1
|
Shi Y, Zhang T, Yao H, Wang H, Lei Y, Fang Q, Shuai C, Qin Y, Miao L, Jin L, Zhang J, Dai S, Shen Y, Xing H, Feng Y, Wu J. Molecular Network Characteristics and Drug Resistance Analysis Among Newly Diagnosed Persons Living with HIV-1 in Hefei, China (2017-2022). AIDS Res Hum Retroviruses 2025; 41:189-196. [PMID: 39964759 DOI: 10.1089/aid.2024.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Molecular transmission networks are being used with increasing frequency to study HIV-1 transmission patterns and to develop precise intervention strategies for high-risk populations. Here, we analyzed the molecular transmission networks of newly diagnosed patients with HIV-1 in Hefei City, Anhui Province, from 2017 to 2022. Of the 1,413 newly diagnosed HIV-1 Pol sequences, the major genotypes in Hefei were CRF07_BC (600, 42.5%) and CRF01_AE (530, 37.5%). Molecular transmission network analysis identified 146 clusters and 9 large propagation clusters, including four CRF01_AE clusters, four CRF07_BC clusters, and one CRF55_01B cluster. This study highlights the pattern of local HIV-1 transmission in Hefei City, with notable rapid transmission of CRF55_01B. It suggests that the implementation of focused strategies for the identified key transmission clusters is essential for effective control of the HIV-1 epidemic.
Collapse
Affiliation(s)
- Yu Shi
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
| | - Tingting Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
| | - Hui Yao
- Hefei Municipal Centre for Disease Control and Prevention, Hefei, China
| | - Hai Wang
- Hefei Municipal Centre for Disease Control and Prevention, Hefei, China
| | - Yanhua Lei
- Hefei Municipal Centre for Disease Control and Prevention, Hefei, China
| | - Qin Fang
- Department of AIDS Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Chenxi Shuai
- Department of AIDS Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yizu Qin
- Department of AIDS Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Lifeng Miao
- Department of AIDS Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Lin Jin
- Department of AIDS Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Jin Zhang
- Department of AIDS Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Seying Dai
- Department of AIDS Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yuelan Shen
- Department of AIDS Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Hui Xing
- Chinese Centre for Disease Control and Prevention, Centre for STD and AIDS Prevention and Control, Beijing, China
| | - Yi Feng
- Chinese Centre for Disease Control and Prevention, Centre for STD and AIDS Prevention and Control, Beijing, China
| | - Jianjun Wu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of AIDS Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| |
Collapse
|
2
|
Hehe Z, Minna Z, Qin F, Tielin N, Yi F, Liping F, Fangfang C, Houlin T, Shi W, Maohe Y, Fan L. Application of molecular epidemiology in revealing HIV-1 transmission network and recombination patterns in Tianjin, China. J Med Virol 2024; 96:e29824. [PMID: 39072805 DOI: 10.1002/jmv.29824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Using a comprehensive molecular epidemiological approach, we characterized the transmission dynamics of HIV-1 among the MSM population in Tianjin, China. Our findings revealed that 38.56% (386/1001) of individuals clustered across 109 molecular transmission clusters (TCs), with MSM aged 50 and below being the group most commonly transmitting HIV-1. Among the identified TCs, CRF01_AE predominated, followed by CRF07_BC. Notably, CRF07_BC demonstrated a higher propensity for forming large clusters compared to CRF01_AE. Birth-death skyline analyses of the two largest clusters indicated that the HIV/AIDS transmission may be at a critical point, nearly all had Re approximately 1 by now. A retrospective analysis revealed that the rapid expansion of these large clusters was primarily driven by the introduction of viruses in 2021, highlighting the crucial importance of continuous molecular surveillance in identifying newly emerging high-risk transmission chains and adapting measures to address evolving epidemic dynamics. Furthermore, we detected the transmission of drug-resistant mutations (DRMs) within the TCs, particularly in the CRF07_BC clusters (K103N, Y181C, and K101E) and CRF01_AE clusters (P225H and K219R), emphasizing the importance of monitoring to support the continued efficacy of first-line therapies and pre-exposure prophylaxis (PrEP). Recombination analyses indicated that complex recombinant patterns, associated with increased amino acid variability, could confer adaptive traits to the viruses, potentially providing a competitive advantage in certain host populations or regions. Our study highlights the potential of integrating molecular epidemiological and phylodynamic approaches to inform targeted interventions.
