1
|
Minakawa EN, Nagai Y. Protein Aggregation Inhibitors as Disease-Modifying Therapies for Polyglutamine Diseases. Front Neurosci 2021; 15:621996. [PMID: 33642983 PMCID: PMC7907447 DOI: 10.3389/fnins.2021.621996] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
The polyglutamine (polyQ) diseases are a group of inherited neurodegenerative diseases caused by the abnormal expansion of a CAG trinucleotide repeat that are translated into an expanded polyQ stretch in the disease-causative proteins. The expanded polyQ stretch itself plays a critical disease-causative role in the pathomechanisms underlying polyQ diseases. Notably, the expanded polyQ stretch undergoes a conformational transition from the native monomer into the β-sheet-rich monomer, followed by the formation of soluble oligomers and then insoluble aggregates with amyloid fibrillar structures. The intermediate soluble species including the β-sheet-rich monomer and oligomers exhibit substantial neurotoxicity. Therefore, protein conformation stabilization and aggregation inhibition that target the upstream of the insoluble aggregate formation would be a promising approach toward the development of disease-modifying therapies for polyQ diseases. PolyQ aggregation inhibitors of different chemical categories, such as intrabodies, peptides, and small chemical compounds, have been identified through intensive screening methods. Among them, recent advances in the brain delivery methods of several peptides and the screening of small chemical compounds have brought them closer to clinical utility. Notably, the recent discovery of arginine as a potent conformation stabilizer and aggregation inhibitor of polyQ proteins both in vitro and in vivo have paved way to the clinical trial for the patients with polyQ diseases. Meanwhile, expression reduction of expanded polyQ proteins per se would be another promising approach toward disease modification of polyQ diseases. Gene silencing, especially by antisense oligonucleotides (ASOs), have succeeded in reducing the expression of polyQ proteins in the animal models of various polyQ diseases by targeting the aberrant mRNA with expanded CAG repeats. Of note, some of these ASOs have recently been translated into clinical trials. Here we overview and discuss these recent advances toward the development of disease modifying therapies for polyQ diseases. We envision that combination therapies using aggregation inhibitors and gene silencing would meet the needs of the patients with polyQ diseases and their caregivers in the near future to delay or prevent the onset and progression of these currently intractable diseases.
Collapse
Affiliation(s)
- Eiko N Minakawa
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
2
|
Xiao L, Li H, Tian J, Jin N, Zhang J, Yang F, Zhou L, Wang Q, Huang Z. The Traditional Formula Kai-Xin-San Alleviates Polyglutamine-Mediated Neurotoxicity by Modulating Proteostasis Network in Caenorhabditis elegans. Rejuvenation Res 2020; 23:207-216. [PMID: 31985332 DOI: 10.1089/rej.2018.2149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The inherited polyglutamine (polyQ) expansion diseases are characterized by progressive accumulation of aggregation-prone polyQ proteins, which may provoke proteostasis imbalance and result in significant neurotoxicity. Using polyQ transgenic Caenorhabditis elegans models, we find that Kai-Xin-San (KXS), a well-known herbal formula traditionally used to treat mental disorders in China, can alleviate polyQ-mediated neuronal death and associated chemosensory deficiency. Intriguingly, KXS does not reduce polyQ aggregation in vitro as demonstrated by Thioflavin-T test, but does inhibit polyQ aggregation in C. elegans models, indicating an indirect aggregation-inhibitory mechanism. Further investigation reveals that KXS can modulate two key arms of the protein quality control system, that is, heat shock response and autophagy, to clear polyQ aggregates, but has little effect on proteasome activity. In addition, KXS is able to reduce oxidative stress, which is involved in proteostasis and neurodegeneration, but has no effect on life span or dietary restriction response. To examine potential interaction of the four component herbs of KXS, a dissection strategy was used to study the effects of differential herbal combinations in C. elegans polyQ models. While the four herbs do contribute additively to KXS function, Panax ginseng is found to be the most effective constituent. Taken together, these findings not only demonstrate the neuroprotective ability of KXS but also suggest its potential as a proteostasis regulator in protein aggregation disorders and provide an insight into the mechanism studies of traditionally used complex prescriptions and their rationality.
