1
|
Sevim Akan H, Şahal G, Karaca TD, Gürpınar ÖA, Maraş M, Doğan A. Evaluation of glycyl-arginine and lysyl-aspartic acid dipeptides for their antimicrobial, antibiofilm, and anticancer potentials. Arch Microbiol 2023; 205:365. [PMID: 37906313 DOI: 10.1007/s00203-023-03724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Antibacterial resistance and cancer are worldwide challenges and have been defined as major threats by international health organizations. Peptides are produced naturally by all organisms and have a variety of immunomodulatory, physiological, and wound-healing properties. They can also provide protection against microorganisms and tumor cells. Therefore, we aimed to determine the antimicrobial, antibiofilm, and anticancer potentials of Glycyl-Arginine and Lysyl-Aspartic acid dipeptides. The Broth Dilution and Crystal Violet Binding assays assessed the antimicrobial tests and biofilm inhibitory effects. The MTT assay was used to measure the cytotoxic effects of dipeptides on HeLa cell viability. According to our results, Candida tropicalis T26 and Proteus mirabilis U15 strains were determined as more resistant to Staphylococcus epidermidis W17 against Glycyl-Arginine and Lysyl-Aspartic acid dipeptides with MICs higher than 2 mM (1 mg/mL). Sub-MICs of Glycyl-Arginine caused inhibitions against biofilm formation of all the tested clinical isolates, with the highest inhibition observed against S. epidermidisW17. Lysyl-Aspartic acid exhibited zero to no effect against biofilm formation of P. mirabilisU15, and S. epidermidisW17, whereas it exhibited 52% inhibition of biofilm formation of C. tropicalisT26. Cell viability results revealed that HeLa cell viability decreases with increasing concentration of both dipeptides. Also, parallel to antimicrobial tests, Glycyl-Arginine has a greater cytotoxic effect compared to Lysyl-Aspartic acid. The findings from this study will contribute to the advancement of novel strategies involving dipeptide-based synthesizable molecules and drug development studies. However, it is essential to note that there are still challenges, including the need for extensive experimental and clinical trials.
Collapse
Affiliation(s)
- Handan Sevim Akan
- Department Biology, Faculty of Science, Hacettepe University, Beytepe, Cankaya, 06800, Ankara, Turkey.
| | - Gülcan Şahal
- Department Biology, Faculty of Science, Hacettepe University, Beytepe, Cankaya, 06800, Ankara, Turkey
| | - Tuğçe Deniz Karaca
- Department of Medical Services and Techniques, Gazi University Health Service Vocational School, Ankara, Turkey
| | - Özer Aylin Gürpınar
- Department Biology, Faculty of Science, Hacettepe University, Beytepe, Cankaya, 06800, Ankara, Turkey
| | - Meltem Maraş
- Department of Mathematics and Science Education, Faculty of Education Ereğli, Bülent Ecevit University, Zonguldak, Turkey
| | - Alev Doğan
- Department of Science Education, Faculty of Gazi Education, Gazi University, Teknikokullar, Ankara, Turkey
| |
Collapse
|
2
|
Akinjole O, Menta K, Alsalhi A, Bani-Yaghoub M, Youan BBC. Novel Meta-iodobenzylguanidine and Etoposide Complex: Physicochemical Characterization and Mathematical Modeling of Anticancer Activity. AAPS PharmSciTech 2023; 24:174. [PMID: 37594527 DOI: 10.1208/s12249-023-02599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/30/2023] [Indexed: 08/19/2023] Open
Abstract
It is hypothesized that meta-iodobenzylguanidine (MIBG) complexation with etoposide (VP-16) will improve drug solubility and specificity towards BE(2)C neuroblastoma (NB) cells, 90% of which are known to be MIBG avid. After MIBG and VP-16 interaction, the dry complex was analyzed for crystalline structure, surface morphology, solubility, and size distribution by X-ray powder diffraction (P-XRD), scanning electron microscopy (SEM), infrared (FTIR) and UV spectroscopy, and dynamic light scattering. After exposure to the complex, the cell viability and decay rates were assessed by the MTS assay and estimated using exponential decay models (EDM). Multi-factorial ANOVA and an independent t-test were used to assess for cell viability and solubility data, respectively. The resulting (1: 3 w/w) VP-16: MIBG complex had a mean diameter and zeta potential of 458.5 nm and 0.951 mV, respectively. It dramatically increased the drug apparent water solubility (~ 12-folds). This was ascribed to the formation of a VP-16/MIBG nanocrystalline state mainly governed by cation-π interactions, evidenced by FTIR, SEM, and P-XRD data following the complexation. The EDM relating percent cell viability to drug concentration yielded an excellent fit (r2 > 0.95) and enabled to estimate the IC50 values of both native drug and its complex: 6.2 μM and 5.23 μM, respectively (indicating a conservation of drug anticancer activity). The statistical results were consistent with those of the exponential decay models, indicating that MIBG does not inhibit the anticancer activity of VP-16. This study indicates that the VP-16/MIBG complexation improves VP-16 solubility without antagonizing its anticancer activity. Moreover, the efficiency of the EDM for drug IC50 estimation provides alternative mathematical method for such in vitro cytotoxicity studies.
