1
|
Sung SH, Jang S, Lee G, Park JK, Lee S, Shin BC. Bee venom acupuncture for musculoskeletal pain conditions: an updated systematic review and meta-analysis. BMC Complement Med Ther 2025; 25:161. [PMID: 40295986 PMCID: PMC12039175 DOI: 10.1186/s12906-025-04891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
An updated systematic review of randomized controlled trials (RCTs) was conducted to evaluate the clinical evidence for the use of BVA for musculoskeletal pain. We searched 13 electronic databases up to December 2024 with no language restrictions. Since 2008, nine RCTs have been additionally identified, so a total of 20 trials were included in our updated review. In a meta-analysis of 2 RCTs, pain was significantly reduced with BVA compared to sham injection of normal saline (10-cm visual analog scale [VAS]; mean difference [MD]: -16.93; 95% confidence interval [CI] = -26.35 to -7.51, P = 0.0004, n = 85; heterogeneity: I2 = 0%). The meta-analysis of 5 RCTs comparing BVA plus acupuncture to saline injection plus acupuncture showed significant improvements in the 10-cm VAS (MD: -1.24; 95% CI = -1.63 to -0.85, P < 0.00001, n = 152; heterogeneity: I2 = 16%). No severe side effects such as anaphylaxis were observed in any of the eight trials. BVA appeared to improve musculoskeletal pain conditions compared to sham injections. However, the meta-analysis included only a limited number of RCTs with small sample sizes, and there was considerable clinical heterogeneity in terms of pain types, dosage, and concentration of BVA, which restricts the ability to draw definitive conclusions.
Collapse
Affiliation(s)
- Soo-Hyun Sung
- Department of Policy Development, National Institute of Korean Medicine Development, Seoul, 04554, South Korea
| | - Soobin Jang
- Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, 1 Haanydaero, Gyeongsan-si, Gyeongsangbuk-do, 38610, South Korea
| | - Gihyun Lee
- College of Korean Medicine, Dongshin University, Naju, 58245, South Korea
| | - Jang-Kyung Park
- Division of Clinical Medicine, School of Korean Medicine, Pusan National University, Yangsan, 50612, South Korea
| | - Sungjoo Lee
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Byung-Cheul Shin
- Division of Clinical Medicine, School of Korean Medicine, Pusan National University, Yangsan, 50612, South Korea.
| |
Collapse
|
2
|
Zhang Y, Dong Q, Zhao X, Sun Y, Lin X, Zhang X, Wang T, Yang T, Jiang X, Li J, Cao Z, Cai T, Liu W, Zhang H, Bai J, Yao Q. Honeycomb-like biomimetic scaffold by functionalized antibacterial hydrogel and biodegradable porous Mg alloy for osteochondral regeneration. Front Bioeng Biotechnol 2024; 12:1417742. [PMID: 39070169 PMCID: PMC11273084 DOI: 10.3389/fbioe.2024.1417742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction: Osteochondral repair poses a significant challenge due to its unique pathological mechanisms and complex repair processes, particularly in bacterial tissue conditions resulting from open injuries, infections, and surgical contamination. This study introduces a biomimetic honeycomb-like scaffold (Zn-AlgMA@Mg) designed for osteochondral repair. The scaffold consists of a dicalcium phosphate dihydrate (DCPD)-coated porous magnesium scaffold (DCPD Mg) embedded within a dual crosslinked sodium alginate hydrogel (Zn-AlgMA). This combination aims to synergistically exert antibacterial and osteochondral integrated repair properties. Methods: The Zn-AlgMA@Mg scaffold was fabricated by coating porous magnesium scaffolds with DCPD and embedding them within a dual crosslinked sodium alginate hydrogel. The structural and mechanical properties of the DCPD Mg scaffold were characterized using scanning electron microscopy (SEM) and mechanical testing. The microstructural features and hydrophilicity of Zn-AlgMA were assessed. In vitro studies were conducted to evaluate the controlled release of magnesium and zinc ions, as well as the scaffold's osteogenic, chondrogenic, and antibacterial properties. Proteomic analysis was performed to elucidate the mechanism of osteochondral integrated repair. In vivo efficacy was evaluated using a rabbit full-thickness osteochondral defect model, with micro-CT evaluation, quantitative analysis, and histological staining (hematoxylin-eosin, Safranin-O, and Masson's trichrome). Results: The DCPD Mg scaffold exhibited a uniform porous structure and superior mechanical properties. The