1
|
Thorne D, McHugh D, Simms L, Lee KM, Fujimoto H, Moses S, Gaca M. Applying new approach methodologies to assess next-generation tobacco and nicotine products. FRONTIERS IN TOXICOLOGY 2024; 6:1376118. [PMID: 38938663 PMCID: PMC11208635 DOI: 10.3389/ftox.2024.1376118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 06/29/2024] Open
Abstract
In vitro toxicology research has accelerated with the use of in silico, computational approaches and human in vitro tissue systems, facilitating major improvements evaluating the safety and health risks of novel consumer products. Innovation in molecular and cellular biology has shifted testing paradigms, with less reliance on low-throughput animal data and greater use of medium- and high-throughput in vitro cellular screening approaches. These new approach methodologies (NAMs) are being implemented in other industry sectors for chemical testing, screening candidate drugs and prototype consumer products, driven by the need for reliable, human-relevant approaches. Routine toxicological methods are largely unchanged since development over 50 years ago, using high-doses and often employing in vivo testing. Several disadvantages are encountered conducting or extrapolating data from animal studies due to differences in metabolism or exposure. The last decade saw considerable advancement in the development of in vitro tools and capabilities, and the challenges of the next decade will be integrating these platforms into applied product testing and acceptance by regulatory bodies. Governmental and validation agencies have launched and applied frameworks and "roadmaps" to support agile validation and acceptance of NAMs. Next-generation tobacco and nicotine products (NGPs) have the potential to offer reduced risks to smokers compared to cigarettes. These include heated tobacco products (HTPs) that heat but do not burn tobacco; vapor products also termed electronic nicotine delivery systems (ENDS), that heat an e-liquid to produce an inhalable aerosol; oral smokeless tobacco products (e.g., Swedish-style snus) and tobacco-free oral nicotine pouches. With the increased availability of NGPs and the requirement of scientific studies to support regulatory approval, NAMs approaches can supplement the assessment of NGPs. This review explores how NAMs can be applied to assess NGPs, highlighting key considerations, including the use of appropriate in vitro model systems, deploying screening approaches for hazard identification, and the importance of test article characterization. The importance and opportunity for fit-for-purpose testing and method standardization are discussed, highlighting the value of industry and cross-industry collaborations. Supporting the development of methods that are accepted by regulatory bodies could lead to the implementation of NAMs for tobacco and nicotine NGP testing.
Collapse
Affiliation(s)
- David Thorne
- BAT (Investments) Ltd., Southampton, Hampshire, United Kingdom
| | - Damian McHugh
- PMI R&D Philip Morris Products S. A., Neuchâtel, Switzerland
| | - Liam Simms
- Imperial Brands, Bristol, United Kingdom
| | - K. Monica Lee
- Altria Client Services LLC, Richmond, VA, United States
| | | | | | - Marianna Gaca
- BAT (Investments) Ltd., Southampton, Hampshire, United Kingdom
| |
Collapse
|
2
|
Ojangba T, Boamah S, Miao Y, Guo X, Fen Y, Agboyibor C, Yuan J, Dong W. Comprehensive effects of lifestyle reform, adherence, and related factors on hypertension control: A review. J Clin Hypertens (Greenwich) 2023. [PMID: 37161520 DOI: 10.1111/jch.14653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 05/11/2023]
Abstract
Despite the effectiveness of currently available antihypertensive medications, there is still a need for new treatment strategies that are more effective in certain groups of hypertensive and for additional resources to combat hypertension. However, medication non-adherence was previously recognized as a major problem in the treatment of hypertension. The mechanisms behind the positive impacts of lifestyle changes might occur in different ways. In comparison with other studies, the efficacy and effectiveness of lifestyle modifications and antihypertensive pharmaceutical treatment for the prevention and control of hypertension and concomitant cardiovascular disease have been demonstrated in randomized controlled trials. However, in this review, the attitudinal lifestyle modifications and barriers to blood pressure control were elaborated on. An effective method for reducing blood pressure (BP) and preventing cardiovascular events with antihypertensive medications has been outlined. Maintaining healthy lifestyle factors (body mass index, diet, smoking, alcohol consumption, sodium excretion, and sedentary behavior) could lower systolic blood pressure BP by 3.5 mm Hg and reduce the risk of cardiovascular disease (CVD) by about 30%, regardless of genetic susceptibility to hypertension. Conducting a lifestyle intervention using health education could improve lifestyle factors, such as reducing salt, sodium, and fat intake, changing eating habits to include more fruits and vegetables, not smoking, consuming less alcohol, exercising regularly, maintaining healthy body weight, and minimizing stressful conditions. Each behavior could affect BP by modulating visceral fat accumulation, insulin resistance, the renin-angiotensin-aldosterone system, vascular endothelial function, oxidative stress, inflammation, and autonomic function. Evidence of the joint effect of antihypertensive medications and lifestyle reforms suggests a pathway to reduce hypertension.
