1
|
Pham H, Kumar M, Martinez AR, Ali M, Lowery RG. Development and validation of a generic methyltransferase enzymatic assay based on an SAH riboswitch. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100161. [PMID: 38788976 PMCID: PMC11188199 DOI: 10.1016/j.slasd.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Methylation of proteins and nucleic acids plays a fundamental role in epigenetic regulation, and discovery of methyltransferase (MT) inhibitors is an area of intense activity. Because of the diversity of MTs and their products, assay methods that detect S-adenosylhomocysteine (SAH) - the invariant product of S-adenosylmethionine (SAM)-dependent methylation reactions - offer some advantages over methods that detect specific methylation events. However, direct, homogenous detection of SAH requires a reagent capable of discriminating between SAH and SAM, which differ by a single methyl group. Moreover, MTs are slow enzymes and many have submicromolar affinities for SAM; these properties translate to a need for detection of SAH at low nanomolar concentrations in the presence of excess SAM. To meet these needs, we leveraged the exquisite molecular recognition properties of a naturally occurring SAH-sensing RNA aptamer, or riboswitch. By splitting the riboswitch into two fragments, such that SAH binding induces assembly of a trimeric complex, we engineered sensors that transduce binding of SAH into positive fluorescence polarization (FP) and time resolved Förster resonance energy transfer (TR-FRET) signals. The split riboswitch configuration, called the AptaFluor™ SAH Methyltransferase Assay, allows robust detection of SAH (Z' > 0.7) at concentrations below 10 nM, with overnight signal stability in the presence of typical MT assay components. The AptaFluor assay tolerates diverse MT substrates, including histones, nucleosomes, DNA and RNA, and we demonstrated its utility as a robust, enzymatic assay method for several methyltransferases with SAM Km values < 1 µM. The assay was validated for HTS by performing a pilot screen of 1,280 compounds against the SARS-CoV-2 RNA capping enzyme, nsp14. By enabling direct, homogenous detection of SAH at low nanomolar concentrations, the AptaFluor assay provides a universal platform for screening and profiling MTs at physiologically relevant SAM concentrations.
Collapse
Affiliation(s)
- Ha Pham
- BellBrook Labs, Madison, WI, USA
| | | | | | | | | |
Collapse
|
2
|
Brown T, Nguyen T, Zhou B, Zheng YG. Chemical probes and methods for the study of protein arginine methylation. RSC Chem Biol 2023; 4:647-669. [PMID: 37654509 PMCID: PMC10467615 DOI: 10.1039/d3cb00018d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023] Open
Abstract
Protein arginine methylation is a widespread post-translational modification (PTM) in eukaryotic cells. This chemical modification in proteins functionally modulates diverse cellular processes from signal transduction, gene expression, and DNA damage repair to RNA splicing. The chemistry of arginine methylation entails the transfer of the methyl group from S-adenosyl-l-methionine (AdoMet, SAM) onto a guanidino nitrogen atom of an arginine residue of a target protein. This reaction is catalyzed by about 10 members of protein arginine methyltransferases (PRMTs). With impacts on a variety of cellular processes, aberrant expression and activity of PRMTs have been shown in many disease conditions. Particularly in oncology, PRMTs are commonly overexpressed in many cancerous tissues and positively correlated with tumor initiation, development and progression. As such, targeting PRMTs is increasingly recognized as an appealing therapeutic strategy for new drug discovery. In the past decade, a great deal of research efforts has been invested in illuminating PRMT functions in diseases and developing chemical probes for the mechanistic study of PRMTs in biological systems. In this review, we provide a brief developmental history of arginine methylation along with some key updates in arginine methylation research, with a particular emphasis on the chemical aspects of arginine methylation. We highlight the research endeavors for the development and application of chemical approaches and chemical tools for the study of functions of PRMTs and arginine methylation in regulating biology and disease.
