1
|
Hu H, Yi X, Xue L, Baell JB. A Collection of Useful Nuisance Compounds (CONS) for Interrogation of Bioassay Integrity. JACS AU 2024; 4:4883-4891. [PMID: 39735938 PMCID: PMC11672131 DOI: 10.1021/jacsau.4c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 12/31/2024]
Abstract
High-throughput screening (HTS) is a crucial technique for identifying potential hits to fuel drug discovery pipelines. However, this process naturally concentrates nuisance compounds that are not optimizable yet signal positively in a convincing manner. To be able to understand what types of nuisance compounds a particular assay is sensitive to, would be of great utility in being able to prioritize progressable over nonprogressable screening hits. In this study, we present a carefully compiled set of over 100 nuisance compounds that are known to interfere with assay readouts in either phenotypic or target-based screenings. Readily accessible in an assay-ready screening plate, we believe this nuisance compound set will be of great interest to the research community, helping to establish high-quality HTS assays and identify promising, optimizable hits.
Collapse
Affiliation(s)
- Huabin Hu
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, Uppsala SE-751 24, Sweden
| | - Xiangyan Yi
- Medicinal
Chemistry, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Lian Xue
- Medicinal
Chemistry, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jonathan B. Baell
- Medicinal
Chemistry, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
2
|
Bashore F, Annor-Gyamfi J, Du Y, Katis V, Nwogbo F, Flax RG, Frye SV, Pearce KH, Fu H, Willson TM, Drewry DH, Axtman AD. Fused Tetrahydroquinolines Are Interfering with Your Assay. J Med Chem 2023; 66:14434-14446. [PMID: 37874947 PMCID: PMC10641811 DOI: 10.1021/acs.jmedchem.3c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Tricyclic tetrahydroquinolines (THQs) have been repeatedly reported as hits across a diverse range of high-throughput screening (HTS) campaigns. The activities of these compounds, however, are likely due to reactive byproducts that interfere with the assay. As a lesser studied class of pan-assay interference compounds, the mechanism by which fused THQs react with protein targets remains largely unknown. During HTS follow-up, we characterized the behavior and stability of several fused tricyclic THQs. We synthesized key analogues to pinpoint the cyclopentene ring double bond as a source of reactivity of fused THQs. We found that these compounds degrade in solution under standard laboratory conditions in days. Importantly, these observations make it likely that fused THQs, which are ubiquitously found within small molecule screening libraries, are unlikely the intact parent compounds. We urge deprioritization of tricylic THQ hits in HTS follow-up and caution against the investment of resources to follow-up on these problematic compounds.
Collapse
Affiliation(s)
- Frances
M. Bashore
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joel Annor-Gyamfi
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yuhong Du
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
- Emory
Chemical Biology Discovery Center, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Vittorio Katis
- Alzheimer’s
Research UK Oxford Drug Discovery Institute, Centre for Medicines
Discovery, Nuffield Department of Medicine Research Building, Old
Road Campus, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Felix Nwogbo
- UNC
Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal
Chemistry, Center for Integrative Chemical
Biology and Drug Discovery, Chapel
Hill, North Carolina 27599, United States
| | - Raymond G. Flax
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen V. Frye
- UNC
Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal
Chemistry, Center for Integrative Chemical
Biology and Drug Discovery, Chapel
Hill, North Carolina 27599, United States
| | - Kenneth H. Pearce
- UNC
Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal
Chemistry, Center for Integrative Chemical
Biology and Drug Discovery, Chapel
Hill, North Carolina 27599, United States
| | - Haian Fu
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
- Emory
Chemical Biology Discovery Center, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Timothy M. Willson
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David H. Drewry
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC Lineberger
Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alison D. Axtman
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Lu S, Sun SL, Liu HC, Chen YD, Yuan HL, Gao YP, Yang P, Lu T. Identification of novel polo-like kinase 1 inhibitors by a hybrid virtual screening. Chem Biol Drug Des 2012; 80:328-39. [PMID: 22583481 DOI: 10.1111/j.1747-0285.2012.01412.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Polo-like kinase 1 is an important and attractive oncological target that plays a key role in mitosis and cytokinesis. A combined pharmacophore- and docking-based virtual screening was performed to identify novel polo-like kinase 1 inhibitors. A total of 34 hit compounds were selected and tested in vitro, and some compounds showed inhibition of polo-like kinase 1 and human tumor cell growth. The most potent compound (66) inhibited polo-like kinase 1 with an IC(50) value of 6.99 μm. The docked binding models of two hit compounds were discussed in detail. These compounds contained novel chemical scaffolds and may be used as foundations for the development of novel classes of polo-like kinase 1 inhibitors.
