1
|
Jiao Y, An M, Zhang N, Zhang H, Zheng C, Chen L, Li H, Zhang Y, Gan Y, Zhao J, Shang H, Han X. Multiple third-generation recombinants formed by CRF55_01B and CRF07_BC in newly diagnosed HIV-1 infected patients in Shenzhen city, China. Virol J 2024; 21:306. [PMID: 39593171 PMCID: PMC11590514 DOI: 10.1186/s12985-024-02563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
In the evolution landscape of HIV, the coexistence of multiple subtypes has led to new, complex recombinants, posing public health challenges. CRF55_01B, first identified among MSM in Shenzhen, China, has spread rapidly across China. In this study, 47 plasma samples from newly diagnosed HIV-1 CRF55_01B patients in Shenzhen, of which the genotype was only identified by the routine HIV drug resistance test, were collected. Multiple gene regions were acquired using Sanger and next-generation sequencing methods, followed by the phylogenetic reconstruction, recombination breakpoint scanning, Bayesian molecular clock, and the prediction of coreceptors. From 47 samples, we found seven new unique recombinants formed by CRF55_01B and CRF07_BC, which shared similar breakpoints in certain gene regions and primarily utilized CCR5 receptors. All of the most recent common ancestors of subregions for these recombinants were estimated to be later than CRF55_01B and CRF07_BC, potentially suggesting they are the third-generation recombinants formed by CRF55_01B and CRF07_BC as parents. The continuous emergence of new recombinants highlights the increasing complexity of circulating strains in Shenzhen, and also suggests that subtype analysis using partial pol gene may lead to an overestimation of the major subtype strains and an underestimation of new complex HIV recombinants. Consequently, to effectively address and mitigate the complex HIV epidemic, there is an urgent need for expanded monitoring and the optimization of testing methodologies.
Collapse
Affiliation(s)
- Yan Jiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, Liaoning Province, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China
| | - Minghui An
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, Liaoning Province, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China
| | - Nan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, Liaoning Province, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China
| | - Hui Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, Liaoning Province, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China
| | - Chenli Zheng
- Department of HIV/AIDS Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lin Chen
- Department of HIV/AIDS Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hao Li
- Department of HIV/AIDS Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yan Zhang
- Department of HIV/AIDS Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yongxia Gan
- Department of HIV/AIDS Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jin Zhao
- Department of HIV/AIDS Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Hong Shang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, Liaoning Province, China.
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.
| | - Xiaoxu Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
2
|
Liu M, Chen H, Li J, Cai W, Xie H, Lan G, Zeng X. Near Full-Length Genomic Characterization of Two Novel HIV Type 1 Second-Generation Recombinant Forms (CRF01_AE/CRF07_BC) from Guangxi, China. AIDS Res Hum Retroviruses 2023; 39:567-574. [PMID: 37335036 DOI: 10.1089/aid.2023.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
CRF01_AE and CRF07_BC are the two predominant HIV-1 subtypes currently circulating in China. We identified here a novel CCR5-tropic HIV-1 second-generation recombinant form virus found in two individuals, (GX19017 and GX19032), which were isolated from two HIV-1-positive people in Guangxi, southwest China. Phylogenic analyses indicated that these two sequences were all composed of two well-established circulating recombinant forms (CRFs) CRF07_BC and CRF01_AE, with four recombinant breakpoints observed in the pol, vpu/env, and env gene regions, respectively. The recombinant CRF01_AE region was clustered with the previously described CRF01_AE subcluster 2 lineage, which was characterized by the susceptibility to phenotypic transfer. The genome structure is significantly different from other previously reported CRFs and unique recombination forms. The emergence of a series of novel recombinant strains is indicative of the burgeoning complexity of the HIV-1 epidemic among the sexually transmitted population. Meanwhile, it may furnish significant insights into the dynamics and intricacy of the HIV-1 epidemic in China.
Collapse
Affiliation(s)
- Meiliang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Huanhuan Chen
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Jianjun Li
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Wenlong Cai
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Haomin Xie
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Guanghua Lan
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Wang H, Zhao X, Su M, Meng J, Fan W, Shi P. Identification of a New HIV-1 Circulating Recombinant Form CRF112_01B Strain in Baoding City, Hebei Province, China. Curr HIV Res 2022; 20:485-491. [PMID: 36305139 DOI: 10.2174/1570162x21666221027122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND A large number of HIV-1 recombinants that originated from CRF01_AE and B strains are constantly emerging in men who have sex with men populations in China and deserve more attention and further monitoring. OBJECTIVE To analyze the near-full-length genome structure and recombination characteristics of a new HIV-1 strain (BD226AJ) detected in Baoding City and determine its subtype. CASE REPRESENTATION Viral RNA was extracted from a blood sample collected from an infected individual and reverse transcribed to cDNA. Two overlapping segments of the HIV-1 genome were amplified using a near-endpoint dilution method and sequenced. Recombinant breakpoints were determined using RIP, jpHMM, and SimPlot 3.5.1 software. MEGA v6.0 was used to construct a neighbor-joining phylogenetic tree to determine the homology relationships of this strain. RESULTS AND DISCUSSION We obtained 8830 nucleotides (nt) of the HIV-1 genome sequence by amplification and sequencing, and four recombinant fragments were identified by recombination analysis, namely CRF01_AE (HXB2, 823-4224 nt), subtype B (HXB2, 4225-5991 nt), CRF01_AE (HXB2, 5992-9295 nt), and subtype B (HXB2, 9296-9406 nt). The BLAST results showed that 96% of the sequence was similar to CRF112_01B. The jpHMM results confirmed that BD226AJ was the CRF112_01B strain. CONCLUSION Our results confirm the first epidemic of CRF112_01B in Hebei Province. This finding suggests that HIV-1 CRF112_01B may have been introduced into Hebei by men who have sex with men and indicates that the epidemic trend of this strain should be closely monitored.