Collapse
Affiliation(s)
- Theodora Ojangba
- Department of Social Science and Health Management, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Research Center for HTA, Zhengzhou, China
- Department of Food Science and Technology, University for Development Studies, Tamale, Ghana
| | - Solomon Boamah
- Department of Food Science and Technology, University for Development Studies, Tamale, Ghana
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Yudong Miao
- Department of Social Science and Health Management, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Research Center for HTA, Zhengzhou, China
| | - Xinghong Guo
- Department of Social Science and Health Management, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Research Center for HTA, Zhengzhou, China
| | - Yifei Fen
- Department of Social Science and Health Management, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Research Center for HTA, Zhengzhou, China
| | - Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingjing Yuan
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Wenyong Dong
- Department of Hypertension, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Finlayson KA, van de Merwe JP, Leusch FDL. Review of ecologically relevant in vitro bioassays to supplement current in vivo tests for whole effluent toxicity testing - Part 2: Non-apical endpoints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158094. [PMID: 35987232 DOI: 10.1016/j.scitotenv.2022.158094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Whole effluent toxicity (WET) testing uses whole animal exposures to assess the toxicity of complex mixtures, like wastewater. These assessments typically include four apical endpoints: mortality, growth, development, and reproduction. In the last decade, there has been a shift to alternative methods that align with the 3Rs to replace, reduce, and refine the use of animals in research. In vitro bioassays can provide a cost-effective, high-throughput, ethical alternative to in vivo assays. In addition, they can potentially include additional, more sensitive, environmentally relevant endpoints than traditional toxicity tests. However, the ecological relevance of these endpoints must be established before they are adopted into regulatory frameworks. This is Part 2 of a two-part review that aims to identify in vitro bioassays that are linked to ecologically relevant endpoints that could be included in WET testing. Part 2 of this review focuses on non-apical endpoints that should be incorporated into WET testing. In addition to the four apical endpoints addressed in Part 1, this review identified seven additional toxic outcomes: endocrine disruption, xenobiotic metabolism, carcinogenicity, oxidative stress, inflammation, immunotoxicity and neurotoxicity. For each, the response at the molecular or cellular level measured in vitro was linked to the response at the organism level through a toxicity pathway. Literature from 2015 to 2020 was used to identify suitable bioassays that could be incorporated into WET testing.
Collapse
Affiliation(s)
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
4
|
Cardiovascular protection effect of a Northeastern Brazilian lyophilized red wine in spontaneously hypertensive rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
5
|
Application of text mining to develop AOP-based mucus hypersecretion genesets and confirmation with in vitro and clinical samples. Sci Rep 2021; 11:6091. [PMID: 33731770 PMCID: PMC7969622 DOI: 10.1038/s41598-021-85345-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 02/26/2021] [Indexed: 11/28/2022] Open
Abstract
Mucus hypersecretion contributes to lung function impairment observed in COPD (chronic obstructive pulmonary disease), a tobacco smoking-related disease. A detailed mucus hypersecretion adverse outcome pathway (AOP) has been constructed from literature reviews, experimental and clinical data, mapping key events (KEs) across biological organisational hierarchy leading to an adverse outcome. AOPs can guide the development of biomarkers that are potentially predictive of diseases and support the assessment frameworks of nicotine products including electronic cigarettes. Here, we describe a method employing manual literature curation supported by a focused automated text mining approach to identify genes involved in 5 KEs contributing to decreased lung function observed in tobacco-related COPD. KE genesets were subsequently confirmed by unsupervised clustering against 3 different transcriptomic datasets including (1) in vitro acute cigarette smoke and e-cigarette aerosol exposure, (2) in vitro repeated incubation with IL-13, and (3) lung biopsies from COPD and healthy patients. The 5 KE genesets were demonstrated to be predictive of cigarette smoke exposure and mucus hypersecretion in vitro, and less conclusively predict the COPD status of lung biopsies. In conclusion, using a focused automated text mining and curation approach with experimental and clinical data supports the development of risk assessment strategies utilising AOPs.