Collapse
Affiliation(s)
- Zhao Hehe
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zheng Minna
- Department of HIV/AIDS and STDs Control and Prevention, Tianjin Provincial Center for Disease Control and Prevention, Tianjin, China
- Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin, China
| | - Fan Qin
- Department of HIV/AIDS and STDs Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ning Tielin
- Department of HIV/AIDS and STDs Control and Prevention, Tianjin Provincial Center for Disease Control and Prevention, Tianjin, China
- Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin, China
| | - Feng Yi
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China
| | - Fei Liping
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Fangfang
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tang Houlin
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wang Shi
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yu Maohe
- Department of HIV/AIDS and STDs Control and Prevention, Tianjin Provincial Center for Disease Control and Prevention, Tianjin, China
- Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin, China
| | - Lyu Fan
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| |
Collapse
|
3
|
Pang X, Xie B, He Q, Xie X, Huang J, Tang K, Fang N, Xie H, Ma J, Ge X, Lan G, Liang S. Distinct Rates and Transmission Patterns of Major HIV-1 Subtypes among Men who Have Sex with Men in Guangxi, China. Front Microbiol 2024; 14:1339240. [PMID: 38282731 PMCID: PMC10822680 DOI: 10.3389/fmicb.2023.1339240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
The diversity and transmission patterns of major HIV-1 subtypes among MSM population in Guangxi remains unknown. Understanding the characteristics is crucial for effective intervention strategies. Between 2016 and 2021, we recruited individuals newly diagnosed with HIV-1 from MSM population in Guangxi. HIV-1 pol region was amplified and sequenced, and constructed molecular network, assessed clustering rate, cluster growth rate, spatial clustering, and calculating the basic reproductive number (R0) based on sequences data. We identified 16 prevalent HIV-1 subtypes among Guangxi MSM, with CRF07_BC (53.1%), CRF01_AE (26.23%), and CRF55_01B (12.96%) predominating. In the network, 618 individuals (66.17%) formed 59 clusters. Factors contributing to clustering included age < 30 years (AOR = 1.35), unmarried status (AOR = 1.67), CRF07_BC subtype (AOR = 3.21), and high viral load (AOR = 1.43). CRF07_BC had a higher likelihood of forming larger clusters and having higher degree than CRF01_AE and CRF55_01B. Notably, CRF07_BC has higher cluster growth rate and higher basic reproductive number than CRF01_AE and CRF55_01B. Our findings underscore CRF07_BC as a prominent driver of HIV-1 spread among Guangxi's MSM population, highlighting the viability of targeted interventions directed at specific subtypes and super clusters to control HIV-1 transmission within this population.
Collapse
Affiliation(s)
- Xianwu Pang
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Bo Xie
- School of Information and Management, Guangxi Medical University, Nanning, Guangxi, China
| | - Qin He
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Xing Xie
- The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinghua Huang
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Kailing Tang
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Ningye Fang
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Haoming Xie
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Jie Ma
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Xianmin Ge
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Guanghua Lan
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Shujia Liang
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| |
Collapse
|
4
|
Zhou Y, Lu J, Zhang Z, Sun Q, Xu X, Hu H. Characteristics of the different HIV-1 risk populations based on the genetic transmission network of the newly diagnosed HIV cases in Jiangsu, Eastern China. Heliyon 2023; 9:e22927. [PMID: 38125421 PMCID: PMC10730745 DOI: 10.1016/j.heliyon.2023.e22927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction The HIV-1 prevalence has been steadily increasing in Jiangsu, China. HIV-1 genetic transmission network can be used to explore the transmission kinetics and precision intervention in high-risk populations. Thus, we generated an HIV-1 genetic transmission network, explored key risk populations based on different risk factors and found out the risk factors for HIV-1 prevention and control among the newly-diagnosed HIV-1 cases from 2017 to 2018. Method We amplified the HIV-1 pol sequences from the plasma samples of the newly-diagnosed HIV-1 cases from 2017 to 2018 and obtained the infection data from The National HIV/AIDS Surveillance System. HIV-Trace and Cytoscape Software were both used to construct the HIV-1 genetic network with a gene distance of <0.005. The R software was used to analyze the risk factors for inclusion into the network. Results We obtained 3362 sequences with the pol gene region, of which 3316 contained detailed individual information. CRF01_AE accounted for 42.3 % of the HIV-1 subtypes in the samples. The median CD4+T lymphocyte count was 329 cells/μL in 2017 and 313 cells/μL in 2018. At the gene distance threshold of 0.005, 481 sequences were incorporated into the HIV-1 gene network, constructing 202 clusters. Age over 60 years old, heterosexual transmission route, subtype (CRF105_0107, CRF55_01 B, and CRF67_01 B) and CD4+T lymphocyte count (>200) were the risk factors influencing inclusion into the HIV-1 gene network. Moreover, south Jiangsu cities had higher inclusion in the network. Thus, key risk populations in the clusters with different transmission routes, new emerging subtypes, drug resistance nodes, and individuals above 60 years of age in the network represented the critical risk populations that should be focused more on for intervention. Conclusion The HIV-1 genetic transmission network is adept at discovering undiagnosed HIV-infected cases and linking all diagnosed cases for determination of risk infections. Therefore we should pay more attention to these risk infections with further investigation and intervention, helping to achieve the goal of 95 % use combination prevention from the World Health Organization, and push to end AIDS epidemic.
