1
|
Bhardwaj V, Singh A, Choudhary A, Dalavi R, Ralte L, Chawngthu RL, Senthil Kumar N, Vijay N, Chande A. HIV-1 Vpr induces ciTRAN to prevent transcriptional repression of the provirus. SCIENCE ADVANCES 2023; 9:eadh9170. [PMID: 37672576 PMCID: PMC10482341 DOI: 10.1126/sciadv.adh9170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023]
Abstract
The functional consequences of circular RNA (circRNA) expression on HIV-1 replication are largely unknown. Using a customized protocol involving direct RNA nanopore sequencing, here, we captured circRNAs from HIV-1-infected T cells and identified ciTRAN, a circRNA that modulates HIV-1 transcription. We found that HIV-1 infection induces ciTRAN expression in a Vpr-dependent manner and that ciTRAN interacts with SRSF1, a protein known to repress HIV-1 transcription. Our results suggest that HIV-1 hijacks ciTRAN to exclude serine/arginine-rich splicing factor 1 (SRSF1) from the viral transcriptional complex, thereby promoting efficient viral transcription. In addition, we demonstrate that an SRSF1-inspired mimic can inhibit viral transcription regardless of ciTRAN induction. The hijacking of a host circRNA thus represents a previously unknown facet of primate lentiviruses in overcoming transmission bottlenecks.
Collapse
Affiliation(s)
- Vipin Bhardwaj
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Aman Singh
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Aditi Choudhary
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Rishikesh Dalavi
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | | | | | | | - Nagarjun Vijay
- Computational and Evolutionary Genomics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Ajit Chande
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| |
Collapse
|
2
|
Salasc F, Gludish DW, Jarvis I, Boliar S, Wills MR, Russell DG, Lever AML, Mok HP. A novel, sensitive dual-indicator cell line for detection and quantification of inducible, replication-competent latent HIV-1 from reservoir cells. Sci Rep 2019; 9:19325. [PMID: 31852924 PMCID: PMC6920355 DOI: 10.1038/s41598-019-55596-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/15/2019] [Indexed: 11/28/2022] Open
Abstract
Understanding the mechanisms involved in HIV infection and latency, and development of a cure, rely on the availability of sensitive research tools such as indicator cells, which allow rigorous quantification of viral activity. Here we describe the construction and validation of a novel dual-indicator cell line, Sup-GGR, which offers two different readouts to quantify viral replication. A construct expressing both Gaussia luciferase and hrGFP in a Tat- and Rev-dependent manner was engineered into SupT1-CCR5 to create Sup-GGR cells. This cell line supports the replication of both X4 and R5-tropic HIV as efficiently as its parental cell line, SupT1-CCR5, and allows repeated sampling without the need to terminate the culture. Sup-GGR demonstrates comparable sensitivity and similar kinetics in virus outgrowth assays (VOA) to SupT1-CCR5 using clinical samples. However the Gaussia luciferase reporter is significantly less labor-intensive and allows earlier detection of reactivated latent viruses compared to the conventional HIV p24 ELISA assay. The Sup-GGR cell line constitutes a versatile new tool for HIV research and clinical trials.
Collapse
Affiliation(s)
- Fanny Salasc
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - David W Gludish
- Cornell University College of Veterinary Medicine, New York, USA
| | - Isobel Jarvis
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Saikat Boliar
- Cornell University College of Veterinary Medicine, New York, USA
| | - Mark R Wills
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - David G Russell
- Cornell University College of Veterinary Medicine, New York, USA.
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Yong Loo Lin School of Medicine National University of Singapore, Singapore, Singapore.
| | - Hoi-Ping Mok
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Raina S, Chande AG, Baba M, Mukhopadhyaya R. A reporter based single step assay for evaluation of inhibitors targeting HIV-1 Rev-RRE interaction. Virusdisease 2014; 25:101-6. [PMID: 24426316 DOI: 10.1007/s13337-013-0166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 09/17/2013] [Indexed: 11/26/2022] Open
Abstract
Human immunodeficiency virus regulatory protein Rev (regulator of viral expression) is translated from a monocistronic transcript produced early in the viral replication cycle. Rev binds to the cis-acting, highly structured viral RNA sequence Rev response element (RRE) and the Rev-RRE complex primarily controls nucleocytoplasmic transport of viral RNAs. Inhibition of Rev-RRE interaction therefore is an attractive target to block viral transport. We have developed a stable cell line carrying a lentiviral vector harboring a rev gene and a co-linear Rev-dependent GFP/luciferase reporter gene cassette and thus constitutively expressing the reporter proteins. Dose-dependent luciferase activity inhibition in the indicator cell line by known small molecule inhibitors Proflavin and K37 established the specificity of the assay. This novel single step assay, that involves use of very small amount of reagents/cells and addition of test material as the only manipulation, can therefore be useful for screening therapeutically potential Rev-RRE interaction inhibitors.