Collapse
Affiliation(s)
- Shuai Lu
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Sharlow ER, Mustata Wilson G, Close D, Leimgruber S, Tandon M, Reed RB, Shun TY, Wang QJ, Wipf P, Lazo JS. Discovery of diverse small molecule chemotypes with cell-based PKD1 inhibitory activity. PLoS One 2011; 6:e25134. [PMID: 21998636 PMCID: PMC3187749 DOI: 10.1371/journal.pone.0025134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/25/2011] [Indexed: 12/21/2022] Open
Abstract
Protein kinase D (PKD) is a novel family of serine/threonine kinases regulated by diacylglycerol, which is involved in multiple cellular processes and various pathological conditions. The limited number of cell-active, selective inhibitors has historically restricted biochemical and pharmacological studies of PKD. We now markedly expand the PKD1 inhibitory chemotype inventory with eleven additional novel small molecule PKD1 inhibitors derived from our high throughput screening campaigns. The in vitro IC(50)s for these eleven compounds ranged in potency from 0.4 to 6.1 µM with all of the evaluated compounds being competitive with ATP. Three of the inhibitors (CID 1893668, (1Z)-1-(3-ethyl-5-methoxy-1,3-benzothiazol-2-ylidene)propan-2-one; CID 2011756, 5-(3-chlorophenyl)-N-[4-(morpholin-4-ylmethyl)phenyl]furan-2-carboxamide; CID 5389142, (6Z)-6-[4-(3-aminopropylamino)-6-methyl-1H-pyrimidin-2-ylidene]cyclohexa-2,4-dien-1-one) inhibited phorbol ester-induced endogenous PKD1 activation in LNCaP prostate cancer cells in a concentration-dependent manner. The specificity of these compounds for PKD1 inhibitory activity was supported by kinase assay counter screens as well as by bioinformatics searches. Moreover, computational analyses of these novel cell-active PKD1 inhibitors indicated that they were structurally distinct from the previously described cell-active PKD1 inhibitors while computational docking of the new cell-active compounds in a highly conserved ATP-binding cleft suggests opportunities for structural modification. In summary, we have discovered novel PKD1 inhibitors with in vitro and cell-based inhibitory activity, thus successfully expanding the structural diversity of small molecule inhibitors available for this important pharmacological target.
Collapse
Affiliation(s)
- Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Jiang G, Thummala A, Wadhwa MVS. Applications of Statistical Regression and Modeling in Fill–Finish Process Development of Structurally Related Proteins. J Pharm Sci 2011; 100:464-81. [DOI: 10.1002/jps.22296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/05/2010] [Accepted: 06/11/2010] [Indexed: 01/31/2023]
|
6
|
Shun TY, Lazo JS, Sharlow ER, Johnston PA. Identifying actives from HTS data sets: practical approaches for the selection of an appropriate HTS data-processing method and quality control review. ACTA ACUST UNITED AC 2010; 16:1-14. [PMID: 21160066 DOI: 10.1177/1087057110389039] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
High-throughput screening (HTS) has achieved a dominant role in drug discovery over the past 2 decades. The goal of HTS is to identify active compounds (hits) by screening large numbers of diverse chemical compounds against selected targets and/or cellular phenotypes. The HTS process consists of multiple automated steps involving compound handling, liquid transfers, and assay signal capture, all of which unavoidably contribute to systematic variation in the screening data. The challenge is to distinguish biologically active compounds from assay variability. Traditional plate controls-based and non-controls-based statistical methods have been widely used for HTS data processing and active identification by both the pharmaceutical industry and academic sectors. More recently, improved robust statistical methods have been introduced, reducing the impact of systematic row/column effects in HTS data. To apply such robust methods effectively and properly, we need to understand their necessity and functionality. Data from 6 HTS case histories are presented to illustrate that robust statistical methods may sometimes be misleading and can result in more, rather than less, false positives or false negatives. In practice, no single method is the best hit detection method for every HTS data set. However, to aid the selection of the most appropriate HTS data-processing and active identification methods, the authors developed a 3-step statistical decision methodology. Step 1 is to determine the most appropriate HTS data-processing method and establish criteria for quality control review and active identification from 3-day assay signal window and DMSO validation tests. Step 2 is to perform a multilevel statistical and graphical review of the screening data to exclude data that fall outside the quality control criteria. Step 3 is to apply the established active criterion to the quality-assured data to identify the active compounds.
