- Unit of Clinical Neurophysiology and Epilepsy Centre, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Sara Bertuzzo
- Laboratory of Cytogenetics, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | |
Collapse
|
2
|
Hieu HT, Tanaka M, Kuwamura M, Mashimo T, Serikawa T, Kuramoto T. The rat Downunder (Du) coat color mutation is associated with eye anomalies and embryonic lethality and maps to a 3.9-Mb region on chromosome 3. Exp Anim 2023; 72:88-94. [PMID: 36123037 PMCID: PMC9978131 DOI: 10.1538/expanim.22-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Rodent coat color genes have been studied as a bioresource to understand developmental and cellular processes. The Downunder rat is a fancy variety with a marking on its belly that runs from the neck to the breech and appears to mirror the dorsal hooded marking. Here, we established a congenic strain carrying the Downunder (Du) gene in an F344 genetic background. In addition to the ventral marking, Du/+ rats exhibit anophthalmia or microphthalmia with incomplete penetrance. Du/Du embryos die in the early stages of organogenesis. Genetic linkage analysis mapped the Du gene to rat chromosome 3 and haplotype mapping with congenic rats localized the Du locus to a 3.9-Mb region. The Du locus includes two functional genes, glycosyltransferase-like domain-containing 1 (Gtdc1) and zinc finger E-box binding homeobox 2 (Zeb2). Although we found no functional variation within any of Zeb2's exons or intron-exon boundaries, Zeb2 mRNA levels were significantly lower in Du/+ rats compared with wild-type rats. It is known that melanocyte-specific Zeb2 deletion results in the congenital loss of hair pigmentation in mice. Taken together, our results indicate that the Du mutation exerts pleiotropic effects on hair pigmentation, eye morphology, and development. Moreover, the Zeb2 gene is a strong candidate for the Du mutation.
Collapse
Affiliation(s)
- Hoang Trung Hieu
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-ourai-kita, Izumisano, Osaka 598-8531,
Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-ourai-kita, Izumisano, Osaka 598-8531,
Japan
| | - Tomoji Mashimo
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan,Division of Animal Genetics, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tadao Serikawa
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan,Kyoto Disease Model Institute, The Kyoto Technoscience Center, 14 Yoshida-kawara-cho, Sakyo-ku, Kyoto 606-8305, Japan
| | - Takashi Kuramoto
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan,Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Gosso MF, Rohr C, Brun B, Mejico G, Madeira F, Fay F, Klurfan M, Vazquez M. Exome-first approach identified novel INDELs and gene deletions in Mowat-Wilson Syndrome patients. Hum Genome Var 2018; 5:21. [PMID: 30083364 PMCID: PMC6070557 DOI: 10.1038/s41439-018-0021-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/29/2018] [Accepted: 06/17/2018] [Indexed: 11/29/2022] Open
Abstract
Mowat-Wilson syndrome (MWS) is characterized by severe intellectual disability, absent or impaired speech and microcephaly, with a gradual post-natal onset. The syndrome is often confused with other Angelman-like syndromes (ALS) during infancy, but in older children and adults, the characteristic facial gestalt of Mowat–Wilson syndrome allows it to be distinguished easily from ALS. We report two cases in which an exome-first approach of patients with MWS identified two novel deletions in the ZEB2 gene ranging from a 4 base deletion (case 1) to at least a 573 Kb deletion (case 2).