Collapse
|
6
|
Schlage WK, Titz B, Iskandar A, Poussin C, Van der Toorn M, Wong ET, Pratte P, Maeder S, Schaller JP, Pospisil P, Boue S, Vuillaume G, Leroy P, Martin F, Ivanov NV, Peitsch MC, Hoeng J. Comparing the preclinical risk profile of inhalable candidate and potential candidate modified risk tobacco products: A bridging use case. Toxicol Rep 2020; 7:1187-1206. [PMID: 32995294 PMCID: PMC7502378 DOI: 10.1016/j.toxrep.2020.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/24/2020] [Accepted: 09/01/2020] [Indexed: 11/25/2022] Open
Abstract
Heated tobacco products tested for reduced exposure and reduced risk properties. Bridging opportunities for nonclinical results from two heated tobacco products. Similarly reduced impact on apical and molecular endpoints relative to cigarettes. Evidence evaluated along a “causal chain of events leading to disease” (CELSD). Representative assays along CELSD could support nonclinical substantial equivalence.
Cigarette smoking causes major preventable diseases, morbidity, and mortality worldwide. Smoking cessation and prevention of smoking initiation are the preferred means for reducing these risks. Less harmful tobacco products, termed modified-risk tobacco products (MRTP), are being developed as a potential alternative for current adult smokers who would otherwise continue smoking. According to a regulatory framework issued by the US Food and Drug Administration, a manufacturer must provide comprehensive scientific evidence that the product significantly reduces harm and the risk of tobacco-related diseases, in order to obtain marketing authorization for a new MRTP. For new tobacco products similar to an already approved predicate product, the FDA has foreseen a simplified procedure for assessing “substantial equivalence”. In this article, we present a use case that bridges the nonclinical evidence from previous studies demonstrating the relatively reduced harm potential of two heat-not-burn products based on different tobacco heating principles. The nonclinical evidence was collected along a “causal chain of events leading to disease” (CELSD) to systematically follow the consequences of reduced exposure to toxicants (relative to cigarette smoke) through increasing levels of biological complexity up to disease manifestation in animal models of human disease. This approach leverages the principles of systems biology and toxicology as a basis for further extrapolation to human studies. The experimental results demonstrate a similarly reduced impact of both products on apical and molecular endpoints, no novel effects not seen with cigarette smoke exposure, and an effect of switching from cigarettes to either MRTP that is comparable to that of complete smoking cessation. Ideally, a subset of representative assays from the presented sequence along the CELSD could be sufficient for predicting similarity or substantial equivalence in the nonclinical impact of novel products; this would require further validation, for which the present use case could serve as a starting point.
