1
|
Langel SN, Blasi M, Permar SR. Maternal immune protection against infectious diseases. Cell Host Microbe 2022; 30:660-674. [PMID: 35550669 DOI: 10.1016/j.chom.2022.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The maternal immune system protects developing offspring against pathogens before birth via transplacental transfer and after birth through secreted milk. This transferred maternal immunity influences each generation's susceptibility to infections and responsiveness to immunization. Thus, boosting immunity in the maternal-neonatal dyad is a potentially valuable public health strategy. Additionally, at critical times during fetal and postnatal development, environmental factors and immune stimuli influence immune development. These "windows of opportunity" offer a chance to identify both risk and protective factors that promote long-term health and limit disease. Here, we review pre- and postpartum maternal immune factors that protect against infectious agents in offspring and how they may shape the infant's immune landscape over time. Additionally, we discuss the influence of maternal immunity on the responsiveness to immunization in early life. Lastly, when maternal factors are insufficient to prevent neonatal infectious diseases, we discuss pre- and postnatal therapeutic strategies for the maternal-neonatal dyad.
Collapse
Affiliation(s)
- Stephanie N Langel
- Department of Surgery, Duke Center for Human Systems Immunology, Durham, NC, USA
| | - Maria Blasi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA; Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Vertical HIV-1 Transmission in the Setting of Maternal Broad and Potent Antibody Responses. J Virol 2022; 96:e0023122. [PMID: 35536018 DOI: 10.1128/jvi.00231-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the worldwide availability of antiretroviral therapy (ART), approximately 150,000 pediatric HIV infections continue to occur annually. ART can dramatically reduce HIV mother-to-child transmission (MTCT), but inconsistent drug access and adherence, as well as primary maternal HIV infection during pregnancy and lactation are major barriers to eliminating vertical HIV transmission. Thus, immunologic strategies to prevent MTCT, such as an HIV vaccine, will be required to attain an HIV-free generation. A primary goal of HIV vaccine research has been to elicit broadly neutralizing antibodies (bnAbs) given the ability of passive bnAb immunization to protect against sensitive strains, yet we previously observed that HIV-transmitting mothers have more plasma neutralization breadth than nontransmitting mothers. Additionally, we have identified infant transmitted/founder (T/F) viruses that escape maternal bnAb responses. In this study, we examine a cohort of postpartum HIV-transmitting women with neutralization breadth to determine if certain maternal bnAb specificities drive the selection of infant T/F viruses. Using HIV pseudoviruses that are resistant to neutralizing antibodies targeting common bnAb epitopes, we mapped the plasma bnAb specificities of this cohort. Significantly more transmitting women with plasma bnAb activity had a mappable plasma bnAb specificity (six of seven, or 85.7%) compared to that of nontransmitting women with plasma bnAb activity (7 of 21, or 33.3%, P = 0.029 by 2-sided Fisher exact test). Our study suggests that having multispecific broad activity and/or uncommon epitope-specific bnAbs in plasma may be associated with protection against the vertical HIV transmission in the setting of maternal bnAb responses. IMPORTANCE As mother to child transmission (MTCT) of HIV plays a major part in the persistence of the HIV/AIDS epidemic and bnAb-based passive and active vaccines are a primary strategy for HIV prevention, research in this field is of great importance. While previous MTCT research has investigated the neutralizing antibody activity of HIV-infected women, this is, to our knowledge, the largest study identifying differences in bnAb specificity of maternal plasma between transmitting and nontransmitting women. Here, we show that among HIV-infected women with broad and potent neutralization activity, more postpartum-transmitting women had a mappable plasma broadly neutralizing antibody (bnAb) specificity, compared to that of nontransmitting women, suggesting that the nontransmitting women more often have multispecific bnAb responses or bnAb responses that target uncommon epitopes. Such responses may be required for protection against vertical HIV transmission in the setting of maternal bnAb responses.