Collapse
Affiliation(s)
- Lingyun Xiao
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Center Lab of Longhua Branch, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Haifeng Li
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jing Tian
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, China
| | - Nanxiang Jin
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Ju Zhang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Fan Yang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Ling Zhou
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiangqiang Wang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Research Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zebo Huang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Research Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Ramos-Martín F, Hervás R, Carrión-Vázquez M, Laurents DV. NMR spectroscopy reveals a preferred conformation with a defined hydrophobic cluster for polyglutamine binding peptide 1. Arch Biochem Biophys 2014; 558:104-10. [PMID: 25009140 DOI: 10.1016/j.abb.2014.06.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/20/2014] [Accepted: 06/21/2014] [Indexed: 11/16/2022]
Abstract
Several important human inherited neurodegenerative diseases are caused by "polyQ expansions", which are aberrant long repeats of glutamine residues in proteins. PolyQ binding peptide 1 (QBP1), whose minimal active core sequence is Trp-Lys-Trp-Trp-Pro-Gly-Ile-Phe, binds to expanded polyQs and blocks their β-structure transition, aggregation and in vivo neurodegeneration. Whereas QBP1 is a widely used, commercially available product, its structure is unknown. Here, we have characterized the conformations of QBP1 and a scrambled peptide (Trp-Pro-Ile-Trp-Lys-Gly-Trp-Phe) in aqueous solution by CD, fluorescence and NMR spectroscopies. A CD maximum at 227 nm suggests the presence of rigid Trp side chains in QBP1. Based on 41 NOE-derived distance constraints, the 3D structure of QBP1 was determined. The side chains of Trp 4 and Ile 7, and to a lesser extent, those of Lys 2, Trp 3 and Phe 8, form a small hydrophobic cluster. Pro 5 and Gly 6 adopt a type II tight turn and Lys 2's ζ-NH3(+) is positioned to form a favorable cation-π interaction with Trp 4's indole ring. In contrast, the scrambled QBP1 peptide, which lacks inhibitory activity, does not adopt a preferred structure. These results provide a basis for future structure-based design approaches to further optimize QBP1 for therapy.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Instituto Cajal, IC-Consejo Superior de Investigaciones Científicas, Avda. Doctor Arce 37, E-28002 Madrid, Spain; Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), E-28049 Cantoblanco, Madrid, Spain
| | - Rubén Hervás
- Instituto Cajal, IC-Consejo Superior de Investigaciones Científicas, Avda. Doctor Arce 37, E-28002 Madrid, Spain; Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), E-28049 Cantoblanco, Madrid, Spain
| | - Mariano Carrión-Vázquez
- Instituto Cajal, IC-Consejo Superior de Investigaciones Científicas, Avda. Doctor Arce 37, E-28002 Madrid, Spain; Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), E-28049 Cantoblanco, Madrid, Spain
| | - Douglas V Laurents
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Serrano 119, Madrid E-28006, Spain.
| |
Collapse
|
4
|
Xiao L, Li H, Zhang J, Yang F, Huang A, Deng J, Liang M, Ma F, Hu M, Huang Z. Salidroside protects Caenorhabditis elegans neurons from polyglutamine-mediated toxicity by reducing oxidative stress. Molecules 2014; 19:7757-69. [PMID: 24918543 PMCID: PMC6270757 DOI: 10.3390/molecules19067757] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 01/24/2023] Open
Abstract
Polyglutamine (polyQ) aggregation plays a pivotal role in the pathological process of Huntington's disease and other polyQ disorders. Therefore, strategies aiming at restoring dysfunction and reducing stresses mediated by polyQ toxicity are of therapeutic interest for proteotoxicity diseases. Salidroside, a glycoside from Rhodiola rosea, has been shown to have a variety of bioactivities, including antioxidant activity. Using transgenic Caenorhabditis elegans models, we show here that salidroside is able to reduce neuronal death and behavioral dysfunction mediated by polyQ expressed in ASH neurons, but the neuroprotective effect is not associated with prevention of polyQ aggregation per se. Further experiments reveal that the neuroprotective effect of salidroside in C. elegans models involves its antioxidant capabilities, including decrease of ROS levels and paraquat-induced mortality, increase of antioxidant enzyme activities and reduction of lipid peroxidation. These results demonstrate that salidroside exerts its neuroprotective function against polyQ toxicity via oxidative stress pathways.
Collapse
Affiliation(s)
- Lingyun Xiao
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Haifeng Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Ju Zhang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Fan Yang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Aizhen Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jingjing Deng
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Ming Liang
- Research & Development Centre, Infinitus (China) Company Ltd, Guangzhou 510665, China.
| | - Fangli Ma
- Research & Development Centre, Infinitus (China) Company Ltd, Guangzhou 510665, China.
| | - Minghua Hu
- Research & Development Centre, Infinitus (China) Company Ltd, Guangzhou 510665, China.