Collapse
Affiliation(s)
- Tong Ying Shun
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
7
|
Soares KM, Blackmon N, Shun TY, Shinde SN, Takyi HK, Wipf P, Lazo JS, Johnston PA. Profiling the NIH Small Molecule Repository for compounds that generate H2O2 by redox cycling in reducing environments. Assay Drug Dev Technol 2010; 8:152-74. [PMID: 20070233 PMCID: PMC3098569 DOI: 10.1089/adt.2009.0247] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have screened the Library of Pharmacologically Active Compounds (LOPAC) and the National Institutes of Health (NIH) Small Molecule Repository (SMR) libraries in a horseradish peroxidase-phenol red (HRP-PR) H2O2 detection assay to identify redox cycling compounds (RCCs) capable of generating H2O2 in buffers containing dithiothreitol (DTT). Two RCCs were identified in the LOPAC set, the ortho-naphthoquinone beta-lapachone and the para-naphthoquinone NSC 95397. Thirty-seven (0.02%) concentration-dependent RCCs were identified from 195,826 compounds in the NIH SMR library; 3 singleton structures, 9 ortho-quinones, 2 para-quinones, 4 pyrimidotriazinediones, 15 arylsulfonamides, 2 nitrothiophene-2-carboxylates, and 2 tolyl hydrazides. Sixty percent of the ortho-quinones and 80% of the pyrimidotriazinediones in the library were confirmed as RCCs. In contrast, only 3.9% of the para-quinones were confirmed as RCCs. Fifteen of the 251 arylsulfonamides in the library were confirmed as RCCs, and since we screened 17,868 compounds with a sulfonamide functional group we conclude that the redox cycling activity of the arylsulfonamide RCCs is due to peripheral reactive enone, aromatic, or heterocyclic functions. Cross-target queries of the University of Pittsburgh Drug Discovery Institute (UPDDI) and PubChem databases revealed that the RCCs exhibited promiscuous bioactivity profiles and have populated both screening databases with significantly higher numbers of active flags than non-RCCs. RCCs were promiscuously active against protein targets known to be susceptible to oxidation, but were also active in cell growth inhibition assays, and against other targets thought to be insensitive to oxidation. Profiling compound libraries or the hits from screening campaigns in the HRP-PR H(2)O(2) detection assay significantly reduce the timelines and resources required to identify and eliminate promiscuous nuisance RCCs from the candidates for lead optimization.
Collapse
Affiliation(s)
- Karina M Soares
- Pittsburgh Molecular Library Screening Center, Drug Discovery Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Tanaka K, Koresawa M, Iida M, Fukasawa K, Stec E, Cassaday J, Chase P, Rickert K, Hodder P, Takagi T, Komatani H. Multiplexed random peptide library and phospho-specific antibodies facilitate human polo-like kinase 1 inhibitor screen. Assay Drug Dev Technol 2010; 8:47-62. [PMID: 20085455 PMCID: PMC3532019 DOI: 10.1089/adt.2009.0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the challenges to develop time-resolved fluorescence resonance energy transfer (TR-FRET) assay for serine/threonine (Ser/Thr) protein kinase is to select an optimal peptide substrate and a specific phosphor Ser/Thr antibody. This report describes a multiplexed random screen-based development of TR-FRET assay for ultra-high-throughput screening (uHTS) of small molecule inhibitors for a potent cancer drug target polo-like kinase 1 (Plk1). A screen of a diverse peptide library in a 384-well plate format identified several highly potent substrates that share the consensus motif for phosphorylation by Plk1. Their potencies were comparable to FKD peptide, a designed peptide substrate derived from well-described Plk1 substrate Cdc25C. A specific anti-phosphor Ser/Thr antibody p(S/T)F antibody that detects the phosphorylation of FKD peptide was screened out of 87 antibodies with time-resolved fluorometry technology in a 96-well plate format. Using FKD peptide and p(S/T)F antibody, we successfully developed a robust TR-FRET assay in 384-well plate format, and further miniaturized this assay to 1,536-well plate format to perform uHTS. We screened about 1.2 million compounds for Plk1 inhibitors using a Plk1 deletion mutant that only has the kinase domain and subsequently screened the same compound library using a full-length active-mutant Plk1. These uHTSs identified a number of hit compounds, and some of them had selectivity to either the deletion mutant or the full-length protein. Our results prove that a combination of random screen for substrate peptide and phospho-specific antibodies is very powerful strategy to develop TR-FRET assays for protein kinases.