Collapse
|
3
|
Dispinseri S, Cavarelli M, Tolazzi M, Plebani AM, Jansson M, Scarlatti G. Continuous HIV-1 Escape from Autologous Neutralization and Development of Cross-Reactive Antibody Responses Characterizes Slow Disease Progression of Children. Vaccines (Basel) 2021; 9:vaccines9030260. [PMID: 33799407 PMCID: PMC7999787 DOI: 10.3390/vaccines9030260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
The antibodies with different effector functions evoked by Human Immunodeficiency Virus type 1 (HIV-1) transmitted from mother to child, and their role in the pathogenesis of infected children remain unresolved. So, too, the kinetics and breadth of these responses remain to be clearly defined, compared to those developing in adults. Here, we studied the kinetics of the autologous and heterologous neutralizing antibody (Nab) responses, in addition to antibody-dependent cellular cytotoxicity (ADCC), in HIV-1 infected children with different disease progression rates followed from close after birth and five years on. Autologous and heterologous neutralization were determined by Peripheral blood mononuclear cells (PBMC)- and TZMbl-based assays, and ADCC was assessed with the GranToxiLux assay. The reactivity to an immunodominant HIV-1 gp41 epitope, and childhood vaccine antigens, was assessed by ELISA. Newborns displayed antibodies directed towards the HIV-1 gp41 epitope. However, antibodies neutralizing the transmitted virus were undetectable. Nabs directed against the transmitted virus developed usually within 12 months of age in children with slow progression, but rarely in rapid progressors. Thereafter, autologous Nabs persisted throughout the follow-up of the slow progressors and induced a continuous emergence of escape variants. Heterologous cross-Nabs were detected within two years, but their subsequent increase in potency and breadth was mainly a trait of slow progressors. Analogously, titers of antibodies mediating ADCC to gp120 BaL pulsed target cells increased in slow progressors during follow-up. The kinetics of antibody responses to the immunodominant viral antigen and the vaccine antigens were sustained and independent of disease progression. Persistent autologous Nabs triggering viral escape and an increase in the breadth and potency of cross-Nabs are exclusive to HIV-1 infected slowly progressing children.
Collapse
Affiliation(s)
- Stefania Dispinseri
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.D.); (M.T.)
| | - Mariangela Cavarelli
- Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), University Paris-Saclay, 92265 Fontenay-aux-Roses & Le Kremlin-Bicêtre, France;
| | - Monica Tolazzi
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.D.); (M.T.)
| | - Anna Maria Plebani
- Pediatric Emergency Unit, Filippo Del Ponte Hospital, ASST-Settelaghi, 21100 Varese, Italy;
| | - Marianne Jansson
- Department of Laboratory Medicine, Lund University, 22242 Lund, Sweden;
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.D.); (M.T.)
- Correspondence: ; Tel.: +39-022643-4906; Fax: +39-022643-4905
| |
Collapse
|
4
|
Yin L, Chang KF, Nakamura KJ, Kuhn L, Aldrovandi GM, Goodenow MM. Unique genotypic features of HIV-1 C gp41 membrane proximal external region variants during pregnancy relate to mother-to-child transmission via breastfeeding. JOURNAL OF CLINICAL PEDIATRICS AND NEONATOLOGY 2021; 1:9-20. [PMID: 34553192 PMCID: PMC8454918 DOI: 10.46439/pediatrics.1.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mother-to-child transmission (MTCT) through breastfeeding remains a major source of pediatric HIV-1 infection worldwide. To characterize plasma HIV-1 subtype C populations from infected mothers during pregnancy that related to subsequent breast milk transmission, an exploratory study was designed to apply next generation sequencing and a custom bioinformatics pipeline for HIV-1 gp41 extending from heptad repeat region 2 (HR2) through the membrane proximal external region (MPER) and the membrane spanning domain (MSD). MPER harbors linear and highly conserved epitopes that repeatedly elicits HIV-1 neutralizing antibodies with exceptional breadth. Viral populations during pregnancy from women who transmitted by breastfeeding, compared to those who did not, displayed greater biodiversity, more frequent amino acid polymorphisms, lower hydropathy index and greater positive charge. Viral characteristics were restricted to MPER, failed to extend into flanking HR2 or MSD regions, and were unrelated to predicted neutralization resistance. Findings provide novel parameters to evaluate an association between maternal MPER variants present during gestation and lactogenesis with subsequent transmission outcomes by breastfeeding. IMPORTANCE HIV-1 transmission through breastfeeding accounts for 39% of MTCT and continues as a major route of pediatric infection in developing countries where access to interventions for interrupting transmission is limited. Identifying women who are likely to transmit HIV-1 during breastfeeding would focus therapies, such as broad neutralizing HIV monoclonal antibodies (bn-HIV-Abs), during the breastfeeding period to reduce MTCT. Findings from our pilot study identify novel characteristics of gestational viral MPER quasispecies related to transmission outcomes and raise the possibility for predicting MTCT by breastfeeding based on identifying mothers with high-risk viral populations.