| | - Zebo Huang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
5
|
Popiel HA, Takeuchi T, Burke JR, Strittmatter WJ, Toda T, Wada K, Nagai Y. Inhibition of protein misfolding/aggregation using polyglutamine binding peptide QBP1 as a therapy for the polyglutamine diseases. Neurotherapeutics 2013; 10:440-6. [PMID: 23504628 PMCID: PMC3701761 DOI: 10.1007/s13311-013-0184-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Protein misfolding and aggregation in the brain have been recognized to be crucial in the pathogenesis of various neurodegenerative diseases, including Alzheimer's, Parkinson's, and the polyglutamine (polyQ) diseases, which are collectively called the "protein misfolding diseases". In the polyQ diseases, an abnormally expanded polyQ stretch in the responsible proteins causes the proteins to misfold and aggregate, eventually resulting in neurodegeneration. Hypothesizing that polyQ protein misfolding and aggregation could be inhibited by molecules specifically binding to the expanded polyQ stretch, we identified polyQ binding peptide 1 (QBP1). We show that QBP1 does, indeed, inhibit misfolding and aggregation of the expanded polyQ protein in vitro. Furthermore overexpression of QBP1 by the crossing of transgenic animals inhibits neurodegeneration in Drosophila models of the polyQ diseases. We also introduce our attempts to deliver QBP1 into the brain by administration using viral vectors and protein transduction domains. Interestingly, recent data suggest that QBP1 can also inhibit the misfolding/aggregation of proteins responsible for other protein misfolding diseases, highlighting the potential of QBP1 as a general therapeutic molecule for a wide range of neurodegenerative diseases. We hope that in the near future, aggregation inhibitor-based drugs will be developed and bring relief to patients suffering from these currently intractable protein misfolding diseases.
Collapse
Affiliation(s)
- H. Akiko Popiel
- />Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Toshihide Takeuchi
- />Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa Higashi, Kodaira, Tokyo 187-8502 Japan
| | - James R. Burke
- />Department of Medicine (Neurology) and Deane Laboratory, Duke University Medical Center, Durham, NC 27710 USA
| | - Warren J. Strittmatter
- />Department of Medicine (Neurology) and Deane Laboratory, Duke University Medical Center, Durham, NC 27710 USA
| | - Tatsushi Toda
- />Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, 650-0017 Japan
| | - Keiji Wada
- />Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Yoshitaka Nagai
- />Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa Higashi, Kodaira, Tokyo 187-8502 Japan
- />Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama, 332-0012 Japan
| |
Collapse
|
6
|
Wetzel R. Physical chemistry of polyglutamine: intriguing tales of a monotonous sequence. J Mol Biol 2012; 421:466-90. [PMID: 22306404 DOI: 10.1016/j.jmb.2012.01.030] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/18/2012] [Indexed: 01/08/2023]
Abstract
Polyglutamine (polyQ) sequences of unknown normal function are present in a significant number of proteins, and their repeat expansion is associated with a number of genetic neurodegenerative diseases. PolyQ solution structure and properties are important not only because of the normal and abnormal biology associated with these sequences but also because they represent an interesting case of a biologically relevant homopolymer. As the common thread in expanded polyQ repeat diseases, it is important to understand the structure and properties of simple polyQ sequences. At the same time, experience has shown that sequences attached to polyQ, whether in artificial constructs or in disease proteins, can influence structure and properties. The two major contenders for the molecular source of the neurotoxicity implicit in polyQ expansion within disease proteins are a populated toxic conformation in the monomer ensemble and a toxic aggregated species. This review summarizes experimental and computational studies on the solution structure and aggregation properties of both simple and complex polyQ sequences, and their repeat-length dependence. As a representative of complex polyQ proteins, the behavior of huntingtin N-terminal fragments, such as exon-1, receives special attention.
Collapse
Affiliation(s)
- Ronald Wetzel
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
7
|
Chen X, Wu J, Luo Y, Liang X, Supnet C, Kim MW, Lotz GP, Yang G, Muchowski PJ, Kodadek T, Bezprozvanny I. Expanded polyglutamine-binding peptoid as a novel therapeutic agent for treatment of Huntington's disease. CHEMISTRY & BIOLOGY 2011; 18:1113-25. [PMID: 21944750 PMCID: PMC3183433 DOI: 10.1016/j.chembiol.2011.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/26/2011] [Accepted: 06/22/2011] [Indexed: 02/08/2023]
Abstract
Polyglutamine(polyQ)-expanded proteins are potential therapeutic targets for the treatment of polyQ expansion disorders such as Huntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3). Here, we used an amino-terminal fragment of a mutant Huntingtin protein (Htt-N-82Q) as bait in an unbiased screen of a 60,000 peptoid library. Peptoid HQP09 was selected from the isolated hits and confirmed as a specific ligand of Htt-N-82Q and Atxn3-77Q mutant proteins in biochemical experiments. We identified three critical residues in the HQP09 sequence that are important for its activity and generated a minimal derivative, HQP09_9, which maintains the specific polyQ-binding activity. We demonstrated that HQP09 and HQP09_9 inhibited aggregation of Htt-N-53Q in vitro and exerted Ca(2+)-stabilizing and neuroprotective effects in experiments with primary striatal neuronal cultures derived from HD mice. We further demonstrated that intracerebroventricular delivery of HQP09 to an HD mouse model resulted in reduced accumulation of mutant Huntingtin aggregates and improved motor behavioral outcomes. These results suggest that HQP09 and similar peptoids hold promise as novel therapeutics for developing treatments for HD, SCA3, and other polyglutamine expansion disorders.