Collapse
Affiliation(s)
- Ying Zhou
- Institute of AIDS/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Jing Lu
- Institute of AIDS/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Zhi Zhang
- Institute of AIDS/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Qi Sun
- Institute of AIDS/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Xiaoqin Xu
- Institute of AIDS/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Haiyang Hu
- Institute of AIDS/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| |
Collapse
|
5
|
Hong H, Tang C, Liu Y, Jiang H, Fang T, Xu G. HIV-1 drug resistance and genetic transmission network among newly diagnosed people living with HIV/AIDS in Ningbo, China between 2018 and 2021. Virol J 2023; 20:233. [PMID: 37833806 PMCID: PMC10576354 DOI: 10.1186/s12985-023-02193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND As the HIV epidemic continues to grow, transmitted drug resistance(TDR) and determining relationship of HIV transmission are major barriers to reduce the risk of HIV transmissions.This study aimed to examine the molecular epidemiology and TDR and evaluated the transmission pattern among newly diagnosed people living with HIV/AIDS(PLWHA) in Ningbo city, which could contribute to the development of targeted precision interventions. METHODS Consecutive cross-sectional surveys were conducted in Ningbo City between January 2018 and December 2021. The HIV-1 pol gene region was amplified and sequenced for drug resistance and genetic transmission network analysis. TDR was determined using the Stanford University HIV Drug Resistance Database. Genetic transmission network was visualized using Cytoscape with the genetic distance threshold of 0.013. RESULTS A total of 1006 sequences were sequenced successfully, of which 61 (6.1%) showed evidence of TDR. The most common mutations were K103N (2.3%), E138A/G/Q (1.7%) and V179D/E (1.2%). 12 HIV-1 genotypes were identified, with CRF07_BC being the major genotype (43.3%, 332/767), followed by CRF01_AE (33.7%, 339/1006). 444 (44.1%) pol sequences formed 856 links within 120 transmission clusters in the network. An increasing trend in clustering rate between 2018 and 2021(χ2 = 9.546, P = 0.023) was observed. The odds of older age (≥ 60 years:OR = 2.038, 95%CI = 1.072 ~ 3.872, compared to < 25 years), HIV-1 genotypes (CRF07_BC: OR = 2.147, 95%CI = 1.582 ~ 2.914; CRF55_01B:OR = 2.217, 95%CI = 1.201 ~ 4.091, compared to CRF01_AE) were significantly related to clustering. Compared with CRF01_AE, CRF07_BC were prone to form larger clusters. The largest cluster with CRF07_BC was increased from 15 cases in 2018 to 83 cases in 2021. CONCLUSIONS This study revealed distribution of HIV-1 genotypes, and genetic transmission network were diverse and complex in Ningbo city. The prevalence of TDR was moderate, and NVP and EFV were high-level NNRTI resistance. Individuals aged ≥ 60 years old were more easily detected in the networks and CRF07_BC were prone to form rapid growth and larger clusters. These date suggested that surveillance and comprehensive intervention should be designed for key rapid growth clusters to reduce the potential risk factors of HIV-1 transmission.