Collapse
Affiliation(s)
- Li Yin
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Kai-Fen Chang
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | | | - Louise Kuhn
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Grace M. Aldrovandi
- Department of Pediatrics, Sabin Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Maureen M. Goodenow
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Huang Y, Karuna S, Carpp LN, Reeves D, Pegu A, Seaton K, Mayer K, Schiffer J, Mascola J, Gilbert PB. Modeling cumulative overall prevention efficacy for the VRC01 phase 2b efficacy trials. Hum Vaccin Immunother 2018; 14:2116-2127. [PMID: 29683765 PMCID: PMC6183277 DOI: 10.1080/21645515.2018.1462640] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Antibody Mediated Prevention trials are assessing whether intravenously-administered VRC01 (10 mg/kg or 30 mg/kg vs placebo) can prevent HIV infection. In a modeling exercise, we used two models to predict the overall prevention efficacy (PE) of each VRC01 dose in preventing HIV infection. For the first per-exposure PE model, parameters were estimated from studies where nonhuman primates (NHPs) were administered high-dose intra-rectal simian-human immunodeficiency virus challenge two days post-VRC01 infusion at various dosages ("NHP model"). To account for the fact that humans may require greater VRC01 concentration to achieve the same level of protection, we next assumed that a 5-fold greater VRC01 serum concentration would be needed to provide the same level of per-exposure PE as seen in the NHP data ("5-fold model"). For the 10 mg/kg regimen, the 5-fold and NHP models predict an overall PE of 37% and 64%, respectively; for the 30 mg/kg regimen, the two models predict an overall PE of 53% and 82%, respectively. Our results support that VRC01 may plausibly confer positive PE in the AMP trials. Given the lack of available knowledge and data to verify the assumptions undergirding our modeling framework, its quantitative predictions of overall PE are preliminary. Its current main applications are to supplement decisions to advance mAb regimens to efficacy trials, and to enable mAb regimen ranking by their potential for PE in humans.
Collapse
Affiliation(s)
- Yunda Huang
- a Vaccine and Infectious Disease Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA.,b Department of Global Health , University of Washington , Seattle , WA , USA
| | - Shelly Karuna
- a Vaccine and Infectious Disease Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Lindsay N Carpp
- a Vaccine and Infectious Disease Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Daniel Reeves
- a Vaccine and Infectious Disease Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Amarendra Pegu
- c National Institutes of Health, Vaccine Research Center , Bethesda , MD , USA
| | - Kelly Seaton
- d Department of Medicine , Duke University , Durham , NC , USA
| | - Kenneth Mayer
- e Department of Medicine, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA.,f The Fenway Institute , Boston , MA , USA
| | - Joshua Schiffer
- a Vaccine and Infectious Disease Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA.,g Department of Medicine , University of Washington , Seattle , WA , USA
| | - John Mascola
- c National Institutes of Health, Vaccine Research Center , Bethesda , MD , USA
| | - Peter B Gilbert
- a Vaccine and Infectious Disease Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA.,h Department of Biostatistics , University of Washington , Seattle , WA , USA
| |
Collapse
|
6
|
Fouda GG, Martinez DR, Swamy GK, Permar SR. The Impact of IgG transplacental transfer on early life immunity. Immunohorizons 2018; 2:14-25. [PMID: 29457151 PMCID: PMC5812294 DOI: 10.4049/immunohorizons.1700057] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Pediatric vaccines have significantly reduced infectious disease-related infant mortality, but as protective immunity often require several infant vaccine doses; maternally-acquired antibodies are critical to protect infants during the first months of life. Consequently, immunization of pregnant women is an important strategy not only to protect mothers from infection, but also to provide immunity to young infants. Nevertheless, maternal immunization can also negatively impact early life immunity. In fact, maternal antibodies can interfere with the development of infant immune responses, though it is unclear if such interference is clinically significant. Moreover, the transplacental transfer of maternal immunoglobulin therapeutics can be harmful to the fetus. Thus, the risk/benefit of maternal immunization for both the mother and the fetus should be carefully weighed. In addition, it is critical to fully understand the mechanisms by which IgG is transferred across the placenta in order to develop optimal maternal and infant immunization strategies.
Collapse
Affiliation(s)
- Genevieve G. Fouda
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710
- Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710
| | - David R. Martinez
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27710
| | - Geeta K. Swamy
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27710
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710
- Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710
| |
Collapse
|
7
|
Seaton KE, Vandergrift NA, Deal AW, Rountree W, Bainbridge J, Grebe E, Anderson DA, Sawant S, Shen X, Yates NL, Denny TN, Liao HX, Haynes BF, Robb ML, Parkin N, Santos BR, Garrett N, Price MA, Naniche D, Duerr AC, Keating S, Hampton D, Facente S, Marson K, Welte A, Pilcher CD, Cohen MS, Tomaras GD. Computational analysis of antibody dynamics identifies recent HIV-1 infection. JCI Insight 2017; 2:94355. [PMID: 29263306 DOI: 10.1172/jci.insight.94355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
Accurate HIV-1 incidence estimation is critical to the success of HIV-1 prevention strategies. Current assays are limited by high false recent rates (FRRs) in certain populations and a short mean duration of recent infection (MDRI). Dynamic early HIV-1 antibody response kinetics were harnessed to identify biomarkers for improved incidence assays. We conducted retrospective analyses on circulating antibodies from known recent and longstanding infections and evaluated binding and avidity measurements of Env and non-Env antigens and multiple antibody forms (i.e., IgG, IgA, IgG3, IgG4, dIgA, and IgM) in a diverse panel of 164 HIV-1-infected participants (clades A, B, C). Discriminant function analysis identified an optimal set of measurements that were subsequently evaluated in a 324-specimen blinded biomarker validation panel. These biomarkers included clade C gp140 IgG3, transmitted/founder clade C gp140 IgG4 avidity, clade B gp140 IgG4 avidity, and gp41 immunodominant region IgG avidity. MDRI was estimated at 215 day or alternatively, 267 days. FRRs in untreated and treated subjects were 5.0% and 3.6%, respectively. Thus, computational analysis of dynamic HIV-1 antibody isotype and antigen interactions during infection enabled design of a promising HIV-1 recency assay for improved cross-sectional incidence estimation.