Zn-AlgMA hydrogel displayed consistent microstructural features and enhanced hydrophilicity. The Zn-AlgMA@Mg scaffold provided controlled release of magnesium and zinc ions, promoting cell proliferation and vitality. In vitro studies demonstrated significant osteogenic and chondrogenic properties, as well as antibacterial efficacy. Proteomic analysis revealed the underlying mechanism of osteochondral integrated repair facilitated by the scaffold. Micro-CT evaluation and histological analysis confirmed successful osteochondral integration in the rabbit model. Discussion: The biomimetic honeycomb-like scaffold (Zn-AlgMA@Mg) demonstrated promising results for osteochondral repair, effectively addressing the challenges posed by bacterial tissue conditions. The scaffold's ability to release magnesium and zinc ions in a controlled manner contributed to its significant osteogenic, chondrogenic, and antibacterial properties. Proteomic analysis provided insights into the scaffold's mechanism of action, supporting its potential for integrated osteochondral regeneration. The successful in vivo results highlight the scaffold's efficacy, making it a promising biomaterial for future applications in osteochondral repair.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Qiangsheng Dong
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing, China
| | - Xiao Zhao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Yuzhi Sun
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Xin Lin
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Zhang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Tianming Wang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Tianxiao Yang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Xiao Jiang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Jiaxiang Li
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Zhicheng Cao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Tingwen Cai
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Wanshun Liu
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Hongjing Zhang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, China
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| |
Collapse
|
3
|
Harfmann D, Florea A. Experimental envenomation with honeybee venom melittin and phospholipase A2 induced multiple ultrastructural changes in adrenocortical mitochondria. Toxicon 2023; 229:107136. [PMID: 37116588 DOI: 10.1016/j.toxicon.2023.107136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Bee stings represent a public health subject, but the mechanisms involved in bee venom toxicity are not yet fully understood. To evaluate the reactions of adrenocortical cells, through which organisms respond to stress, two honeybee venom components: melittin (Mlt) and phospholipase A2 (PLA2) were tested as potential chemical stressors. Modifications were investigated with transmission electron microscopy and microanalysis. A single dose of Mlt (31 mg/kg) or PLA2 (9.3 mg/kg) was injected in rats of groups ML and PL; daily doses of Mlt (350 μg/kg) or PLA2 (105 μg/kg) were injected 30 days in rats of groups M30 and P30. Adrenocortical cells in ML group showed ultrastructural degenerative alterations of nuclei, endoplasmic reticulum, and mitochondria that exhibited lipid inclusions and mitochondrial cristae (MC) re-organized into mono- or multimembrane large vesicles, and whorls of membranes. Many MC were degenerated. In the M30 group, similar ultrastructural changes, but of lower amplitude were noted; lipid cytosolic droplets were heterogenous. MC diameters in Mlt groups (melittin treated groups) were significantly higher than in control (C) group. In PL group, mitochondria contained large lipid inclusions, vesicular MC of different sizes and multiple membranes, and debris, or whorl structures. In P30 group MC were tubular with increased diameters. In both PLA2 groups (PLA2 treated groups) MC were significantly larger than in C group. We concluded that Mlt and PLA2 were powerful stressors, toxic at the tested doses, cellular reactions concerning in all groups mainly mitochondria, but also other cellular compartments. Apart from degenerative regression of MC, the rearrangement of tubular MC occurred into one or multiple large multimembrane vesicular MC. Reactions to the high doses were more pronounced, with the highest amplitude in ML group, and the lowest in P30 group.