Collapse
Affiliation(s)
- Hang Hong
- School of Public health, Health Science Center, Ningbo University, Ningbo, Zhengjiang, 315211, China
| | - Chunlan Tang
- School of Public health, Health Science Center, Ningbo University, Ningbo, Zhengjiang, 315211, China
| | - Yuhui Liu
- Ningbo Center for Disease Control and Prevention, Ningbo, Zhengjiang, 315010, China
| | - Haibo Jiang
- Ningbo Center for Disease Control and Prevention, Ningbo, Zhengjiang, 315010, China
| | - Ting Fang
- School of Public health, Health Science Center, Ningbo University, Ningbo, Zhengjiang, 315211, China
| | - Guozhang Xu
- School of Public health, Health Science Center, Ningbo University, Ningbo, Zhengjiang, 315211, China.
| |
Collapse
|
6
|
Zeng W, Wu H, Jiang L, Li Q, Zhao Y, Zhao X, Han Z. Molecular networks reveal complex interactions with MSM in heterosexual women living with HIV-1 who play peripheral roles in Guangzhou, China. Acta Trop 2023:106953. [PMID: 37224988 DOI: 10.1016/j.actatropica.2023.106953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND With the number of newly diagnosed HIV-positive heterosexual women increasing yearly, it is urgent to understand HIV-1 transmission among heterosexual women in Guangzhou, China. METHODS HIV-1 pol sequences were obtained from people living with HIV-1 during 2008 to 2017 in Guangzhou, China. A molecular network was constructed using HIV-1 TRAnsmission Cluster Engine with 1.5% genetic distance. Potential linkage and centrality metric were measured with Cytoscape. Transmission pathways between heterosexual women and men who have sex with men (MSM) were determined using Bayesian phylogenetic analysis. RESULTS In the network, 1799 (62.6%) MSM, 692 (24.1%) heterosexual men and 141 (4.9%) heterosexual women formed 259 clusters. Molecular clusters including MSM and heterosexuals were more likely to form larger networks (P<0.001). Nearly half of the heterosexual women (45.4%) were linked to heterosexual men and 17.7% to MSM, but only 0.9% of MSM were linked to heterosexual women. Thirty-three (23.4%) heterosexual women linked to at least one MSM node and were in peripheral role. Compared to general heterosexual women, the proportion of heterosexual women linked to MSM infected with CRF55_01B (P<0.001) and CRF07_BC (P<0.001) was higher than that of other subtypes, and the proportion diagnosed between 2012-2017 (P=0.001) was higher than that in 2008-2012. In MCC trees, 63.6% (21/33) of the heterosexual women differentiated from the heterosexual evolutionary branch, while 36.4% (12/33) differentiated from the MSM evolutionary branch. CONCLUSION Heterosexual women living with HIV-1 were mainly linked to heterosexual men and were in peripheral positions in the molecular network. The role of heterosexual women in HIV-1 transmission was limited, but the interaction between MSM and heterosexual women were complex. Awareness of the HIV-1 infection status of sexual partners and active HIV-1 detection are needed for women.
Collapse
Affiliation(s)
- Wenting Zeng
- Huangpu District Center for Disease Control and Prevention, Guangzhou, China
| | - Hao Wu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Liyun Jiang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Qingmei Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yuteng Zhao
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Xinhua Zhao
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhigang Han
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China; Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China..