Collapse
Key Words
- BIF, biological impact factor
- CELSD, causal chain of events leading to disease
- CHTP, carbon heated tobacco product
- CS, cigarette smoke
- CVD, cardiovascular disease
- GVP, gas/vapor phase
- HPHC, harmful and potentially harmful constituents
- MRTP, modified risk tobacco product
- Modified risk tobacco product (MRTP)
- NPA, network perturbation amplitude
- PMI, Philip Morris International
- RBIF, relative BIF
- Substantial equivalence
- Systems toxicology
- THS, Tobacco Heating System
- TPM, total particulate matter
- Tobacco harm reduction
Collapse
Affiliation(s)
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Anita Iskandar
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Carine Poussin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Marco Van der Toorn
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Ee Tsin Wong
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Pascal Pratte
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Serge Maeder
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Jean-Pierre Schaller
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Pavel Pospisil
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Stephanie Boue
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Grégory Vuillaume
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| |
Collapse
|
7
|
Matsushita K, Toyoda T, Yamada T, Morikawa T, Ogawa K. Comprehensive expression analysis of mRNA and microRNA for the investigation of compensatory mechanisms in the rat kidney after unilateral nephrectomy. J Appl Toxicol 2020; 40:1373-1383. [PMID: 32369870 DOI: 10.1002/jat.3990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 01/02/2023]
Abstract
Compensation is a physiological response that occurs during chemical exposure to maintain homeostasis. Because compensatory responses are not usually considered adverse effects, it is important to understand compensatory mechanisms for chemical risk assessment. Although the kidney is a major target organ for toxicity, there is controversy over whether hyperplasia or hypertrophy contributes to the compensatory mechanism, and there is limited information to apply for chemical risk assessment. In the present study, compensatory mechanisms of the kidney were investigated in a unilateral nephrectomy (UNx) model using adult male and female F344 rats. In residual kidneys of male and female rats after UNx, 5-bromo-2'-deoxyuridine-labeling indices and mRNA expression of cell cycle-related genes were increased, although there were no fluctuations in mRNA expression of transforming growth factor-β1, which contributes to hypertrophy in renal tubules. Pathway analysis using mRNA expression data from a complementary DNA (cDNA) microarray revealed that canonical pathways related to cell proliferation were mainly activated and that forkhead box M1 (FOXM1) was an upstream regulator of compensatory cell proliferation in residual kidneys of male and female rats. cDNA microarray for microRNAs (miRNAs) demonstrated that nine miRNAs were downregulated in residual kidneys, and mRNA/miRNA integrated analysis indicated that miRNAs were associated with the expression of factors downstream of FOXM1. Overall, these results suggested that FOXM1-mediated hyperplasia rather than hypertrophy contributed to compensatory mechanisms in the kidney and that miRNAs regulated downstream FOXM1 signaling. These results will be beneficial for evaluating nephrotoxicity in chemical risk assessment and for developing new biomarkers to predict nephrotoxicity.
Collapse
Affiliation(s)
- Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Takanori Yamada
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.,Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
8
|
Newland N, Lowe FJ, Camacho OM, McEwan M, Gale N, Ebajemito J, Hardie G, Murphy J, Proctor C. Evaluating the effects of switching from cigarette smoking to using a heated tobacco product on health effect indicators in healthy subjects: study protocol for a randomized controlled trial. Intern Emerg Med 2019; 14:885-898. [PMID: 31049783 PMCID: PMC6722146 DOI: 10.1007/s11739-019-02090-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022]
Abstract
Tobacco heating products (THPs) are a potentially safer alternative to combustible cigarette smoking. Through continued use, THPs may reduce smoking-related disease risk, whilst maintaining the sensorial experience and nicotine delivery sought by smokers. While literature evidence of the biological effects of THP aerosol exposure is increasing, there remains a knowledge gap with respect to substantiation of THP reduced risk potential in longer term real-life use. This randomized, multi-centre, controlled clinical study will test the hypotheses that following a switch from combustible cigarettes to a THP for 1 year, participants will experience a sustained reduction in exposure to tobacco-related toxicants that will lead to favourable changes in health effect indicators associated with smoking-related disease development. Changes in such indicators will be contextualized against smoking cessation and never-smoker cohorts. Up to 280 participants who do not intend to quit smoking will be randomized to continued combustible smoking (arm A, up to n = 80) or a commercially available THP (arm B n = 200). Furthermore, up to 190 participants with a high intent to quit smoking will undergo smoking cessation (arm D), and 40 never smokers will serve as a control group (arm E). Recruitment numbers were determined to be sufficient to achieve n = 50 in arms A, B and D, at study end. Enrolment started in March 2018 and the trial is scheduled to be completed in March 2020. Data from this study will be a valuable addition to the growing body of evidence in the field of understanding the individual and public health impact of THPs.Clinical Trial Registration: https://www.isrctn.com/ISRCTN81075760.