Collapse
Affiliation(s)
- Diana Harfmann
- Department of Cell and Molecular Biology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
4
|
Sung SH, Lee HJ, Han JE, Sung ADM, Park M, Shin S, Jeong HI, Jang S, Lee G. Bee Venom Acupuncture for Neck Pain: A Review of the Korean Literature. Toxins (Basel) 2023; 15:toxins15020129. [PMID: 36828443 PMCID: PMC9967438 DOI: 10.3390/toxins15020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Bee venom is a natural toxin that is effective in treating various types of pain. The purpose of this paper was to review all the features of clinical studies conducted on bee venom acupuncture (BVA) for the treatment of neck pain in Korean publications. Six Korean databases and 16 Korean journals were searched in August 2022 for clinical studies on BVA for neck pain. We identified 24 trials that met our inclusion criteria, of which 316 patients with neck pain were treated with BVA. The most common diagnosis in the patients with neck pain was herniated intervertebral discs (HIVDs) of the cervical spine (C-spine) (29.2%), and the concentration and dosage per session were 0.05-0.5 mg/mL and 0.1-1.5 mL, respectively. The visual analog scale was most often measured for neck pain severity (62.5%), and all clinical research reported improvements in 16 outcome measures. This study shows that BVA could be recommended for the treatment of neck pain, especially HIVD of the C-spine; however, the adverse effects of BVA must be examined in future studies.
Collapse
Affiliation(s)
- Soo-Hyun Sung
- Department of Policy Development, National Institute of Korean Medicine Development, Seoul 04554, Republic of Korea
| | - Hee-Jung Lee
- Department of Policy Development, National Institute of Korean Medicine Development, Seoul 04554, Republic of Korea
| | - Ji-Eun Han
- Department of Policy Development, National Institute of Korean Medicine Development, Seoul 04554, Republic of Korea
| | - Angela Dong-Min Sung
- Department of Policy Development, National Institute of Korean Medicine Development, Seoul 04554, Republic of Korea
| | - Minjung Park
- Center for Development of Innovative Technologies in Korean Medicine, National Institute of Korean Medicine Development, Seoul 04554, Republic of Korea
| | - Seungwon Shin
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hye In Jeong
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soobin Jang
- Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan 38609, Republic of Korea
| | - Gihyun Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
- Correspondence:
| |
Collapse
|
5
|
Shi P, Xie S, Yang J, Zhang Y, Han S, Su S, Yao H. Pharmacological effects and mechanisms of bee venom and its main components: Recent progress and perspective. Front Pharmacol 2022; 13:1001553. [PMID: 36238572 PMCID: PMC9553197 DOI: 10.3389/fphar.2022.1001553] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Bee venom (BV), a type of defensive venom, has been confirmed to have favorable activities, such as anti-tumor, neuroprotective, anti-inflammatory, analgesic, anti-infectivity effects, etc. This study reviewed the recent progress on the pharmacological effects and mechanisms of BV and its main components against cancer, neurological disorders, inflammatory diseases, pain, microbial diseases, liver, kidney, lung and muscle injury, and other diseases in literature during the years 2018-2021. The related target proteins of BV and its main components against the diseases include Akt, mTOR, JNK, Wnt-5α, HIF-1α, NF-κB, JAK2, Nrf2, BDNF, Smad2/3, AMPK, and so on, which are referring to PI3K/Akt/mTOR, MAPK, Wnt/β-catenin, HIF-1α, NF-κB, JAK/STAT, Nrf2/HO-1, TrkB/CREB/BDNF, TGF-β/Smad2/3, and AMPK signaling pathways, etc. Further, with the reported targets, the potential effects and mechanisms on diseases were bioinformatically predicted via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, disease ontology semantic and enrichment (DOSE) and protein-protein interaction (PPI) analyses. This review provides new insights into the therapeutic effects and mechanisms of BV and its main components on diseases.