Collapse
Affiliation(s)
- Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Terry Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Bo Zhou
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| |
Collapse
|
3
|
Bare A, Thomas J, Etoroma D, Lee SG. Functional analysis of phosphoethanolamine N-methyltransferase in plants and parasites: Essential S-adenosylmethionine-dependent methyltransferase in choline and phospholipid metabolism. Methods Enzymol 2023; 680:101-137. [PMID: 36710008 DOI: 10.1016/bs.mie.2022.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phospholipids play an essential role as a barrier between cell content and the extracellular environment and regulate various cell signaling processes. Phosphatidylcholine (PtdCho) is one of the most abundant phospholipids in plant, animal, and some prokaryote cell membranes. In plants and some parasites, the biosynthesis of PtdCho begins with the amino acid serine, followed mainly through a phosphoethanolamine N-methyltransferase (PMT)-mediated biosynthetic pathway to phosphocholine (pCho). Because the PMT-mediated pathway, referred to as the phosphobase methylation pathway, produces a series of important primary and specialized metabolites for plant development and stress response, understanding the PMT enzyme is a key aspect of engineering plants with improved stress tolerance and fortified nutrients. Importantly, given the very limited phylogenetic distribution of PMTs, functional analysis and the identification of inhibitors targeting PMTs have potential and positive impacts in humans and in veterinary and agricultural fields. Here, we describe detailed basic knowledge and practical research methods to enable the systematic study of the biochemical and biophysical functions of PMT. The research methods described in this chapter are also applicable to the studies of other ubiquitous S-adenosyl-l-methionine (SAM)-dependent methyltransferases in all kingdoms.
Collapse
Affiliation(s)
- Alex Bare
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Jaime Thomas
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel Etoroma
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Soon Goo Lee
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States.
| |
Collapse
|
4
|
Cantone N, Cummings RT, Trojer P. Screening for Small-Molecule Inhibitors of Histone Methyltransferases. Methods Mol Biol 2022; 2529:477-490. [PMID: 35733027 DOI: 10.1007/978-1-0716-2481-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Potent and highly selective small-molecule inhibitors are needed to unravel the biological complexities of histone methyltransferases and to reveal their therapeutic potential. A prerequisite to developing these inhibitors is the identification of validated chemical matter for initiating a medicinal chemistry campaign. For the most part, finding these initial starting points occurs through screening of large, unbiased compound libraries. The size and nature of these libraries, coupled with the complexities of the bisubstrate utilizing histone methyltransferases, necessitates that the primary screen and subsequent hit triage be carefully considered.In this chapter, using EZH2 as a representative example, we describe a screening and hit triage campaign that identified validated chemical matter allowing initiation of medicinal chemistry studies. Moreover, we discuss a cell-based assay to support lead identification and optimization. The approach described here entailing a mixture of biochemical, biophysical and cell-based assays should be applicable to identifying validated starting points for other histone methyltransferases.
Collapse
Affiliation(s)
- Nico Cantone
- Constellation, A MorphoSys Company, Cambridge, MA, USA
| | | | | |
Collapse
|
5
|
Amjadi M, Hallaj T, Hildebrandt N. A sensitive homogeneous enzyme assay for euchromatic histone-lysine-N-methyltransferase 2 (G9a) based on terbium-to-quantum dot time-resolved FRET. ACTA ACUST UNITED AC 2020; 11:173-179. [PMID: 34336605 PMCID: PMC8314039 DOI: 10.34172/bi.2021.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
![]()
Introduction: Histone modifying enzymes include several classes of enzymes that are responsible for various post-translational modifications of histones such as methylation and acetylation. They are important epigenetic factors, which may involve several diseases and so their assay, as well as screening of their inhibitors, are of great importance. Herein, a bioassay based on terbium-to-quantum dot (Tb-to-QD) time-resolved Förster resonance energy transfer (TR-FRET) was developed for monitoring the activity of G9a, the euchromatic histone-lysine N-methyltransferase 2. Overexpression of G9a has been reported in some cancers such as ovarian carcinoma, lung cancer, multiple myeloma and brain cancer. Thus, inhibition of this enzyme is important for therapeutic purposes. Methods: In this assay, a biotinylated peptide was used as a G9a substrate in conjugation with streptavidin-coated ZnS/CdSe QD as FRET acceptor, and an anti-mark antibody labeled with Tb as a donor. Time-resolved fluorescence was used for measuring FRET ratios. Results: We examined three QDs, with emission wavelengths of 605, 655 and 705 nm, as FRET acceptors and investigated FRET efficiency between the Tb complex and each of them. Since the maximum FRET efficiency was obtained for Tb to QD705 (more than 50%), this pair was exploited for designing the enzyme assay. We showed that the method has excellent sensitivity and selectivity for the determination of G9a at concentrations as low as 20 pM. Furthermore, the designed assay was applied for screening of an enzyme inhibitor, S-(5’-Adenosyl)-L-homocysteine (SAH). Conclusion: It was shown that Tb-to-QD FRET is an outstanding platform for developing a homogenous assay for the G9a enzyme and its inhibitors. The obtained results confirmed that this assay was quite sensitive and could be used in the field of inhibitor screening.