Collapse
Affiliation(s)
- Nik Newland
- Group Research and Development, British American Tobacco (Investments) Ltd., Regents Park Road, Southampton, SO15 8TL, UK
| | - Frazer John Lowe
- Group Research and Development, British American Tobacco (Investments) Ltd., Regents Park Road, Southampton, SO15 8TL, UK.
| | - Oscar Martin Camacho
- Group Research and Development, British American Tobacco (Investments) Ltd., Regents Park Road, Southampton, SO15 8TL, UK
| | - Mike McEwan
- Group Research and Development, British American Tobacco (Investments) Ltd., Regents Park Road, Southampton, SO15 8TL, UK
| | - Nathan Gale
- Group Research and Development, British American Tobacco (Investments) Ltd., Regents Park Road, Southampton, SO15 8TL, UK
| | - James Ebajemito
- Group Research and Development, British American Tobacco (Investments) Ltd., Regents Park Road, Southampton, SO15 8TL, UK
| | - George Hardie
- Group Research and Development, British American Tobacco (Investments) Ltd., Regents Park Road, Southampton, SO15 8TL, UK
| | - James Murphy
- Group Research and Development, British American Tobacco (Investments) Ltd., Regents Park Road, Southampton, SO15 8TL, UK
| | - Christopher Proctor
- Group Research and Development, British American Tobacco (Investments) Ltd., Regents Park Road, Southampton, SO15 8TL, UK
| |
Collapse
|
9
|
Ito S, Taylor M, Mori S, Thorne D, Nishino T, Breheny D, Gaça M, Yoshino K, Proctor C. An inter-laboratory in vitro assessment of cigarettes and next generation nicotine delivery products. Toxicol Lett 2019; 315:14-22. [PMID: 31400404 DOI: 10.1016/j.toxlet.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
Abstract
In vitro testing can facilitate the rapid assessment of next generation nicotine delivery products (NGPs) with comparisons to combustible tobacco products. In vitro assays for cytotoxicity and oxidative stress were employed at BAT (UK) and JT (Japan) to test total particulate matter (TPM) of a scientific reference cigarette and aerosol collected mass (ACM) of a commercially available E-cigarette and two tobacco heating products (THP). 3R4F TPMs were generated using the Health Canada intense (HCI) regimen, a modified regime (mHCI) for the THP ACMs and the CORESTA recommended method no. 81 for the E-cigarette ACM. Human lung cells were exposed to the test product TPM/ACMs at concentrations between 0-200 μg/ml followed by the employment of commercially available assays for endpoint analysis that included reactive oxygen species (ROS) generation, the glutathione ratio (GSH:GSSG), activation of the antioxidant response elements (ARE) and cellular viability. TPM/ACM nicotine concentrations were quantified using a UPLC-PDA technique. At both laboratories the 3R4F TPM induced significant and dose-dependent responses in all in vitro assays, whereas no significant responses could be measured for the NGP ACMs. In conclusion, both laboratories obtained comparable results across all endpoints therefore demonstrating the utility of the in vitro techniques combined with standardised test products to support the assessment of NGPs.
Collapse
Affiliation(s)
| | - Mark Taylor
- British American Tobacco, R&D, Southampton, UK.
| | - Sakura Mori
- Japan Tobacco Inc., R&D Group, Yokohama, Japan
| | | | | | | | | | - Kei Yoshino
- Japan Tobacco Inc., R&D Group, Yokohama, Japan
| | | |
Collapse
|
10
|
Benam KH, Gilchrist S, Kleensang A, Satz AB, Willett C, Zhang Q. Exploring new technologies in biomedical research. Drug Discov Today 2019; 24:1242-1247. [PMID: 30953865 DOI: 10.1016/j.drudis.2019.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/07/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022]
Abstract
The Health Law, Policy & Ethics Project at Emory University School of Law and the Human Toxicology Project Consortium of the Humane Society of the United States co-sponsored a symposium on October 23, 2017, to showcase innovations using human-based in silico and in vitro models for drug and device discovery. The goal of the symposium was to introduce researchers and students to exciting new tools and possible future careers that will increase understanding of disease and improve the search for effective therapeutics, while reducing reliance on animal testing. The symposium concluded with a discussion between scientists and lawyers about the legal regulation of new biomedical research technologies.
Collapse
Affiliation(s)
- Kambez H Benam
- Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine & Bioengineering, University of Colorado, Aurora, CO, USA
| | | | - Andre Kleensang
- Center for Alternatives to Animal Testing, John Hopkins University, Baltimore, MD, USA
| | - Ani B Satz
- Emory Global Health Initiative, Emory University, Atlanta, GA, USA
| | - Catherine Willett
- Science and Federal Affairs, Research and Toxicology Department, Humane Society International, Washington, DC, USA.