Collapse
Affiliation(s)
- Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihui Xie
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiali Yang
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuo Han
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songkun Su
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Kim JY, Kim JH, Goo BH, Park YC, Seo BK, Baek YH. Quality assessment of conventional and traditional oriental medicine clinical practice guidelines for knee osteoarthritis using AGREE II instrument. Medicine (Baltimore) 2021; 100:e28426. [PMID: 34941193 PMCID: PMC8702243 DOI: 10.1097/md.0000000000028426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Knee osteoarthritis is a degenerative disease and its prevalence tends to increase. Clinical practice guidelines (CPGs) are evidence-based recommendations for treatment that help policymakers, practitioners, and patients make more appropriate and efficient decisions during the course of management. This study aimed to evaluate the quality of knee osteoarthritis CPGs using the Appraisal of Guidelines for Research and Evaluation (AGREE II) instrument. METHOD The retrieval engines and websites were utilized from January 2010 to December 2020. The search words were "Clinical practice guideline" OR "Critical practice guideline" OR "guideline∗" AND "Osteoarthritis." The quality of the CPGs was independently examined by four appraisers using the AGREE II instrument. Consequently, the selected CPGs were graded as Classes A, B, and C according to the level of recommendation. RESULT In this study, 13 CPGs for knee osteoarthritis were selected and evaluated qualitatively using the AGREE II instrument. The overall quality percentage score was as follows: clarity of presentation, 72.6%, scope and purpose, 62.6%, rigor of development, 54.2%, stakeholder investment, 50.5%, editorial independence, 46.5%, applicability, 22.5%. CONCLUSION Auxiliary materials for the treatment process of knee OA should be supplemented in future revised versions for quality improvement of knee OA CPGs. Also, more evidence should be accumulated to support the recommendation of traditional oriental medical treatments in the clinical field. From the perspective of integrative medicine, along with conventional pharmacological treatment, exercise, weight loss, and acupuncture can be combined together in clinical situations.
Collapse
Affiliation(s)
- Jun-Yeon Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
- Joint Center, Kyung Hee University Hospital at Gangdong, Guangdong-gu, Seoul, Republic of Korea
| | - Jung-Hyun Kim
- Joint Center, Kyung Hee University Hospital at Gangdong, Guangdong-gu, Seoul, Republic of Korea
| | - Bon-Hyuk Goo
- Joint Center, Kyung Hee University Hospital at Gangdong, Guangdong-gu, Seoul, Republic of Korea
| | - Yeon-Cheol Park
- Joint Center, Kyung Hee University Hospital at Gangdong, Guangdong-gu, Seoul, Republic of Korea
- Department of Acupuncture and Moxibustion, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Byung-Kwan Seo
- Department of Acupuncture and Moxibustion, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
- Spine Center, Kyung Hee University Hospital at Gangdong, Guangdong-gu, Seoul, Republic of Korea
| | - Yong-Hyeon Baek
- Joint Center, Kyung Hee University Hospital at Gangdong, Guangdong-gu, Seoul, Republic of Korea
- Department of Acupuncture and Moxibustion, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
7
|
Bee Venom Prevents Mucin 5AC Production through Inhibition of AKT and SPDEF Activation in Airway Epithelia Cells. Toxins (Basel) 2021; 13:toxins13110773. [PMID: 34822557 PMCID: PMC8619940 DOI: 10.3390/toxins13110773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
IL-13 induces mucus metaplasia, which causes airway obstruction in asthma. Bee venom (BV) and its components have shown anti-inflammatory effects in allergic diseases such as atopic dermatitis and asthma. In this study, we investigated the effect of BV on IL-13-induced mucus metaplasia through activation of the signal transducer and activator of transcription (STAT6), and regulation of SAM-pointed domain containing Ets-like factor (SPDEF) and forkhead box A2 (FOXA2) in the airway epithelia cell line A549. In A549 cells, BV (1.0 µg/mL) inhibited IL-13 (10 ng/mL)-induced AKT phosphorylation, increase in SPDEF protein expression, and decrease in FOXA2 protein expression—but not STAT6 phosphorylation. BV also prevented the IL-13-induced increase in mucin 5AC (MUC5AC) mRNA and protein expression. Moreover, we observed that inhibition of phosphoinositide 3 kinase (PI3K)/AKT using LY294002 (50 µM) could reverse the alterations in FOXA2 and MUC5AC expression -by IL-13 and BV. However, LY294002 did not affect IL-13- and BV-induced changes in SPDEF expression. These findings indicate that BV inhibits MUC5AC production through the regulation of SPDEF and FOXA2. The inhibition of MUC5AC production through FOXA2 is mediated via the suppression of PI3K/AKT activation by BV. BV may be helpful in the prevention of mucus metaplasia in asthma.