Collapse
Affiliation(s)
- Hao Wang
- Clinical laboratory, the People's Hospital of Baoding, Baoding, Hebei 071000, China
| | - Xuanhe Zhao
- Clinical laboratory, the Baoding Blood Center, Baoding, Hebei 071051, China
| | - Miaomiao Su
- Infection division, the People's Hospital of Baoding, Baoding, Hebei 071000, China
| | - Juan Meng
- Infection division, the People's Hospital of Baoding, Baoding, Hebei 071000, China
| | - Weiguang Fan
- Clinical laboratory, the People's Hospital of Baoding, Baoding, Hebei 071000, China
| | - Penghui Shi
- Clinical laboratory, the People's Hospital of Baoding, Baoding, Hebei 071000, China
| |
Collapse
|
4
|
Hao J, Zheng S, Gan M, Dong A, Kang R, Li M, Zhao S, Hu J, Song C, Liao L, Feng Y, Shao Y, Ruan Y, Xing H. Changing Proportions of HIV-1 Subtypes and Transmitted Drug Resistance Among Newly Diagnosed HIV/AIDS Individuals - China, 2015 and 2018. China CDC Wkly 2021; 3:1133-1138. [PMID: 35036036 PMCID: PMC8742141 DOI: 10.46234/ccdcw2021.251] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/19/2021] [Indexed: 01/12/2023] Open
Abstract
Introduction With the expansion of human immunodeficiency virus (HIV) antiretroviral therapy (ART), HIV drug resistance is becoming more and more serious. This study describes the changing prevalence of HIV-1 subtypes and transmitted drug resistance (TDR) among newly diagnosed individuals in China, 2015 and 2018. Methods A total of 8,980 individuals in 2015 and 2018 from 31 provincial-level administrative divisions (PLADs) were enrolled in this study. Viral RNAs were amplified and sequenced using an in-house polymerase chain reaction (PCR) protocol. The Stanford HIV Drug Resistance Database (HIVdb) was used to predict susceptibility to 12 antiretroviral drugs. Results The prevalence of TDR was not significantly increased over time. The prevalence of TDR was 3.8% and 4.4% in 2015 and 2018, respectively (P=0.13). The prevalence of CRF55_01B increased from 2.3% in 2015 to 3.9% in 2018 (P<0.001). The drug resistance prevalence of non-nucleoside reverse transcriptase inhibitors (NNRTI) increased from 2.4% in 2015 to 3.3% in 2018 (P<0.01). The prevalence of E138 (P<0.001), H221 (P=0.03), and V179 (P<0.001) mutations increased from 0.30%, 0.09%, and 0.70% in 2015 to 1.10%, 0.30%, and 1.70% in 2018, respectively.
Conclusions HIV drug resistance affects the effect of antiretroviral treatment, so the monitoring of HIV TDR should be strengthened to control the transmission of HIV drug resistance.
Collapse
Affiliation(s)
- Jingjing Hao
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Shan Zheng
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Mengze Gan
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Aobo Dong
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Ruihua Kang
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Miaomiao Li
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Shuai Zhao
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Jing Hu
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Chang Song
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Lingjie Liao
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Yi Feng
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Yiming Shao
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Yuhua Ruan
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Hui Xing
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| |
Collapse
|
5
|
Yao Y, Zeng Y, Huang H, Li J, Li J, Xin R. Characteristics of Four Novel Recombinant Strains from the Backbone of CRF55_01B and CRF65_cpx in Beijing by Near Full-Length Genome. AIDS Res Hum Retroviruses 2021; 37:936-945. [PMID: 34167316 DOI: 10.1089/aid.2020.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The HIV-1 epidemic was mainly driven by men who have sex with men (MSM) recently in Beijing, China, with high genetic diversity. Novel recombinant strains were frequently reported at 3.4%-9.9%. It is imperative to interpret the recombinant modes and the putative transmission sources by near full-length genome (NFLG). Four individuals from the MSM population were identified as novel recombinant strains during surveillance of pretreatment drug resistance. NFLG sequences were harvested by near end-point dilution and nested PCR with two overlapping half fragments. Phylogenetic inference was performed with subtyping reference sequences and major parental strain sequences, to explore the patterns of genetic recombinant and potential sources of parent strains. The breakpoints were determined using SimPlot 3.5 to draw genome mosaic map, and the potential parental strains were confirmed by Mega 6.0 using segmental neighbor-joining trees. BL19487-00 and BL1948-00 sequences were obtained from epidemiologically linked individuals and shared similar breakpoints (HXB2 nt 4,497 ± 8 to 4,722) with substitution of subtype B pol gene segment in the backbone of CRF55_01B. BL3104-00 and BL4307-00 carried seven and eight breakpoints, respectively, in the backbone of CRF65_cpx with g5 CRF01_AE substitutions. The recombinant fragments were located around gag, pol, and env genes, with vpr-tat and nef-3'-LTR genes only for BL4307-00. No transmitted drug resistance was observed with the four unique recombinant forms (URFs), except for some drug resistance associated mutations. The advent of URFs around CRF55_01B and CRF65_cpx identified in recent years implied that the sexual behaviors were active and the epidemic of HIV was complicated among MSM in Beijing. Molecular epidemiological surveillance and precise control should be reinforced for this population.