Collapse
Affiliation(s)
- Omowumi Akinjole
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, 2464 Charlotte, Kansas City, Missouri, 64108, USA
| | - Kathryn Menta
- Division of Computing, Analytics and Mathematics, School of Science and Engineering, University of Missouri, Kansas City, USA
| | - Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Majid Bani-Yaghoub
- Division of Computing, Analytics and Mathematics, School of Science and Engineering, University of Missouri, Kansas City, USA
| | - Bi-Botti Celestin Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, 2464 Charlotte, Kansas City, Missouri, 64108, USA.
| |
Collapse
|
3
|
Tanga S, Aucamp M, Ramburrun P. Injectable Thermoresponsive Hydrogels for Cancer Therapy: Challenges and Prospects. Gels 2023; 9:gels9050418. [PMID: 37233009 DOI: 10.3390/gels9050418] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
The enervating side effects of chemotherapeutic drugs have necessitated the use of targeted drug delivery in cancer therapy. To that end, thermoresponsive hydrogels have been employed to improve the accumulation and maintenance of drug release at the tumour site. Despite their efficiency, very few thermoresponsive hydrogel-based drugs have undergone clinical trials, and even fewer have received FDA approval for cancer treatment. This review discusses the challenges of designing thermoresponsive hydrogels for cancer treatment and offers suggestions for these challenges as available in the literature. Furthermore, the argument for drug accumulation is challenged by the revelation of structural and functional barriers in tumours that may not support targeted drug release from hydrogels. Other highlights involve the demanding preparation process of thermoresponsive hydrogels, which often involves poor drug loading and difficulties in controlling the lower critical solution temperature and gelation kinetics. Additionally, the shortcomings in the administration process of thermosensitive hydrogels are examined, and special insight into the injectable thermosensitive hydrogels that reached clinical trials for cancer treatment is provided.
Collapse
Affiliation(s)
- Sandrine Tanga
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Marique Aucamp
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Poornima Ramburrun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
4
|
Zupančič O, Spoerk M, Paudel A. Lipid-based solubilization technology via hot melt extrusion: promises and challenges. Expert Opin Drug Deliv 2022; 19:1013-1032. [PMID: 35943158 DOI: 10.1080/17425247.2022.2112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are a promising strategy to improve the oral bioavailability of poorly water-soluble drugs (PWSD). The excipients of SEDDS enable permeation through the mucus and gastro-intestinal barrier, inhibiting efflux transporters (e.g. P-glycoprotein) of drugs. Poor drug loading capacity and formulation instability are the main setbacks of traditional SEDDS. The use of polymeric precipitation inhibitors was shown to create supersaturable SEDDS with increased drug payload, and their solidification can help to overcome the instability challenge. As an alternative to several existing SEDDS solidification technologies, hot melt extrusion (HME) holds the potential for lean and continuous manufacturing of supersaturable solid-SEDDS. Despite being ubiquitously applied in solid lipid and polymeric processing, HME has not yet been widely considered for the preparation of SEDDS. AREAS COVERED The review begins with the rationale why SEDDS as the preferred lipid-based delivery systems (LBDS) is suitable for the oral delivery of PWSD and discusses the common barriers to oral administration. The potential of LBDS to surmount them is discussed. SEDDS as the flagship of LBDS for PWSD is proposed with a special emphasis on solid-SEDDS. Finally, the opportunities and challenges of HME from the lipid-based excipient (LBE) processing and product performance standpoint are highlighted. EXPERT OPINION HME can be a continuous, solvent-free, cost-effective, and scalable technology for manufacturing solid supersaturable SEDDS. Several critical formulations and process parameters in successfully preparing SEDDS via HME are identified.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
5
|
Alshamrani M, Ayon NJ, Alsalhi A, Akinjole O. Self-Assembled Nanomicellar Formulation of Docetaxel as a Potential Breast Cancer Chemotherapeutic System. Life (Basel) 2022; 12:life12040485. [PMID: 35454976 PMCID: PMC9024535 DOI: 10.3390/life12040485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
Docetaxel (DTX) is classified as a class IV drug that exhibits poor aqueous solubility (6–7 µg/mL in water) and permeability (P-glycoprotein substrate). The main objective of this study was to construct, characterize, and evaluate docetaxel loaded nanomicellar formulation in vitro for oral delivery to enhance the absorption and bioavailability of DTX, as well as to circumvent P-gp efflux inhibition. Formulations were prepared with two polymeric surfactants, hydrogenated castor oil-40 (HCO-40) and D-α-Tocopherol polyethylene glycol 1000 succinate (VIT E TPGS) with solvent evaporation technique, and the resulting DTX nanomicellar formulations were characterized by proton nuclear magnetic resonance spectroscopy (1H NMR), Fourier Transform Infrared Spectroscopy (FT–IR), X-ray powder diffraction (XRD), and transmission electron microscopy (TEM). Proton NMR, FT–IR, and XRD data indicated that DTX was completely encapsulated within the hydrophobic core of the nanomicelles in its amorphous state. TEM data revealed a smooth spherical shape of the nanomicellar formulation. The optimized formulation (F-2) possessed a mean diameter of 13.42 nm, a zeta potential of −0.19 mV, with a 99.3% entrapment efficiency. Dilution stability study indicated that nanomicelles were stable up to 100-fold dilution with minimal change in size, poly dispersity index (PDI), and zeta potential. In vitro cytotoxicity study revealed higher anticancer activity of DTX nanomicelles at 5 µM compared to the native drug against breast cancer cell line (MCF-7) cells. The LC–MS data confirmed the chemical stability of DTX within the nanomicelles. In vitro drug release study demonstrated faster dissolution of DTX from the nanomicelles compared to the naked drug. Our experimental results exhibit that nanomicelles could be a drug delivery system of choice to encapsulate drugs with low aqueous solubility and permeability that can preserve the stability of the active constituents to provide anticancer activity.
Collapse
Affiliation(s)
- Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
- Correspondence:
| | - Navid J. Ayon
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA;
| | - Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Omowumi Akinjole
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA;
| |
Collapse
|