Collapse
|
8
|
Bee Venom Acupuncture Effects on Pain and Its Mechanisms: An Updated Review. Toxins (Basel) 2021; 13:toxins13090608. [PMID: 34564611 PMCID: PMC8472865 DOI: 10.3390/toxins13090608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023] Open
Abstract
Bee venom (BV) is a complex natural toxin that contains various pharmaceutical compounds. Bee venom acupuncture (BVA), involving a BV injection into a certain acupuncture point, has been utilized to relieve a range of pain conditions. Regardless of whether pain is caused by disease or injury, if not effectively treated, pain can exert a detrimental effect on all aspects of life. In the past decade, many researchers have investigated the anti-nociceptive effects of BVA through clinical use and experimental evaluation. This report reviews the existing knowledge on the analgesic effects of BVA, focusing on musculoskeletal pain, inflammatory pain and neuropathic pain, and its analgesic mechanisms. Although further clinical trials are needed to clinical application of experimental results, this review will contribute to the standardization and generalization of BVA.
Collapse
|
9
|
Martinez-Armenta C, Camacho-Rea MC, Martínez-Nava GA, Espinosa-Velázquez R, Pineda C, Gomez-Quiroz LE, López-Reyes A. Therapeutic Potential of Bioactive Compounds in Honey for Treating Osteoarthritis. Front Pharmacol 2021; 12:642836. [PMID: 33967778 PMCID: PMC8097136 DOI: 10.3389/fphar.2021.642836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of joint tissue homeostasis induces articular degenerative changes and musculoskeletal diseases such as osteoarthritis. This pathology represents the first cause of motor disability in individuals over 60 years of age, impacting their quality of life and the costs of health systems. Nowadays, pharmacological treatments for cartilage disease have failed to achieve full tissue regeneration, resulting in a functional loss of the joint; therefore, joint arthroplasty is the gold standard procedure to cure this pathology in severe cases of Osteoarthritis. A different treatment is the use of anti-inflammatory drugs which mitigate pain and inflammation in some degree, but without significant inhibition of disease progression. In this sense, new therapeutic alternatives based on natural compounds have been proposed to delay osteoarthritis progression, particularly those agents that regulate articular homeostasis. Preclinical studies have shown a therapeutic application of honey and its bioactive compounds, ranging from treating wounds, coughs, skin infections, and are also used as a biological stimulant by exerting antioxidant and anti-inflammatory properties. In this article, we reviewed the current medicinal applications of honey with particular emphasis on its use regulating articular homeostasis by inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Carlos Martinez-Armenta
- Posgrado en Biología Experimental, Dirección de Ciencias Biológicas y de La Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, Mexico
| | - María Carmen Camacho-Rea
- Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Gabriela Angélica Martínez-Nava
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | | | - Carlos Pineda
- División de Enfermedades Musculo-esqueléticas y Reumáticas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Luis Enrique Gomez-Quiroz
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Alberto López-Reyes
- Facultad de Ciencias de La Salud, Universidad Anáhuac México Sur, Ciudad de México, Mexico.,Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| |
Collapse
|
10
|
Sung SH, Kim JW, Han JE, Shin BC, Park JK, Lee G. Animal Venom for Medical Usage in Pharmacopuncture in Korean Medicine: Current Status and Clinical Implication. Toxins (Basel) 2021; 13:toxins13020105. [PMID: 33535603 PMCID: PMC7912904 DOI: 10.3390/toxins13020105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
Animal venoms, widespread throughout the world, are complex mixtures, the composition of which depends on the venom-producing species. The objective of this study was to contribute to the development of animal venom-based medicines by investigating the use of animal venom pharmacopuncture in Korean medicine (KM) institutions. We surveyed 256 public health centers from 1 through 31 October 2019 as guided by the Ministry of Health and Welfare (MoHW). A questionnaire developed by an expert group was distributed and collected for statistical analysis. The survey identified three types of animal venom-based pharmacopuncture: bee, snake, and toad venoms. The medications are based on a single animal venom ingredient and produced in 11 external herbal dispensaries (EHDs). Each animal venom is processed, refined, and freeze-dried in a cleanroom to produce a powder formulation that is later measured, diluted, filtered, filled, sealed, sterilized, and packaged as pharmacopuncture injections used in KM institutions. Bee venom therapy is effective in treating musculoskeletal pain, snake venom therapy is effective in controlling bleeding during surgery, and toad venom therapy is effective in cancer treatment. The study suggests that bee, snake, and toad venoms could be used in medical institutions and have the potential for drug development.