Collapse
Affiliation(s)
| | | | - Bianca Brun
- Heritas - INDEAR, Ocampo 210bis, Rosario, Argentina
| | | | | | - Fabian Fay
- Heritas - CIBIC S.A, Zeballos 249, Rosario, Argentina
| | - Melina Klurfan
- Casa Angelman, Esmeralda 280, Tigre, Buenos Aires Argentina
| | | |
Collapse
|
4
|
Vijayakrishnan J, Studd J, Broderick P, Kinnersley B, Holroyd A, Law PJ, Kumar R, Allan JM, Harrison CJ, Moorman AV, Vora A, Roman E, Rachakonda S, Kinsey SE, Sheridan E, Thompson PD, Irving JA, Koehler R, Hoffmann P, Nöthen MM, Heilmann-Heimbach S, Jöckel KH, Easton DF, Pharaoh PDP, Dunning AM, Peto J, Canzian F, Swerdlow A, Eeles RA, Kote-Jarai ZS, Muir K, Pashayan N, Greaves M, Zimmerman M, Bartram CR, Schrappe M, Stanulla M, Hemminki K, Houlston RS. Genome-wide association study identifies susceptibility loci for B-cell childhood acute lymphoblastic leukemia. Nat Commun 2018; 9:1340. [PMID: 29632299 PMCID: PMC5890276 DOI: 10.1038/s41467-018-03178-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/25/2018] [Indexed: 01/19/2023] Open
Abstract
Genome-wide association studies (GWAS) have advanced our understanding of susceptibility to B-cell precursor acute lymphoblastic leukemia (BCP-ALL); however, much of the heritable risk remains unidentified. Here, we perform a GWAS and conduct a meta-analysis with two existing GWAS, totaling 2442 cases and 14,609 controls. We identify risk loci for BCP-ALL at 8q24.21 (rs28665337, P = 3.86 × 10-9, odds ratio (OR) = 1.34) and for ETV6-RUNX1 fusion-positive BCP-ALL at 2q22.3 (rs17481869, P = 3.20 × 10-8, OR = 2.14). Our findings provide further insights into genetic susceptibility to ALL and its biology.
Collapse
Affiliation(s)
- Jayaram Vijayakrishnan
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - James Studd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Amy Holroyd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, 69120, Heidelberg, Germany
| | - James M Allan
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Christine J Harrison
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Anthony V Moorman
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Ajay Vora
- Department of Haematology, Great Ormond Street Hospital, London, WC1N 3JH, UK
| | - Eve Roman
- Department of Health Sciences, University of York, York, YO10 5DD, UK
| | | | - Sally E Kinsey
- Department of Paediatric and Adolescent Haematology and Oncology, Leeds General Infirmary, Leeds, LS1 3EX, UK
| | - Eamonn Sheridan
- Medical Genetics Research Group, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, LS9 7TF, UK
| | - Pamela D Thompson
- Paediatric and Familial Cancer Research Group, Institute of Cancer Sciences, St. Mary's Hospital, Manchester, M13 9WL, UK
| | - Julie A Irving
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Rolf Koehler
- Department of Human Genetics, Institute of Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany
| | - Per Hoffmann
- Department of Genomics, Institute of Human Genetics, Life & Brain Centre, University of Bonn, D-53012, Bonn, Germany
- Department of Biomedicine, Human Genomics Research Group, University Hospital and University of Basel, 4031, Basel, Switzerland
| | - Markus M Nöthen
- Department of Genomics, Institute of Human Genetics, Life & Brain Centre, University of Bonn, D-53012, Bonn, Germany
| | - Stefanie Heilmann-Heimbach
- Department of Genomics, Institute of Human Genetics, Life & Brain Centre, University of Bonn, D-53012, Bonn, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Douglas F Easton
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, CB1 8RN, UK
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Paul D P Pharaoh
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, CB1 8RN, UK
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Laboratory, Cambridge, CB1 8RN, UK
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Frederico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Rosalind A Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - ZSofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Kenneth Muir
- Institute of Population Health, University of Manchester, Manchester, M13 9PL, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Nora Pashayan
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, CB1 8RN, UK
- Department of Applied Health Research, University College London, London, WC1E 7HB, UK
| | - Mel Greaves
- Centre for Evolution and Cancer, Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Martin Zimmerman
- Department of Paediatric Haematology and Oncology, Hannover Medical School, 30625, Hannover, Germany
| | - Claus R Bartram
- Department of Human Genetics, Institute of Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany
| | - Martin Schrappe
- General Paediatrics, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Martin Stanulla
- Department of Paediatric Haematology and Oncology, Hannover Medical School, 30625, Hannover, Germany
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, 69120, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, 221 00, Lund, Sweden
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK.