Collapse
Affiliation(s)
- Kelly E Seaton
- Duke Human Vaccine Institute, Department of Medicine, Durham, North Carolina, USA
| | - Nathan A Vandergrift
- Duke Human Vaccine Institute, Department of Medicine, Durham, North Carolina, USA
| | - Aaron W Deal
- Duke Human Vaccine Institute, Department of Medicine, Durham, North Carolina, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Department of Medicine, Durham, North Carolina, USA
| | - John Bainbridge
- Duke Human Vaccine Institute, Department of Medicine, Durham, North Carolina, USA
| | - Eduard Grebe
- South African Centre for Epidemiological Modelling and Analysis, Stellenbosch University, Stellenbosch, South Africa
| | | | - Sheetal Sawant
- Duke Human Vaccine Institute, Department of Medicine, Durham, North Carolina, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Department of Medicine, Durham, North Carolina, USA
| | - Nicole L Yates
- Duke Human Vaccine Institute, Department of Medicine, Durham, North Carolina, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Department of Medicine, Durham, North Carolina, USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Department of Medicine, Durham, North Carolina, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Department of Medicine, Durham, North Carolina, USA.,Department of Immunology, Duke University, Durham, North Carolina, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Neil Parkin
- Foundation for Innovative New Diagnostics, Geneva, Switzerland; Data First Consulting, Belmont, California, USA
| | - Breno R Santos
- The Evaluation of Prevention Methods Linked to Acute and Recent Infection (AMPLIAR) Cohort Group Hospital Conceição is detailed in the Supplemental Acknowledgments
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Matthew A Price
- International AIDS Vaccine Initiative, San Francisco, California, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Denise Naniche
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Ann C Duerr
- Vaccine and Infectious Disease and Public Health Science Divisions, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Sheila Keating
- Blood Systems Research Institute, San Francisco, California, USA
| | - Dylan Hampton
- Blood Systems Research Institute, San Francisco, California, USA
| | - Shelley Facente
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Kara Marson
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Alex Welte
- South African Centre for Epidemiological Modelling and Analysis, Stellenbosch University, Stellenbosch, South Africa
| | - Christopher D Pilcher
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Myron S Cohen
- University of North Carolina, Chapel Hill, North Carolina, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Department of Medicine, Durham, North Carolina, USA.,Department of Immunology, Duke University, Durham, North Carolina, USA.,Department of Surgery and Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
8
|
Milligan C, Slyker JA, Overbaugh J. The Role of Immune Responses in HIV Mother-to-Child Transmission. Adv Virus Res 2017; 100:19-40. [PMID: 29551137 DOI: 10.1016/bs.aivir.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
HIV mother-to-child transmission (MTCT) represents a success story in the HIV/AIDS field given the significant reduction in number of transmission events with the scale-up of antiretroviral treatment and other prevention methods. Nevertheless, MTCT still occurs and better understanding of the basic biology and immunology of transmission will aid in future prevention and treatment efforts. MTCT is a unique setting given that the transmission pair is known and the infant receives passively transferred HIV-specific antibodies from the mother while in utero. Thus, infant exposure to HIV occurs in the face of HIV-specific antibodies, especially during delivery and breastfeeding. This review highlights the immune correlates of protection in HIV MTCT including humoral (neutralizing antibodies, antibody-dependent cellular cytotoxicity, and binding epitopes), cellular, and innate immune factors. We further discuss the future implications of this research as it pertains to opportunities for passive and active vaccination with the ultimate goal of eliminating HIV MTCT.