Collapse
Affiliation(s)
- Soo-Hyun Sung
- Department of Policy Development, National Development Institute of Korean Medicine, Seoul 04554, Korea; (S.-H.S.); (J.-W.K.); (J.-E.H.)
| | - Ji-Won Kim
- Department of Policy Development, National Development Institute of Korean Medicine, Seoul 04554, Korea; (S.-H.S.); (J.-W.K.); (J.-E.H.)
| | - Ji-Eun Han
- Department of Policy Development, National Development Institute of Korean Medicine, Seoul 04554, Korea; (S.-H.S.); (J.-W.K.); (J.-E.H.)
| | - Byung-Cheul Shin
- Division of Clinical Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea; (B.-C.S.); (J.-K.P.)
| | - Jang-Kyung Park
- Division of Clinical Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea; (B.-C.S.); (J.-K.P.)
| | - Gihyun Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Korea
- Correspondence:
| |
Collapse
|
11
|
Lin TY, Hsieh CL. Clinical Applications of Bee Venom Acupoint Injection. Toxins (Basel) 2020; 12:toxins12100618. [PMID: 32992601 PMCID: PMC7601520 DOI: 10.3390/toxins12100618] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/29/2022] Open
Abstract
Bee venom is a complex natural mixture with various pharmaceutical properties. Among these properties, its peptides and enzymes have potential medical therapy for pain relief and inflammation. In clinical settings, this therapy has been used widely to treat diseases by injecting into acupoints. In this article, we have conducted various research from PubMed, Cochrane Library, and Clinical Key from inception of July 2020. The results revealed that bee venom therapy has been reported effective in anti-inflammatory, antiapoptosis, and analgesic effects. Moreover, bee venom acupuncture has been commonly used for clinical disorders such as Parkinson disease, neuropathic pain, Alzheimer disease, intervertebral disc disease, spinal cord injury, musculoskeletal pain, arthritis, multiple sclerosis, skin disease and cancer.
Collapse
Affiliation(s)
- Ting-Yen Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Ching-Liang Hsieh
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-2205-3366-3128
| |
Collapse
|
12
|
Jang S, Kim KH. Clinical Effectiveness and Adverse Events of Bee Venom Therapy: A Systematic Review of Randomized Controlled Trials. Toxins (Basel) 2020; 12:toxins12090558. [PMID: 32872552 PMCID: PMC7551670 DOI: 10.3390/toxins12090558] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 01/08/2023] Open
Abstract
Bee venom has been used to treat many diseases because of its anti-inflammatory and analgesic effects. However, the secretions of bee venom can also cause life-threatening adverse reactions. The objective of this paper was to review the clinical effectiveness of bee venom and adverse events induced by bee venom, regardless of the disease. Four electronic databases were searched in April 2020. The reference lists of the retrieved articles and previous review articles were also hand-searched. Randomized controlled trials (RCTs) using any type of bee venom other than live bee stings for the clinical treatment of any disease other than cancer were included. The studies were selected, the data were extracted, and the quality of the studies was assessed by two authors. Risk of bias was assessed using the Cochrane risk of bias standards. Twelve RCTs were included in this review—three on Parkinson’s disease, four on arthralgia, four on musculoskeletal disorders, and one on polycystic ovary syndrome. The types of bee venom used were acupuncture injections, ultrasound gel, and an ointment. Six studies reported adverse events, and skin reactions such as pruritus and swelling were the most common. The large-scale clinical trials of bee venom therapy are needed to verify the statistical difference, and the reporting system for adverse events is also required to increase the safety of bee venom therapy.