Collapse
Affiliation(s)
- Kenji Tanaka
- Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sharlow ER, Giridhar KV, LaValle CR, Chen J, Leimgruber S, Barrett R, Bravo-Altamirano K, Wipf P, Lazo JS, Wang QJ. Potent and selective disruption of protein kinase D functionality by a benzoxoloazepinolone. J Biol Chem 2008; 283:33516-26. [PMID: 18829454 PMCID: PMC2586241 DOI: 10.1074/jbc.m805358200] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/30/2008] [Indexed: 11/06/2022] Open
Abstract
Protein kinase D (PKD) is a novel family of serine/threonine kinases targeted by the second messenger diacylglycerol. It has been implicated in many important cellular processes and pathological conditions. However, further analysis of PKD in these processes is severely hampered by the lack of a PKD-specific inhibitor that can be readily applied to cells and in animal models. We now report the discovery of the first potent and selective cell-active small molecule inhibitor for PKD, benzoxoloazepinolone (CID755673). This inhibitor was identified from the National Institutes of Health small molecule repository library of 196,173 compounds using a human PKD1 (PKCmu)-based fluorescence polarization high throughput screening assay. CID755673 suppressed half of the PKD1 enzyme activity at 182 nm and exhibited selective PKD1 inhibition when compared with AKT, polo-like kinase 1 (PLK1), CDK activating kinase (CAK), CAMKIIalpha, and three different PKC isoforms. Moreover, it was not competitive with ATP for enzyme inhibition. In cell-based assays, CID755673 blocked phorbol ester-induced endogenous PKD1 activation in LNCaP cells in a concentration-dependent manner. Functionally, CID755673 inhibited the known biological actions of PKD1 including phorbol ester-induced class IIa histone deacetylase 5 nuclear exclusion, vesicular stomatitis virus glycoprotein transport from the Golgi to the plasma membrane, and the ilimaquinone-induced Golgi fragmentation. Moreover, CID755673 inhibited prostate cancer cell proliferation, cell migration, and invasion. In summary, our findings indicate that CID755673 is a potent and selective PKD1 inhibitor with valuable pharmacological and cell biological potential.
Collapse
Affiliation(s)
- Elizabeth R Sharlow
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sharlow ER, Leimgruber S, Yellow-Duke A, Barrett R, Wang QJ, Lazo JS. Development, validation and implementation of immobilized metal affinity for phosphochemicals (IMAP)-based high-throughput screening assays for low-molecular-weight compound libraries. Nat Protoc 2008; 3:1350-63. [PMID: 18714303 DOI: 10.1038/nprot.2008.111] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol describes assay development, validation and implementation of automated immobilized metal affinity for phosphochemicals (IMAP)-based fluorescence polarization (FP) and time-resolved fluorescence resonance energy transfer (TR-FRET) high-throughput screening (HTS) assays for identification of low-molecular-weight kinase inhibitors. Both procedures are performed in miniaturized kinase reaction volumes and involve the stepwise addition of test or control compounds, enzyme and substrate/ATP. Kinase reactions are stopped by subsequent addition of IMAP-binding buffer. Assay attributes of the IMAP FP and TR-FRET methodologies are described. HTS assays developed using these procedures should result in Z-factors and low assay variability necessary for robust HTS assays. Providing that the required reagents and equipment are available, one scientist should be able to develop a 384-well, miniaturized HTS assay in approximately 6-8 weeks. Specific automated HTS assay conditions will determine the number of assay plates processed in a screening session, but two scientists should expect to process between 100 and 150 assay plates in one 8-h screening day.
Collapse
Affiliation(s)
- Elizabeth R Sharlow
- Drug Discovery Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | | | | | |
Collapse
|