| |
Collapse
|
5
|
Yuan H, Zhang L, Chen M, Zhu J, Meng Z, Liang L. A de novo triplication on 2q22.3 including the entire ZEB2 gene associated with global developmental delay, multiple congenital anomalies and behavioral abnormalities. Mol Cytogenet 2015; 8:99. [PMID: 26705424 PMCID: PMC4690300 DOI: 10.1186/s13039-015-0206-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mowat-Wilson syndrome (MWS) is a genetic condition characterized by distinctive facial features, moderate to severe intellectual disability, developmental delay and multiple congenital anomalies. MWS is caused by heterozygous mutations or deletions of the ZEB2 gene located on chromosome 2q22.3. At present, over 190 cases with mutations and deletions involving the ZEB2 gene have been reported, but triplication or duplication of reciprocal region of Mowat-Wilson syndrome has never been reported. CASE PRESENTATION Here we report a 2-year-2-month-old boy carrying a de novo 2.9 Mb complex copy number gain at 2q22.3 involving triplication of ZEB2 gene. The boy is characterized by intrauterine growth retardation, hypotonia, cognitive impairment, multiple congenital anomalies and behavioral abnormalities. CONCLUSION This case provides evidence that triplication of ZEB2 gene may be clinical significance and ZEB2 gene is likely to be a dosage sensitive gene.
Collapse
Affiliation(s)
- Haiming Yuan
- Guangzhou kingmed center for clinical laboratory Co., Ltd, Guangzhou, 510330, Guangdong China ; KingMed School of Laboratory Medicine Guangzhou Medical University, Guangzhou, 510330, Guangdong China
| | - Lina Zhang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong China
| | - Mengfan Chen
- Guangzhou kingmed center for clinical laboratory Co., Ltd, Guangzhou, 510330, Guangdong China
| | - Junping Zhu
- Guangzhou kingmed center for clinical laboratory Co., Ltd, Guangzhou, 510330, Guangdong China
| | - Zhe Meng
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong China
| | - Liyang Liang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong China
| |
Collapse
|
6
|
Capitan A, Allais-Bonnet A, Pinton A, Marquant-Le Guienne B, Le Bourhis D, Grohs C, Bouet S, Clément L, Salas-Cortes L, Venot E, Chaffaux S, Weiss B, Delpeuch A, Noé G, Rossignol MN, Barbey S, Dozias D, Cobo E, Barasc H, Auguste A, Pannetier M, Deloche MC, Lhuilier E, Bouchez O, Esquerré D, Salin G, Klopp C, Donnadieu C, Chantry-Darmon C, Hayes H, Gallard Y, Ponsart C, Boichard D, Pailhoux E. A 3.7 Mb deletion encompassing ZEB2 causes a novel polled and multisystemic syndrome in the progeny of a somatic mosaic bull. PLoS One 2012; 7:e49084. [PMID: 23152852 PMCID: PMC3494662 DOI: 10.1371/journal.pone.0049084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/08/2012] [Indexed: 12/15/2022] Open
Abstract
Polled and Multisystemic Syndrome (PMS) is a novel developmental disorder occurring in the progeny of a single bull. Its clinical spectrum includes polledness (complete agenesis of horns), facial dysmorphism, growth delay, chronic diarrhea, premature ovarian failure, and variable neurological and cardiac anomalies. PMS is also characterized by a deviation of the sex-ratio, suggesting male lethality during pregnancy. Using Mendelian error mapping and whole-genome sequencing, we identified a 3.7 Mb deletion on the paternal bovine chromosome 2 encompassing ARHGAP15, GTDC1 and ZEB2 genes. We then produced control and affected 90-day old fetuses to characterize this syndrome by histological and expression analyses. Compared to wild type individuals, affected animals showed a decreased expression of the three deleted genes. Based on a comparison with human Mowat-Wilson syndrome, we suggest that deletion of ZEB2, is responsible for most of the effects of the mutation. Finally sperm-FISH, embryo genotyping and analysis of reproduction records confirmed somatic mosaicism in the founder bull and male-specific lethality during the first third of gestation. In conclusion, we identified a novel locus involved in bovid horn ontogenesis and suggest that epithelial-to-mesenchymal transition plays a critical role in horn bud differentiation. We also provide new insights into the pathogenicity of ZEB2 loss of heterozygosity in bovine and humans and describe the first case of male-specific lethality associated with an autosomal locus in a non-murine mammalian species. This result sets PMS as a unique model to study sex-specific gene expression/regulation.