Collapse
Affiliation(s)
- Soobin Jang
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054 Korea;
| | - Kyeong Han Kim
- Department of Preventive Medicine, College of Korean Medicine, Woosuk University, Jeonju 54986, Jeollabuk-do, Korea
- Correspondence: ; Tel.: +82-63-290-9031; Fax: +82-63-291-1240
| |
Collapse
|
13
|
Chen X, Fan H, Chen J, Fan H, Wu P. Bee venom acupuncture for adhesive capsulitis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e19975. [PMID: 32358370 PMCID: PMC7440301 DOI: 10.1097/md.0000000000019975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Bee venom acupuncture has been used in treating patients with shoulder adhesive capsulitis, yet the effectiveness and safety remains unclear. Therefore, this systematic review will aim to assess the effectiveness and safety of bee venom acupuncture for shoulder adhesive capsulitis. METHODS Electronic databases including EMBASE, PUBMED, the Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, Chinese Scientific Journal Database, Wanfang Database, and Chinese Biomedical Literature Database will be searched for relevant randomized controlled trials from their inception to the search data without language and publication status. Randomized controlled trials involving bee venom acupuncture for treating shoulder adhesive capsulitis will be included. The primary outcome will be pain visual analogue scale, and secondary outcomes include active and passive range of motions, shoulder pain and disability index. Meta-analysis will be conducted using Review Manager software (V.5.3). The results will be presented as risk ratio for dichotomous data, and standardized or weighted mean difference for continuous data. RESULTS The results will be disseminated through a peer-reviewed journal publication. CONCLUSION These systematic review findings will provide an evidence of bee venom acupuncture for shoulder adhesive capsulitis, and help to inform clinical practitioners and policy-makers in the decision-making. ETHICS AND DISSEMINATION Ethics approval and patient consent are not required as this study is a systematic review based on published articles.
Collapse
Affiliation(s)
- Xiaohua Chen
- Department of Central Transportation Center, West China Hospital, Sichuan University
| | - Huaying Fan
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine
| | - Jiao Chen
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine
| | - Huayu Fan
- Respiratory Failure Center and Lung Transplant Unit, Sicuhan Province Hospital, Chengdu City, Sichuan Province, China
| | - Ping Wu
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine
| |
Collapse
|
14
|
Jagua-Gualdrón A, Peña-Latorre JA, Fernadez-Bernal RE. Apitherapy for Osteoarthritis: Perspectives from Basic Research. Complement Med Res 2020; 27:184-192. [PMID: 31896107 DOI: 10.1159/000505015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 11/26/2019] [Indexed: 11/19/2022]
Abstract
Osteoarthritis is one of the most common rheumatic disease in the world and one of the leading causes of disability in the elderly. There is still no curative management for the disease, so the search for new therapeutic alternatives continues. -Apitherapy is a therapeutic tool based on the use of beehive products used since ancient times and, at present, their mechanism of action begins to be known. Many of the mechanisms of action of the beehive products are useful for chronic articular pathophysiological processes such as those described in osteoarthritis. This article presents a review of the current state of understanding of the mechanisms through which bee venom, propolis, honey, pollen, and royal jelly may act on osteoarthritis.
Collapse
Affiliation(s)
- Andrés Jagua-Gualdrón
- Universidad Nacional de Colombia, Bogotá, Colombia, .,Apitherapy Investigation and Development Group, Sociedad Colombiana de Apiterapia - Colombian Apitherapy Society, Bogotá, Colombia,
| | - José Adolfo Peña-Latorre
- Universidad Nacional de Colombia, Bogotá, Colombia.,Apitherapy Investigation and Development Group, Sociedad Colombiana de Apiterapia - Colombian Apitherapy Society, Bogotá, Colombia.,Complementary and Alternative Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Roger Edwin Fernadez-Bernal
- Apitherapy Investigation and Development Group, Sociedad Colombiana de Apiterapia - Colombian Apitherapy Society, Bogotá, Colombia.,Universidad Provada del Valle, Cochabamba Bolivia Medical Director Medizen Bolivia, Cochabamba, Bolivia
| |
Collapse
|