Collapse
Affiliation(s)
- Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Tooba Hallaj
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Niko Hildebrandt
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, Orsay, France.,Laboratoire Chimie Organique, Bioorganique, Réactivité et Analyse (COBRA), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
6
|
Barve A, Vega A, Shah PP, Ghare S, Casson L, Wunderlich M, Siskind LJ, Beverly LJ. Perturbation of Methionine/S-adenosylmethionine Metabolism as a Novel Vulnerability in MLL Rearranged Leukemia. Cells 2019; 8:cells8111322. [PMID: 31717699 PMCID: PMC6912509 DOI: 10.3390/cells8111322] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Leukemias bearing mixed lineage leukemia (MLL) rearrangement (MLL-R) resulting in expression of oncogenic MLL fusion proteins (MLL-FPs) represent an especially aggressive disease subtype with the worst overall prognoses and chemotherapeutic response. MLL-R leukemias are uniquely dependent on the epigenetic function of the H3K79 methyltransferase DOT1L, which is misdirected by MLL-FPs activating gene expression, driving transformation and leukemogenesis. Given the functional necessity of these leukemias to maintain adequate methylation potential allowing aberrant activating histone methylation to proceed, driving leukemic gene expression, we investigated perturbation of methionine (Met)/S-adenosylmethionine (SAM) metabolism as a novel therapeutic paradigm for MLL-R leukemia. Disruption of Met/SAM metabolism, by either methionine deprivation or pharmacologic inhibition of downstream metabolism, reduced overall cellular methylation potential, reduced relative cell numbers, and induced apoptosis selectively in established MLL-AF4 cell lines or MLL-AF6-expressing patient blasts but not in BCR-ABL-driven K562 cells. Global histone methylation dynamics were altered, with a profound loss of requisite H3K79 methylation, indicating inhibition of DOT1L function. Relative occupancy of the repressive H3K27me3 modification was increased at the DOT1L promoter in MLL-R cells, and DOT1L mRNA and protein expression was reduced. Finally, pharmacologic inhibition of Met/SAM metabolism significantly prolonged survival in an advanced, clinically relevant patient–derived MLL-R leukemia xenograft model, in combination with cytotoxic induction chemotherapy. Our findings provide support for further investigation into the development of highly specific allosteric inhibitors of enzymatic mediators of Met/SAM metabolism or dietary manipulation of methionine levels. Such inhibitors may lead to enhanced treatment outcomes for MLL-R leukemia, along with cytotoxic chemotherapy or DOT1L inhibitors.
Collapse
Affiliation(s)
- Aditya Barve
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; (A.B.); (L.J.S.)
| | - Alexis Vega
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA;
| | - Parag P. Shah
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
| | - Smita Ghare
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (S.G.); (L.C.)
| | - Lavona Casson
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (S.G.); (L.C.)
| | - Mark Wunderlich
- Department of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Leah J. Siskind
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; (A.B.); (L.J.S.)
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
| | - Levi J. Beverly
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; (A.B.); (L.J.S.)
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (S.G.); (L.C.)