Collapse
Affiliation(s)
- Caitlin Milligan
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, United States.
| | | | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
9
|
Huang Y, Zhang L, Ledgerwood J, Grunenberg N, Bailer R, Isaacs A, Seaton K, Mayer KH, Capparelli E, Corey L, Gilbert PB. Population pharmacokinetics analysis of VRC01, an HIV-1 broadly neutralizing monoclonal antibody, in healthy adults. MAbs 2017; 9:792-800. [PMID: 28368743 PMCID: PMC5524155 DOI: 10.1080/19420862.2017.1311435] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/16/2017] [Accepted: 03/22/2017] [Indexed: 10/19/2022] Open
Abstract
The monoclonal antibody VRC01 targets the CD4 binding site of the human immunodeficiency virus (HIV)-1 envelope. In the clinical study HVTN 104 (NCT02165267), 84 HIV-uninfected adults received multiple-dose intravenous (IV) VRC01 (10, 20, 30 or 40 mg/kg) every 4 or 8 weeks or subcutaneous (SC) VRC01 (5 mg/kg) every 2 weeks, and were followed for 32 weeks. We conducted a population pharmacokinetics (popPK) analysis based on 1117 VRC01 serum concentrations using a 2-compartment PK model with first-order elimination; for SC VRC01 a depot compartment with a first-order absorption rate constant was also included. All PK parameters were estimated with acceptable precision. Estimated bioavailability of SC VRC01 was 74%, with peak concentrations occurring 2-3 d after administration. For both IV and SC VRC01, population mean estimates for clearance (CL), central volume of distribution (Vc), inter-compartmental distribution clearance (Q) and peripheral volume of distribution (Vp) were 0.40 L/day, 1.94 L, 0.84 L/day and 4.90 L, respectively; the estimated terminal half-life was 15 d and these were independent of VRC01 dose. Body weight significantly influenced CL (1.2% fold/kg), Vc (1.0% fold/kg), Q (0.69 log(L/day)/kg) and Vp (0.82 log(L)/kg). The developed popPK model, supporting weight-dependent dosing regimens, projected positive trough levels, 5.54 (95% prediction interval: 1.69, 14.5) mcg/mL and 15.9 (5.29, 46.63) mcg/mL, respectively, for the 10 mg/kg and 30 mg/kg 8-weekly regimens being evaluated in ongoing HIV prevention efficacy studies of IV VRC01. These results are critical for future dose-regimen selection and modeling research to identify VRC01 serum concentration levels sufficient for protection against HIV infection.
Collapse
Affiliation(s)
- Yunda Huang
- Vaccine and Infectious Disease Division, Public Health Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Lily Zhang
- Vaccine And Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Julie Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Nicole Grunenberg
- Vaccine And Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Abby Isaacs
- Vaccine And Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kelly Seaton
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | | | | | - Larry Corey
- Vaccine And Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Public Health Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Nakamura KJ, Heath L, Sobrera ER, Wilkinson TA, Semrau K, Kankasa C, Tobin NH, Webb NE, Lee B, Thea DM, Kuhn L, Mullins JI, Aldrovandi GM. Breast milk and in utero transmission of HIV-1 select for envelope variants with unique molecular signatures. Retrovirology 2017; 14:6. [PMID: 28122636 PMCID: PMC5267468 DOI: 10.1186/s12977-017-0331-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/12/2017] [Indexed: 01/06/2023] Open
Abstract
Background Mother-to-child transmission of human immunodeficiency virus-type 1 (HIV-1) poses a serious health threat in developing countries, and adequate interventions are as yet unrealized. HIV-1 infection is frequently initiated by a single founder viral variant, but the factors that influence particular variant selection are poorly understood. Results Our analysis of 647 full-length HIV-1 subtype C and G viral envelope sequences from 22 mother–infant pairs reveals unique genotypic and phenotypic signatures that depend upon transmission route. Relative to maternal strains, intrauterine HIV transmission selects infant variants that have shorter, less-glycosylated V1 loops that are more resistant to soluble CD4 (sCD4) neutralization. Transmission through breastfeeding selects for variants with fewer potential glycosylation sites in gp41, are more sensitive to the broadly neutralizing antibodies PG9 and PG16, and that bind sCD4 with reduced cooperativity. Furthermore, experiments with Affinofile cells indicate that infant viruses, regardless of transmission route, require increased levels of surface CD4 receptor for productive infection. Conclusions These data provide the first evidence for transmission route-specific selection of HIV-1 variants, potentially informing therapeutic strategies and vaccine designs that can be tailored to specific modes of vertical HIV transmission. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0331-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyle J Nakamura
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Systems Biology and Disease Program, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Laura Heath
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Edwin R Sobrera
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Thomas A Wilkinson
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Katherine Semrau
- Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, and Ariadne Labs, Boston, MA, USA
| | - Chipepo Kankasa
- University Teaching Hospital, University of Zambia, Lusaka, Zambia