Collapse
Affiliation(s)
- Yaping Yao
- Department of Science Research and Information Management, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yuhong Zeng
- School of Public Health, Capital Medical University, Beijing, China
| | - Huihuang Huang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jia Li
- Institute of STD/AIDS Prevention and Treatment, Beijing Center Disease Prevention and Control, Beijing, China
| | - Jie Li
- Institute of STD/AIDS Prevention and Treatment, Beijing Center Disease Prevention and Control, Beijing, China
| | - Ruolei Xin
- Institute of STD/AIDS Prevention and Treatment, Beijing Center Disease Prevention and Control, Beijing, China
| |
Collapse
|
6
|
The first third-generation HIV-1 circulating recombinant form (CRF114_0155) identified in central China. Arch Virol 2021; 166:3409-3416. [PMID: 34608524 DOI: 10.1007/s00705-021-05213-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
A novel circulating recombinant form (CRF) was identified in eight HIV-1-infected patients without direct epidemiological relationships in Henan Province, Central China. Recombination analysis indicated that the genome of this novel CRF comprises five segments: three inherited from CRF01_AE cluster-4 and two from CRF55_01B. Therefore, the CRF was designated CRF114_0155. It is not only the first novel CRF identified in Henan Province but also the first third-generation CRF of HIV-1 and the first CRF descendant of CRF55_01B. Bayesian inference of phylogeny dated the most recent common ancestor of the CRF114_0155 cluster to 2010. The emergence of CRF114_0155 reflects that the genotype constitution of HIV-1 has become more complex and that stricter intervention measures should be implemented in central China.
Collapse
|
7
|
HIV-1 Drug Resistance, Distribution of Subtypes, and Drug Resistance-Associated Mutations in Virologic Failure Individuals in Chengdu, Southwest China, 2014-2016. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5894124. [PMID: 32280691 PMCID: PMC7128060 DOI: 10.1155/2020/5894124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/29/2020] [Accepted: 03/11/2020] [Indexed: 01/05/2023]
Abstract
The National Free Antiretroviral Therapy (ART) Program in China has initiated to provide ART to HIV-1 patients, which has acted as an efficient method to suppress viral replication and helps prevent onward transmissions. But the problems of HIV drug resistance (HIVDR) may also come along. There is little data on the prevalence of HIVDR in Chengdu, where the number of HIV/AIDS patients ranks first among provincial capitals. Therefore, epidemiological surveillance was conducted in this area. From 2014 to 2016, HIV/AIDS patients (15 years and older) who had received first-line ART for at least six months were enrolled. Demographic, behavioral information and medical history were recorded, and blood samples were collected for viral loads and immune cell count analyses. HIV-1 pol was obtained for HIV-1 subtypes and drug resistance-associated mutations (DRMs) among virologic failure patients. A total of 13,782 individuals were enrolled, and 481 samples were sequenced for subtypes and drug resistance analysis. Six subtypes were identified, among which CRF01_AE (54.3%) and CRF07_BC (41.6%) were the dominant subtypes, and CRF55_01B (0.4%) was detected in Chengdu for the first time. The prevalence of HIVDR in treatment-experienced patients was 1.8%, with 1.2% to nucleoside reverse transcriptase inhibitors (NRTIs), 1.7% to non-NRTIs (NNRTIs), and 0.14% to protease inhibitors (PIs). The leading DRMs observed in the study were M184I/V (59.59%) against NRTIs and K103N (37.55%) against NNRTIs. This study focused on the HIVDR surveillance among patients receiving treatment in Chengdu. The overall prevalence of HIVDR was relatively low among treated patients. These findings were believed to be contributed to an understanding of HIV-1 subtypes, HIVDR prevalence, and DRMs in Chengdu and thereby optimizing clinical management, prevention, and control of HIV.
Collapse
|