- Correspondence: ; Tel.: +01-502-852-8968
| |
Collapse
|
7
|
Coussens NP, Kales SC, Henderson MJ, Lee OW, Horiuchi KY, Wang Y, Chen Q, Kuznetsova E, Wu J, Chakka S, Cheff DM, Cheng KCC, Shinn P, Brimacombe KR, Shen M, Simeonov A, Lal-Nag M, Ma H, Jadhav A, Hall MD. High-throughput screening with nucleosome substrate identifies small-molecule inhibitors of the human histone lysine methyltransferase NSD2. J Biol Chem 2018; 293:13750-13765. [PMID: 29945974 DOI: 10.1074/jbc.ra118.004274] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Indexed: 12/15/2022] Open
Abstract
The histone lysine methyltransferase nuclear receptor-binding SET domain protein 2 (NSD2, also known as WHSC1/MMSET) is an epigenetic modifier and is thought to play a driving role in oncogenesis. Both NSD2 overexpression and point mutations that increase its catalytic activity are associated with several human cancers. Although NSD2 is an attractive therapeutic target, no potent, selective, and bioactive small molecule inhibitors of NSD2 have been reported to date, possibly due to the challenges of developing high-throughput assays for NSD2. Here, to establish a platform for the discovery and development of selective NSD2 inhibitors, we optimized and implemented multiple assays. We performed quantitative high-throughput screening with full-length WT NSD2 and a nucleosome substrate against a diverse collection of bioactive small molecules comprising 16,251 compounds. We further interrogated 174 inhibitory compounds identified in the primary screen with orthogonal and counter assays and with activity assays based on the clinically relevant NSD2 variants E1099K and T1150A. We selected five confirmed inhibitors for follow-up, which included a radiolabeled validation assay, surface plasmon resonance studies, methyltransferase profiling, and histone methylation in cells. We found that all five NSD2 inhibitors bind the catalytic SET domain and one exhibited apparent activity in cells, validating the workflow and providing a template for identifying selective NSD2 inhibitors. In summary, we have established a robust discovery pipeline for identifying potent NSD2 inhibitors from small-molecule libraries.
Collapse
Affiliation(s)
- Nathan P Coussens
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Stephen C Kales
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Mark J Henderson
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Olivia W Lee
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | | | - Yuren Wang
- the Reaction Biology Corporation, Malvern, Pennsylvania 19355
| | - Qing Chen
- the Reaction Biology Corporation, Malvern, Pennsylvania 19355
| | | | - Jianghong Wu
- the Reaction Biology Corporation, Malvern, Pennsylvania 19355
| | - Sirisha Chakka
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Dorian M Cheff
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Ken Chih-Chien Cheng
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Paul Shinn
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Kyle R Brimacombe
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Min Shen
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Anton Simeonov
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Madhu Lal-Nag
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Haiching Ma
- the Reaction Biology Corporation, Malvern, Pennsylvania 19355
| | - Ajit Jadhav
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| | - Matthew D Hall
- From the National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 and
| |
Collapse
|
8
|
Horiuchi KY. Challenges in profiling and lead optimization of drug discovery for methyltransferases. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 18:62-68. [PMID: 26723894 DOI: 10.1016/j.ddtec.2015.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
The importance of epigenetics in the initiation and progression of disease has attracted many investigators to incorporate this novel and exciting field in drug development. Protein methyltransferases are one of the target classes which have gained attention as potential therapeutic targets after promising results of inhibitors for EZH2 and DOT1L in clinical trials. There are many technologies developed in order to find small molecule inhibitors for protein methyltransferases. However, in contrast to high throughput screening, profiling against different methyltransferases is challenging since each enzyme has a different substrate preference so that it is hard to profile in one assay format. Here, different technologies for methyltransferase assays will be overviewed, and the advantages and disadvantages of each will be discussed.
Collapse
Affiliation(s)
- Kurumi Y Horiuchi
- Reaction Biology Corporation, One Great Valley Parkway, Suite 2, Malvern, PA 19355, USA.
| |
Collapse
|