Collapse
Affiliation(s)
- Aurélien Capitan
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mulatinho MV, de Carvalho Serao CL, Scalco F, Hardekopf D, Pekova S, Mrasek K, Liehr T, Weise A, Rao N, Llerena JC. Severe intellectual disability, omphalocele, hypospadia and high blood pressure associated to a deletion at 2q22.1q22.3: case report. Mol Cytogenet 2012; 5:30. [PMID: 22686481 PMCID: PMC3407782 DOI: 10.1186/1755-8166-5-30] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 06/11/2012] [Indexed: 01/11/2023] Open
Abstract
Background Recently, array-comparative genomic hybridization (aCGH) platforms have significantly improved the resolution of chromosomal analysis allowing the identification of genomic copy number gains and losses smaller than 5 Mb. Here we report on a young man with unexplained severe mental retardation, autism spectrum disorder, congenital malformations comprising hypospadia and omphalocele, and episodes of high blood pressure. An ~ 6 Mb interstitial deletion that includes the causative genes is identified by oligonucleotide-based aCGH. Results Our index case exhibited a de novo chromosomal abnormality at 2q22 [del(2)(q22.1q22.3)dn] which was not visible at the 550 haploid band level. The deleted region includes eight genes: HNMT, SPOPL, NXPH2, LOC64702, LRP1B, KYNU, ARHGAP15 and GTDC1. Discussion aCGH revealed an ~ 6 Mb deletion in 2q22.1 to 2q22.3 in an as-yet unique clinical case associated with intellectual disability, congenital malformations and autism spectrum disorder. Interestingly, the deletion is co-localized with a fragile site (FRA2K), which could be involved in the formation of this chromosomal aberration. Further studies are needed to determine if deletions of 2q22.1 to 2q22.3 define a new microdeletion syndrome.
Collapse
Affiliation(s)
- Milene Vianna Mulatinho
- Instituto Fernandes Figueira, IFF/FIOCRUZ, Departamento de Genética Médica, Av, Rui Barbosa, 716, Flamengo, Rio de Janeiro, RJ 22250-020, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Organ transplantation has evolved rapidly and there is now widespread use of donated organs for the treatment of end-stage organ failure. Although the therapeutic options achieving long-term graft survival have improved, acute and chronic rejections are still a major problem. Studies to identify noninvasive biomarkers for rejection and underlying molecular events have increased significantly in the past decade, but a major breakthrough is still missing. The recent discovery of small regulatory RNA molecules (microRNAs) resulted in a new and improved understanding of the mechanisms of gene regulation and also led to the development of the first new microRNA (miRNA)-based therapies. miRNAs are endogenous, single-stranded RNAs consisting of about 19-25 noncoding nucleotides, which have an important role in regulating gene expression. Additionally, circulating miRNAs that might be useful as novel disease biomarkers were detected. Here, we summarise current knowledge about the role of miRNAs in immunology and transplantation medicine and their role as potential biomarkers. We also focus on the molecular mechanisms and therapeutic implications of the use of miRNA-based therapeutic strategies to improve long-term allograft survival.
Collapse
|
9
|
Remarkable expression in the colon adenocarcinoma of Hmat-Xa, a human mannosyltransferase-like gene, that is homologous to drosophila gene GC15914. Biosci Biotechnol Biochem 2011; 75:1451-5. [PMID: 21821951 DOI: 10.1271/bbb.110124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We cloned a novel human mannosyltransferase-like gene, designated Hmat-Xa, as a gene homologous to the Drosophila GC15914 gene encoding the 9QVXN0 protein: see "Project Report for FY2002 on the 'Construction of Libraries of Human Genes Participating in Glycosylation' project" 43-45 (2003), New Energy and Industrial Technology Development Organization (NEDO), NEDO and Research Association for Biotechnology, Tokyo, Japan (in Japanese). After that, the GTDC1 gene, as reported by Zhao et al., DNA Cell Biol., 23, 183-187 (2004), was found to be the same as the Hmat-Xa gene. Domain EXFGI/L/VX(2)L/VE in the Hmat-Xa protein, also present in both human mannosyltransferase II/III and mannosyltransferase IV/V, which are involved in the synthesis of lipid-linked oligosaccharides, and some bacterial mannosyltransferases. A real-time PCR study of Hmat-Xa mRNA expression in human normal and tumor multiple tissue cDNA identified its tissue-specific expression and its remarkable expression in colon adenocarcinoma as compared to the normal counterpart. Thus the elevated expression of Hmat-Xa might serve as a candidate marker for colon adenocarcinoma.
Collapse
|
10
|
Sui W, Dai Y, Huang Y, Lan H, Yan Q, Huang H. Microarray analysis of MicroRNA expression in acute rejection after renal transplantation. Transpl Immunol 2008; 19:81-5. [DOI: 10.1016/j.trim.2008.01.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/11/2008] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
|