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Clippinger AJ, Allen D, Behrsing H, BéruBé KA, Bolger MB, Casey W, DeLorme M, Gaça M, Gehen SC, Glover K, Hayden P, Hinderliter P, Hotchkiss JA, Iskandar A, Keyser B, Luettich K, Ma-Hock L, Maione AG, Makena P, Melbourne J, Milchak L, Ng SP, Paini A, Page K, Patlewicz G, Prieto P, Raabe H, Reinke EN, Roper C, Rose J, Sharma M, Spoo W, Thorne PS, Wilson DM, Jarabek AM. Pathway-based predictive approaches for non-animal assessment of acute inhalation toxicity. Toxicol In Vitro 2018; 52:131-145. [PMID: 29908304 PMCID: PMC6760245 DOI: 10.1016/j.tiv.2018.06.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 01/14/2023]
Abstract
New approaches are needed to assess the effects of inhaled substances on human health. These approaches will be based on mechanisms of toxicity, an understanding of dosimetry, and the use of in silico modeling and in vitro test methods. In order to accelerate wider implementation of such approaches, development of adverse outcome pathways (AOPs) can help identify and address gaps in our understanding of relevant parameters for model input and mechanisms, and optimize non-animal approaches that can be used to investigate key events of toxicity. This paper describes the AOPs and the toolbox of in vitro and in silico models that can be used to assess the key events leading to toxicity following inhalation exposure. Because the optimal testing strategy will vary depending on the substance of interest, here we present a decision tree approach to identify an appropriate non-animal integrated testing strategy that incorporates consideration of a substance's physicochemical properties, relevant mechanisms of toxicity, and available in silico models and in vitro test methods. This decision tree can facilitate standardization of the testing approaches. Case study examples are presented to provide a basis for proof-of-concept testing to illustrate the utility of non-animal approaches to inform hazard identification and risk assessment of humans exposed to inhaled substances.
Collapse
Affiliation(s)
- Amy J Clippinger
- PETA International Science Consortium Ltd., Society Building, 8 All Saints Street, London N1 9RL, United Kingdom.
| | - David Allen
- Integrated Laboratory Systems, Contractor Supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, United States
| | - Holger Behrsing
- Institute for In Vitro Sciences, 30 West Watkins Mill Road, Suite 100, Gaithersburg, MD 20878, United States
| | - Kelly A BéruBé
- Cardiff School of Biosciences, Museum Avenue, CF10 3AX, Wales, United Kingdom
| | - Michael B Bolger
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534, United States
| | - Warren Casey
- NIH/NIEHS/DNTP/NICEATM, Research Triangle Park, North Carolina 27709, United States
| | | | - Marianna Gaça
- British American Tobacco plc, Globe House, 4 Temple Place, London WC2R 2PG, United Kingdom
| | - Sean C Gehen
- Dow AgroSciences, Indianapolis, IN, United States
| | - Kyle Glover
- Defense Threat Reduction Agency, Aberdeen Proving Ground, MD 21010, United States
| | - Patrick Hayden
- MatTek Corporation, 200 Homer Ave, Ashland, MA 01721, United States
| | | | | | - Anita Iskandar
- Philip Morris Products SA, Philip Morris International R&D, Neuchâtel, Switzerland
| | - Brian Keyser
- RAI Services Company, 401 North Main Street, Winston-Salem, NC 27101, United States
| | - Karsta Luettich
- Philip Morris Products SA, Philip Morris International R&D, Neuchâtel, Switzerland
| | - Lan Ma-Hock
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Anna G Maione
- MatTek Corporation, 200 Homer Ave, Ashland, MA 01721, United States
| | - Patrudu Makena
- RAI Services Company, 401 North Main Street, Winston-Salem, NC 27101, United States
| | - Jodie Melbourne
- PETA International Science Consortium Ltd., Society Building, 8 All Saints Street, London N1 9RL, United Kingdom
| | | | - Sheung P Ng
- E.I. du Pont de Nemours and Company, DuPont Haskell Global Center for Health Sciences, P. O. Box 30, Newark, DE 19714, United States
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Kathryn Page
- The Clorox Company, 4900 Johnson Dr, Pleasanton, CA 94588, United States