| |
Collapse
|
7
|
Ge Y, Liu Y, Fu G, Lu J, Li X, Du G, Fei G, Wang Z, Li H, Li W, Wei P. The Molecular Epidemiological and Immunological Characteristics of HIV-1 CRF01_AE/B Recombinants in Nanjing, China. Front Microbiol 2022; 13:936502. [PMID: 35910646 PMCID: PMC9335199 DOI: 10.3389/fmicb.2022.936502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus-type 1 (HIV-1) CRF01_AE/B recombinants are newly emerging strains that are spreading rapidly in Southern and Eastern China. This study aimed to elucidate the molecular epidemiological characteristics of HIV-1 CRF01_AE/B recombinants in Nanjing and to explore the impact of these novel strains on the immunological status. A total of 1,013 blood samples from newly diagnosed HIV-1-infected patients were collected in Nanjing from 2015 to 2019, among which 958 partial Pol sequences were sequenced successfully. We depicted the molecular epidemiological characteristics of CRF01_AE/B recombinants by the molecular evolutionary analysis, Bayesian system evolution analysis, and transmission network analysis. The generalized additive mixed model was applied to evaluate the CD4+ T-cell count change of CRF01_AE/B recombinants. The Kaplan–Meier analysis was performed to assess the time from combined antiretroviral therapy (cART) initiation to immune reconstruction. We have identified 102 CRF01_AE/B recombinants (102/958, 10.65%) in Nanjing, including CRF67_01B (45/102, 44.12%), CRF68_01B (35/102, 34.31%), and CRF55_01B (22/102, 12.57%). According to the Bayesian phylogenetic inference, CRF55_01B had a rapid decline stage during 2017–2019, while CRF67_01B and CRF68_01B have experienced a fast growth phase during 2014–2015 and then remained stable. We have constructed 83 transmission networks, in which three larger clusters were composed of CRF67_01B and CRF68_01B. CRF01_AE/B recombinants manifested a faster decrease rate of CD4+ T-cell count than CRF_07BC but similar to CRF01_AE. The probability of achieving immune reconstruction in CRF01_AE/B recombinants was lower than CRF07_BC in the subgroup of baseline CD4+ T-cell count at cART initiation <300 cells/μl. In summary, CRF67_01B and CRF68_01B were the major strains of CRF01_AE/B recombinants in Nanjing, which have formed large transmission clusters between Nanjing and other provinces. CRF01_AE/B recombinants might be associated with rapid disease progression and poor immune reconstruction. The continuous epidemiological monitoring of CRF01_AE/B recombinants should be highly emphasized.
Collapse
Affiliation(s)
- You Ge
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yangyang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Gengfeng Fu
- Institute of HIV/AIDS/STI Prevention and Control, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, China
| | - Jing Lu
- Institute of HIV/AIDS/STI Prevention and Control, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, China
| | - Xiaoshan Li
- Department of Lung Transplant Center, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, China
| | - Guoping Du
- Department of Southeast University Hospital, Southeast University, Nanjing, China
| | - Gaoqiang Fei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Zemin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Han Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Wei Li
- Department of Quality Management, Children's Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Pingmin Wei
| | - Pingmin Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Wei Li
| |
Collapse
|
8
|
Hui S, Chen F, Li Y, Cui Y, Zhang J, Zhang L, Yang Y, Liu Y, Zhao Y, Lv F. Factors Associated With Newly HIV Infection and Transmitted Drug Resistance Among Men Who Have Sex With Men in Harbin, P.R. China. Front Public Health 2022; 10:860171. [PMID: 35719611 PMCID: PMC9201057 DOI: 10.3389/fpubh.2022.860171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Background This study aimed to evaluate HIV incidence, factors associated with HIV incidence and transmitted drug resistance (TDR) among newly infected men who have sex with men (MSM) in Harbin, P.R. China. Methods A cohort study was conducted among MSM in Harbin during 2013 and 2018, with a follow-up frequency of every 6 months. Blood samples from MSM were tested for HIV antibodies, RNA was extracted from plasma, and the pol gene was sequenced, and genotypic drug-resistance analyses were performed. Results From 2013 to 2018, the overall rate of HIV incidence was 3.55/100 PY. Syphilis infection, unprotected sex with men in the past 6 months, and unawareness of HIV/AIDS knowledge were risk factors for HIV seroconversion. The distribution of HIV genotypes was as follows: CRF01_AE, 57.1%; CRF07_BC, 28.5%; CRF55_01B, 2.0%; B, 8.2%. The prevalence of transmitted drug resistance was 4.08%. Conclusion HIV incidence in MSM in Harbin is moderately high, and transmitted drug resistance exists in the population.