Collapse
Affiliation(s)
- Sumeer Raina
- Virology Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210 India
| | - Ajit G Chande
- Virology Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210 India ; Immunology Group, ICGEB, New Delhi, India
| | - Masanori Baba
- Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Robin Mukhopadhyaya
- Virology Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210 India
| |
Collapse
|
4
|
Mates JM, Kumar SB, Bazan J, Mefford M, Voronkin I, Handelman S, Mwapasa V, Ackerman W, Janies D, Kwiek JJ. Genotypic and phenotypic heterogeneity in the U3R region of HIV type 1 subtype C. AIDS Res Hum Retroviruses 2014; 30:102-12. [PMID: 23826737 PMCID: PMC3887403 DOI: 10.1089/aid.2013.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Approximately 20% of all HIV-1 mother-to-child transmission (MTCT) occurs in utero (IU). In a chronic HIV infection, HIV-1 exists as a complex swarm of genetic variants, and following IU MTCT, viral genomic diversity is restricted through a mechanism that remains to be described. The 5' U3R region of the HIV-1 long terminal repeat (LTR) contains multiple transcription factor (TF) binding sites and regulates viral transcription. In this study, we tested the hypothesis that sequence polymorphisms in the U3R region of LTR are associated with IU MTCT. To this end, we used single template amplification to isolate 517 U3R sequences from maternal, placental, and infant plasma derived from 17 HIV-infected Malawian women: eight whose infants remained HIV uninfected (NT) and nine whose infants became HIV infected IU. U3R sequences show pairwise diversities ranging from 0.2% to 2.3%. U3R sequences from one participant contained two, three, or four putative NF-κB binding sites. Phylogenetic reconstructions indicated that U3R sequences from eight of nine IU participants were consistent with placental compartmentalization of HIV-1 while only one of eight NT cases was consistent with such compartmentalization. Specific TF sequence polymorphisms were not significantly associated with IU MTCT. To determine if replication efficiency of the U3R sequences was associated with IU MTCT, we cloned 90 U3R sequences and assayed promoter activity in multiple cell lines. Although we observed significant, yet highly variable promoter activity and TAT induction of promoter activity in the cell lines tested, there was no association between measured promoter activity and MTCT status. Thus, we were unable to detect a promoter genotype or phenotype associated with IU MTCT.
Collapse
Affiliation(s)
- Jessica M. Mates
- Department of Microbiology, The Ohio State University, Columbus, Ohio
| | - Surender B. Kumar
- College of Veterinary Biosciences and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio
| | - Jose Bazan
- The Division of Infectious Diseases, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Megan Mefford
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio
| | - Igor Voronkin
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Samuel Handelman
- Department of Pharmacology, The Ohio State University, Columbus, Ohio
| | - Victor Mwapasa
- Department of Community Health, Malawi College of Medicine, Blantyre, Malawi
| | - William Ackerman
- Department of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research), The Ohio State University, Columbus, Ohio
| | - Daniel Janies
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Jesse J. Kwiek
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio
| |
Collapse
|
5
|
An infectious HHV-6B isolate from a healthy adult with chromosomally integrated virus and a reporter based relative viral titer assay. Virus Res 2013; 173:280-5. [DOI: 10.1016/j.virusres.2013.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/03/2013] [Accepted: 02/04/2013] [Indexed: 02/05/2023]
|
6
|
Strategies to Block HIV Transcription: Focus on Small Molecule Tat Inhibitors. BIOLOGY 2012; 1:668-97. [PMID: 24832514 PMCID: PMC4009808 DOI: 10.3390/biology1030668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/06/2012] [Accepted: 11/07/2012] [Indexed: 01/29/2023]
Abstract
After entry into the target cell, the human immunodeficiency virus type I (HIV) integrates into the host genome and becomes a proviral eukaryotic transcriptional unit. Transcriptional regulation of provirus gene expression is critical for HIV replication. Basal transcription from the integrated HIV promoter is very low in the absence of the HIV transactivator of transcription (Tat) protein and is solely dependent on cellular transcription factors. The 5' terminal region (+1 to +59) of all HIV mRNAs forms an identical stem-bulge-loop structure called the Transactivation Responsive (TAR) element. Once Tat is made, it binds to TAR and drastically activates transcription from the HIV LTR promoter. Mutations in either the Tat protein or TAR sequence usually affect HIV replication, indicating a strong requirement for their conservation. The necessity of the Tat-mediated transactivation cascade for robust HIV replication renders Tat one of the most desirable targets for transcriptional therapy against HIV replication. Screening based on inhibition of the Tat-TAR interaction has identified a number of potential compounds, but none of them are currently used as therapeutics, partly because these agents are not easily delivered for an efficient therapy, emphasizing the need for small molecule compounds. Here we will give an overview of the different strategies used to inhibit HIV transcription and review the current repertoire of small molecular weight compounds that target HIV transcription.
Collapse
|