| | - Nicole H Tobin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA, USA
| | - Nicholas E Webb
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald M Thea
- Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, and Ariadne Labs, Boston, MA, USA
| | - Louise Kuhn
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Grace M Aldrovandi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
The first 24 h: targeting the window of opportunity for antibody-mediated protection against HIV-1 transmission. Curr Opin HIV AIDS 2016; 11:561-568. [PMID: 27559708 DOI: 10.1097/coh.0000000000000319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW I will review evidence that antibodies protect against HIV-1 transmission in a short window of opportunity, involving neutralization, Fc-mediated effector function, or both. RECENT FINDINGS The last decade witnessed a dramatic progress in the understanding of antibody-mediated protection against HIV-1, including active and passive immunization studies in nonhuman primates; association between reduced infection risk and the specificities and function of antibodies in the RV144 clinical trial; identification of potent, broadly neutralizing antibodies; high-resolution structural studies of the HIV-1 envelope trimer; and an increasing appreciation that Fc-mediated effector function is critical to protection against transmission for neutralizing and nonneutralizing antibodies. Less information is known about how antibodies protect in situ, except that they must do in the first 24 h after exposure. New evidence suggests that antibodies protect in an acute innate immune environment involving the NXLRX1 inflammasome and transforming growth factor beta (TGF-β) that favors infection and rapid dissemination of CCR6RORγ Th17 cells. SUMMARY These recent findings set the stage for understanding how antibodies can prevent the transmission of HIV-1. In this context, antibodies must prevent infection in an innate immune environment that strongly favors transmission. This information is key for the development of a vaccine against HIV-1.
Collapse
|
12
|
New concepts in HIV-1 vaccine development. Curr Opin Immunol 2016; 41:39-46. [PMID: 27268856 DOI: 10.1016/j.coi.2016.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/15/2016] [Accepted: 05/20/2016] [Indexed: 01/13/2023]
Abstract
With 2 million people newly infected with HIV-1 in 2014, an effective HIV-1 vaccine remains a major public health priority. HIV-1 vaccine efficacy trials in humans, complemented by active and passive immunization studies in non-human primates, have identified several key vaccine-induced immunological responses that may correlate with protection against HIV-1 infection. Potential correlates of protection in these studies include V2-specific, polyfunctional, and broadly neutralizing antibody responses, as well as effector memory T cell responses. Here we review how these correlates of protection are guiding current approaches to HIV-1 vaccine development. These approaches include improvements on the ALVAC-HIV/AIDSVAX B/E vaccine regimen used in the RV144 clinical trial in Thailand, adenovirus serotype 26 vectors with gp140 boosting, intravenous infusions of bNAbs, and replicating viral vectors.
Collapse
|
13
|
Ledgerwood JE, Coates EE, Yamshchikov G, Saunders JG, Holman L, Enama ME, DeZure A, Lynch RM, Gordon I, Plummer S, Hendel CS, Pegu A, Conan-Cibotti M, Sitar S, Bailer RT, Narpala S, McDermott A, Louder M, O'Dell S, Mohan S, Pandey JP, Schwartz RM, Hu Z, Koup RA, Capparelli E, Mascola JR, Graham BS, the VRC 602 Study Team. Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults. Clin Exp Immunol 2015; 182:289-301. [PMID: 26332605 PMCID: PMC4636891 DOI: 10.1111/cei.12692] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2015] [Indexed: 12/17/2022] Open
Abstract
VRC-HIVMAB060-00-AB (VRC01) is a broadly neutralizing HIV-1 monoclonal antibody (mAb) isolated from the B cells of an HIV-infected patient. It is directed against the HIV-1 CD4 binding site and is capable of potently neutralizing the majority of diverse HIV-1 strains. This Phase I dose-escalation study in healthy adults was conducted at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD, USA). Primary objectives were the safety, tolerability and pharmacokinetics (PK) of VRC01 intravenous (i.v.) infusion at 5, 20 or 40 mg/kg, given either once (20 mg/kg) or twice 28 days apart (all doses), and of subcutaneous (s.c.) delivery at 5 mg/kg compared to s.c. placebo given twice, 28 days apart. Cumulatively, 28 subjects received 43 VRC01 and nine received placebo administrations. There were no serious adverse events or dose-limiting toxicities. Mean 28-day serum trough concentrations after the first infusion were 35 and 57 μg/ml for groups infused with 20 mg/kg (n = 8) and 40 mg/kg (n = 5) doses, respectively. Mean 28-day trough concentrations after the second infusion were 56 and 89 μg/ml for the same two doses. Over the 5-40 mg/kg i.v. dose range (n = 18), the clearance was 0.016 l/h and terminal half-life was 15 days. After infusion VRC01 retained expected neutralizing activity in serum, and anti-VRC01 antibody responses were not detected. The human monoclonal antibody (mAb) VRC01 was well tolerated when delivered i.v. or s.c. The mAb demonstrated expected half-life and pharmacokinetics for a human immunoglobulin G. The safety and PK results support and inform VRC01 dosing schedules for planning HIV-1 prevention efficacy studies.