Collapse
Affiliation(s)
- Shan Hui
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China.,Heilongjiang Provincial Center for Disease Control and Prevention, Harbin, China
| | - Fangfang Chen
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Li
- Heilongjiang Provincial Center for Disease Control and Prevention, Harbin, China
| | - Yan Cui
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinhui Zhang
- Jixi Municipal Center for Disease Control and Prevention, Harbin, China
| | - Ling Zhang
- Harbin Municipal Center for Disease Control and Prevention, Harbin, China
| | - Yisi Yang
- Harbin Municipal Center for Disease Control and Prevention, Harbin, China
| | - Yanlin Liu
- Harbin Municipal Center for Disease Control and Prevention, Harbin, China
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Fan Lv
- Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
9
|
He N. Research Progress in the Epidemiology of HIV/AIDS in China. China CDC Wkly 2021; 3:1022-1030. [PMID: 34888119 PMCID: PMC8633551 DOI: 10.46234/ccdcw2021.249] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
After thirty-two years since the first domestic outbreak of human immunodeficiency virus (HIV)/ acquired immune deficiency syndrome (AIDS) among injection drug users (IDUs) and almost two decades of comprehensive response efforts by the Chinese government, HIV/AIDS remains a major public health problem. The increasing burden of HIV/AIDS and comorbidities, the emergence of new HIV subtypes and/or circulating recombinant forms and drug mutations, the changing transmission networks, and the urgency of immediate antiretroviral therapy initiation upon an HIV diagnosis are increasingly challenging and altogether likely to have significant impact on the HIV epidemic in China. Upon the call for the global AIDS response to end AIDS by 2030, China needs to develop an innovative and pragmatic roadmap to address these challenges. This review is intended to provide a succinct overview of what China has done in efforts to achieve the global goal of ending AIDS by 2030 and the recently proposed "95-95-95-95" target (95% combination prevention, 95% detection, 95% treatment, 95% viral suppression), and to summarize the most recent progresses in the epidemiological research of HIV/AIDS in China with the aim of providing insights on the next generation of HIV control and prevention approaches and to shed light on upgrading the national strategy to end AIDS in this country.
Collapse
Affiliation(s)
- Na He
- Department of Epidemiology, School of Public Health, and The Key Laboratory of Public Health Safety of Ministry of Education; Shanghai Institute of Infectious Diseases and Biosecurity; and Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Chen X, Qin C, Chen R, Huang Y, Xu Y, Tang Q, Liang X, Peng B, Shao Y, Yang Y, Chen J, Wang X, Wen L, Liang B, Ye L, Qin X, Jiang J, Liang H. Epidemiological profile and molecular genetic characterization of HIV-1 among female sex workers and elderly male clients in Guangxi, China. Emerg Microbes Infect 2021; 10:384-395. [PMID: 33560929 PMCID: PMC7935120 DOI: 10.1080/22221751.2021.1888659] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The HIV/AIDS prevalence in female sex workers (FSWs) and elderly male clients is increasing in Guangxi, China, but the transmission relationship between them remains unclear. This study aims to illuminate the transmission network between FSWs and elderly male clients using molecular epidemiological analyses. Phylogenetic analysis indicated that CRF01_AE was the dominant strain, followed by CRF07_BC and CRF08_BC in both groups. Multivariate logistic regression analysis indicated that viral loads of 50 to 1000 copies/mL, immunological treatment failure and CRF07_BC were risk factors for entering the transmission network. Transmission network analysis showed that CRF07_BC tended to form large clusters, whereas CRF01_AE tended to form multiple but small clusters. Two groups of 11 FSWs and 169 clients were intricately intertwined. Spatial analysis demonstrated the formation of hotspots and clusters of transmission sharing regional differences. In conclusion, our study provides direct genetic evidence of transmission linkages between FSWs and elderly male clients. Although the CRF01_AE subtype was still the predominant subtype in the region, the higher degree and larger clusters found in CRF07_BC illustrate a rapid and intensive uptrend, which is expected to increase its prevalence in the region in the future.
Collapse
Affiliation(s)
- Xiu Chen
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Chunwei Qin
- Guigang Center for Disease Control and Prevention, Guigang, 537100, Guangxi, People's Republic of China
| | - Rongfeng Chen
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Yunxuan Huang
- Guigang Center for Disease Control and Prevention, Guigang, 537100, Guangxi, People's Republic of China
| | - Yuexiang Xu
- Guigang Center for Disease Control and Prevention, Guigang, 537100, Guangxi, People's Republic of China
| | - Qiao Tang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Xianjun Liang
- Guigang Center for Disease Control and Prevention, Guigang, 537100, Guangxi, People's Republic of China
| | - Bing Peng
- People's Hospital of Guigang, Guigang, 537100 Guangxi, People's Republic of China
| | - Yi Shao
- Guigang Maternal and Child Health Hospital, Guigang, 537100 Guangxi, People's Republic of China
| | - Yao Yang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Jie Chen
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Xinwei Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Liufang Wen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Bingyu Liang
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Li Ye
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Xionglin Qin
- Guigang Center for Disease Control and Prevention, Guigang, 537100, Guangxi, People's Republic of China
| | - Junjun Jiang
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Hao Liang
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| |
Collapse
|