| | - Grace Patlewicz
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, Research Triangle Park, NC, United States
| | - Pilar Prieto
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Hans Raabe
- Institute for In Vitro Sciences, 30 West Watkins Mill Road, Suite 100, Gaithersburg, MD 20878, United States
| | - Emily N Reinke
- U.S. Army Public Health Center, 8252 Blackhawk Rd. Bldg. E-5158, ATTN: MCHB-PH-HEF Gunpowder, MD 21010-5403, United States
| | - Clive Roper
- Charles River Edinburgh Ltd., Edinburgh EH33 2NE, United Kingdom
| | - Jane Rose
- Procter & Gamble Co, 11530 Reed Hartman Highway, Cincinnati, OH 45241, United States
| | - Monita Sharma
- PETA International Science Consortium Ltd., Society Building, 8 All Saints Street, London N1 9RL, United Kingdom
| | - Wayne Spoo
- RAI Services Company, 401 North Main Street, Winston-Salem, NC 27101, United States
| | - Peter S Thorne
- University of Iowa College of Public Health, Iowa City, IA, United States
| | | | - Annie M Jarabek
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Research Triangle Park, NC, United States
| |
Collapse
|
12
|
Murphy J, Gaca M, Lowe F, Minet E, Breheny D, Prasad K, Camacho O, Fearon IM, Liu C, Wright C, McAdam K, Proctor C. Assessing modified risk tobacco and nicotine products: Description of the scientific framework and assessment of a closed modular electronic cigarette. Regul Toxicol Pharmacol 2017; 90:342-357. [PMID: 28954704 DOI: 10.1016/j.yrtph.2017.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/05/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022]
Abstract
Cigarette smoking causes many human diseases including cardiovascular disease, lung disease and cancer. Novel tobacco products with reduced yields of toxicants compared to cigarettes, such as tobacco-heating products, snus and electronic cigarettes, hold great potential for reducing the harms associated with tobacco use. In the UK several public health agencies have advocated a potential role for novel products in tobacco harm reduction. Public Health England has stated that "The current best estimate is that e-cigarettes are around 95% less harmful than smoking" and the Royal College of Physicians has urged public health to "Promote e-cigarettes widely as substitute for smoking". Health related claims on novel products such as 'reduced exposure' and 'reduced risk' should be substantiated using a weight of evidence approach based on a comprehensive scientific assessment. The US FDA, has provided draft guidance outlining a framework to assess novel products as Modified Risk Tobacco Products (MRTP). Based on this, we now propose a framework comprising pre-clinical, clinical, and population studies to assess the risk profile of novel tobacco products. Additionally, the utility of this framework is assessed through the pre-clinical and part of the clinical comparison of a commercial e-cigarette (Vype ePen) with a scientific reference cigarette (3R4F) and the results of these studies suggest that ePen has the potential to be a reduced risk product.
Collapse
Affiliation(s)
- James Murphy
- British American Tobacco, R&D Centre, Southampton, SO15 8TL, United Kingdom.
| | - Marianna Gaca
- British American Tobacco, R&D Centre, Southampton, SO15 8TL, United Kingdom
| | - Frazer Lowe
- British American Tobacco, R&D Centre, Southampton, SO15 8TL, United Kingdom
| | - Emmanuel Minet
- British American Tobacco, R&D Centre, Southampton, SO15 8TL, United Kingdom
| | - Damien Breheny
- British American Tobacco, R&D Centre, Southampton, SO15 8TL, United Kingdom
| | - Krishna Prasad
- British American Tobacco, R&D Centre, Southampton, SO15 8TL, United Kingdom
| | - Oscar Camacho
- British American Tobacco, R&D Centre, Southampton, SO15 8TL, United Kingdom
| | - Ian M Fearon
- British American Tobacco, R&D Centre, Southampton, SO15 8TL, United Kingdom
| | - Chuan Liu
- British American Tobacco, R&D Centre, Southampton, SO15 8TL, United Kingdom
| | - Christopher Wright
- British American Tobacco, R&D Centre, Southampton, SO15 8TL, United Kingdom
| | - Kevin McAdam
- British American Tobacco, R&D Centre, Southampton, SO15 8TL, United Kingdom
| | | |
Collapse
|