Collapse
Affiliation(s)
- J E Ledgerwood
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - E E Coates
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - G Yamshchikov
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - J G Saunders
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - L Holman
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - M E Enama
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - A DeZure
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - R M Lynch
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - I Gordon
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - S Plummer
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - C S Hendel
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - A Pegu
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - M Conan-Cibotti
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - S Sitar
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - R T Bailer
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - S Narpala
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - A McDermott
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - M Louder
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - S O'Dell
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - S Mohan
- Department of Microbiology and Immunology, Medical University of South CarolinaCharleston, SC, USA
| | - J P Pandey
- Department of Microbiology and Immunology, Medical University of South CarolinaCharleston, SC, USA
| | - R M Schwartz
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - Z Hu
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - R A Koup
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - E Capparelli
- School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San DiegoSan Diego, CA, USA
| | - J R Mascola
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - B S Graham
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - the VRC 602 Study Team
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
- Department of Microbiology and Immunology, Medical University of South CarolinaCharleston, SC, USA
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
- School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San DiegoSan Diego, CA, USA
| |
Collapse
|
14
|
Wood LF, Chahroudi A, Chen HL, Jaspan HB, Sodora DL. The oral mucosa immune environment and oral transmission of HIV/SIV. Immunol Rev 2014; 254:34-53. [PMID: 23772613 DOI: 10.1111/imr.12078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The global spread of human immunodeficiency virus (HIV) is dependent on the ability of this virus to efficiently cross from one host to the next by traversing a mucosal membrane. Unraveling how mucosal exposure of HIV results in systemic infection is critical for the development of effective therapeutic strategies. This review focuses on understanding the immune events associated with the oral route of transmission (via breastfeeding or sexual oral intercourse), which occurs across the oral and/or gastrointestinal mucosa. Studies in both humans and simian immunodeficiency virus (SIV) monkey models have identified viral changes and immune events associated with oral HIV/SIV exposure. This review covers our current knowledge of HIV oral transmission in both infants and adults, the use of SIV models in understanding early immune events, oral immune factors that modulate HIV/SIV susceptibility (including mucosal inflammation), and interventions that may impact oral HIV transmission rates. Understanding the factors that influence oral HIV transmission will provide the foundation for developing immune therapeutic and vaccine strategies that can protect both infants and adults from oral HIV transmission.
Collapse
Affiliation(s)
- Lianna F Wood
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
15
|
Braibant M, Barin F. The role of neutralizing antibodies in prevention of HIV-1 infection: what can we learn from the mother-to-child transmission context? Retrovirology 2013; 10:103. [PMID: 24099103 PMCID: PMC3851888 DOI: 10.1186/1742-4690-10-103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/10/2013] [Indexed: 01/12/2023] Open
Abstract
In most viral infections, protection through existing vaccines is linked to the presence of vaccine-induced neutralizing antibodies (NAbs). However, more than 30 years after the identification of AIDS, the design of an immunogen able to induce antibodies that would neutralize the highly diverse HIV-1 variants remains one of the most puzzling challenges of the human microbiology. The role of antibodies in protection against HIV-1 can be studied in a natural situation that is the mother-to-child transmission (MTCT) context. Indeed, at least at the end of pregnancy, maternal antibodies of the IgG class are passively transferred to the fetus protecting the neonate from new infections during the first weeks or months of life. During the last few years, strong data, presented in this review, have suggested that some NAbs might confer protection toward neonatal HIV-1 infection. In cases of transmission, it has been shown that the viral population that is transmitted from the mother to the infant is usually homogeneous, genetically restricted and resistant to the maternal HIV-1-specific antibodies. Although the breath of neutralization was not associated with protection, it has not been excluded that NAbs toward specific HIV-1 strains might be associated with a lower rate of MTCT. A better identification of the antibody specificities that could mediate protection toward MTCT of HIV-1 would provide important insights into the antibody responses that would be useful for vaccine development. The most convincing data suggesting that NAbs migh confer protection against HIV-1 infection have been obtained by experiments of passive immunization of newborn macaques with the first generation of human monoclonal broadly neutralizing antibodies (HuMoNAbs). However, these studies, which included only a few selected subtype B challenge viruses, provide data limited to protection against a very restricted number of isolates and therefore have limitations in addressing the hypervariability of HIV-1. The recent identification of highly potent second-generation cross-clade HuMoNAbs provides a new opportunity to evaluate the efficacy of passive immunization to prevent MTCT of HIV-1.