Collapse
Affiliation(s)
- Xuesong Chen
- Dept of Physiology, University of Texas Southwestern Medical Center at Dallas
| | - Jun Wu
- Dept of Physiology, University of Texas Southwestern Medical Center at Dallas
| | - Yuan Luo
- Dept of Physiology, University of Texas Southwestern Medical Center at Dallas
| | - Xia Liang
- Dept of Physiology, University of Texas Southwestern Medical Center at Dallas
| | - Charlene Supnet
- Dept of Physiology, University of Texas Southwestern Medical Center at Dallas
| | - Mee Whi Kim
- Dept of Physiology, University of Texas Southwestern Medical Center at Dallas
| | - Gregor P. Lotz
- Gladstone Institute of Neurological Diseases, University of California, San Francisco
| | - Guocheng Yang
- Gladstone Institute of Neurological Diseases, University of California, San Francisco
| | - Paul J. Muchowski
- Gladstone Institute of Neurological Diseases, University of California, San Francisco
- Department of Biochemistry and Biophysics, and of Neurology, University of California, San Francisco
| | | | - Ilya Bezprozvanny
- Dept of Physiology, University of Texas Southwestern Medical Center at Dallas
| |
Collapse
|
8
|
Popiel HA, Burke JR, Strittmatter WJ, Oishi S, Fujii N, Takeuchi T, Toda T, Wada K, Nagai Y. The Aggregation Inhibitor Peptide QBP1 as a Therapeutic Molecule for the Polyglutamine Neurodegenerative Diseases. JOURNAL OF AMINO ACIDS 2011; 2011:265084. [PMID: 22312459 PMCID: PMC3268222 DOI: 10.4061/2011/265084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/04/2011] [Indexed: 11/20/2022]
Abstract
Misfolding and abnormal aggregation of proteins in the brain are implicated in the pathogenesis of various neurodegenerative diseases including Alzheimer's, Parkinson's, and the polyglutamine (polyQ) diseases. In the polyQ diseases, an abnormally expanded polyQ stretch triggers misfolding and aggregation of the disease-causing proteins, eventually resulting in neurodegeneration. In this paper, we introduce our therapeutic strategy against the polyQ diseases using polyQ binding peptide 1 (QBP1), a peptide that we identified by phage display screening. We showed that QBP1 specifically binds to the expanded polyQ stretch and inhibits its misfolding and aggregation, resulting in suppression of neurodegeneration in cell culture and animal models of the polyQ diseases. We further demonstrated the potential of protein transduction domains (PTDs) for in vivo delivery of QBP1. We hope that in the near future, chemical analogues of aggregation inhibitor peptides including QBP1 will be developed against protein misfolding-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- H. Akiko Popiel
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - James R. Burke
- Department of Medicine (Neurology) and Deane Laboratory, Duke University Medical Center, Durham, NC 27710, USA
| | - Warren J. Strittmatter
- Department of Medicine (Neurology) and Deane Laboratory, Duke University Medical Center, Durham, NC 27710, USA
| | - Shinya Oishi
- Department of Bioorganic Medicinal Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501, Japan
| | - Nobutaka Fujii
- Department of Bioorganic Medicinal Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501, Japan
| | - Toshihide Takeuchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
9
|
Brummitt RK, Nesta DP, Chang L, Chase SF, Laue TM, Roberts CJ. Nonnative Aggregation of an IgG1 Antibody in Acidic Conditions: Part 1. Unfolding, Colloidal Interactions, and Formation of High-Molecular-Weight Aggregates. J Pharm Sci 2011; 100:2087-103. [DOI: 10.1002/jps.22448] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 10/09/2010] [Accepted: 11/17/2010] [Indexed: 01/26/2023]
|
10
|
Fecke W, Gianfriddo M, Gaviraghi G, Terstappen GC, Heitz F. Small molecule drug discovery for Huntington's Disease. Drug Discov Today 2009; 14:453-64. [DOI: 10.1016/j.drudis.2009.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 02/06/2009] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
|
11
|
Scotter EL, Narayan P, Glass M, Dragunow M. High throughput quantification of mutant huntingtin aggregates. J Neurosci Methods 2008; 171:174-9. [DOI: 10.1016/j.jneumeth.2008.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/12/2008] [Accepted: 02/12/2008] [Indexed: 10/22/2022]
|