Collapse
Affiliation(s)
- Martine Braibant
- Université François-Rabelais, UFR Médecine, Inserm U966 10 bld Tonnellé, cedex, 37032 Tours, France.
| | | |
Collapse
|
16
|
Permar SR, Salazar MG, Gao F, Cai F, Learn GH, Kalilani L, Hahn BH, Shaw GM, Salazar-Gonzalez JF. Clonal amplification and maternal-infant transmission of nevirapine-resistant HIV-1 variants in breast milk following single-dose nevirapine prophylaxis. Retrovirology 2013; 10:88. [PMID: 23941304 PMCID: PMC3765243 DOI: 10.1186/1742-4690-10-88] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/06/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Intrapartum administration of single-dose nevirapine (sdNVP) reduces perinatal HIV-1 transmission in resource-limiting settings by half. Yet this strategy has limited effect on subsequent breast milk transmission, making the case for new treatment approaches to extend maternal/infant antiretroviral prophylaxis through the period of lactation. Maternal and transmitted infant HIV-1 variants frequently develop NVP resistance mutations following sdNVP, complicating subsequent treatment/prophylaxis regimens. However, it is not clear whether NVP-resistant viruses are transmitted via breastfeeding or arise de novo in the infant. FINDINGS We performed a detailed HIV genetic analysis using single genome sequencing to identify the origin of drug-resistant variants in an sdNVP-treated postnatally-transmitting mother-infant pair. Phylogenetic analysis of HIV sequences from the child revealed low-diversity variants indicating infection by a subtype C single transmitted/founder virus that shared full-length sequence identity with a clonally-amplified maternal breast milk virus variant harboring the K103N NVP resistance mutation. CONCLUSION In this mother/child pair, clonal amplification of maternal NVP-resistant HIV variants present in systemic and mammary gland compartments following intrapartum sdNVP represents one source of transmitted NVP-resistant variants that is responsible for the acquisition of drug resistant virus by the breastfeeding infant. This finding emphasizes the need for combination antiretroviral prophylaxis to prevent mother-to-child HIV transmission.
Collapse
Affiliation(s)
- Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fouda GG, Mahlokozera T, Salazar-Gonzalez JF, Salazar MG, Learn G, Kumar SB, Dennison SM, Russell E, Rizzolo K, Jaeger F, Cai F, Vandergrift NA, Gao F, Hahn B, Shaw GM, Ochsenbauer C, Swanstrom R, Meshnick S, Mwapasa V, Kalilani L, Fiscus S, Montefiori D, Haynes B, Kwiek J, Alam SM, Permar SR. Postnatally-transmitted HIV-1 Envelope variants have similar neutralization-sensitivity and function to that of nontransmitted breast milk variants. Retrovirology 2013; 10:3. [PMID: 23305422 PMCID: PMC3564832 DOI: 10.1186/1742-4690-10-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/21/2012] [Indexed: 11/11/2022] Open
Abstract
Background Breastfeeding is a leading cause of infant HIV-1 infection in the developing world, yet only a minority of infants exposed to HIV-1 via breastfeeding become infected. As a genetic bottleneck severely restricts the number of postnatally-transmitted variants, genetic or phenotypic properties of the virus Envelope (Env) could be important for the establishment of infant infection. We examined the efficiency of virologic functions required for initiation of infection in the gastrointestinal tract and the neutralization sensitivity of HIV-1 Env variants isolated from milk of three postnatally-transmitting mothers (n=13 viruses), five clinically-matched nontransmitting mothers (n=16 viruses), and seven postnatally-infected infants (n = 7 postnatally-transmitted/founder (T/F) viruses). Results There was no difference in the efficiency of epithelial cell interactions between Env virus variants from the breast milk of transmitting and nontransmitting mothers. Moreover, there was similar efficiency of DC-mediated trans-infection, CCR5-usage, target cell fusion, and infectivity between HIV-1 Env-pseudoviruses from nontransmitting mothers and postnatal T/F viruses. Milk Env-pseudoviruses were generally sensitive to neutralization by autologous maternal plasma and resistant to breast milk neutralization. Infant T/F Env-pseudoviruses were equally sensitive to neutralization by broadly-neutralizing monoclonal and polyclonal antibodies as compared to nontransmitted breast milk Env variants. Conclusion Postnatally-T/F Env variants do not appear to possess a superior ability to interact with and cross a mucosal barrier or an exceptional resistance to neutralization that define their capability to initiate infection across the infant gastrointestinal tract in the setting of preexisting maternal antibodies.
Collapse
Affiliation(s)
- Genevieve G Fouda
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|