1
|
Wang D, Suzuki A, Tong W. The connection between Bayesian networks and adverse outcome pathway (AOP) networks and how to use it for predicting drug toxicity. Drug Discov Today 2025; 30:104350. [PMID: 40187482 DOI: 10.1016/j.drudis.2025.104350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
There is significant interest in combining adverse outcome pathways (AOPs) with Bayesian networks (BNs) because of their shared representation using directed acyclic graphs (DAGs). However, it has not been verified empirically whether AOP networks are mathematically congruent with BNs. Furthermore, important properties for BNs, such as Markov blankets, have not been emphasized, which is a missed opportunity for simplifying and optimizing the model. Here, we summarize the connection between AOP networks and BNs and explore the implications for toxicity modeling. We also present a case study in drug-related liver toxicity. Our results confirm that AOP networks are congruent mathematically with BNs, with incorporation of the mathematical properties of BN leading to significantly simplified and more efficient models.
Collapse
Affiliation(s)
- Dong Wang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA.
| | - Ayako Suzuki
- Division of Gastroenterology, Duke University, Durham, NC, USA; Department of Medicine, Durham VA Medical Center, Durham, NC, USA
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
2
|
Zou L, Lin F, Wen J, Huang J, Tan Y, Huang H, Hu G. Dose-dependent effects of hydroquinone on liver injury and lipid dysregulation based on SCD1/AMPK signaling pathway in C57BL/6 mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117724. [PMID: 39827610 DOI: 10.1016/j.ecoenv.2025.117724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Hydroquinone (HQ) is extensively utilized in various industrial applications and as a dermatological agent; however, its metabolic processes and toxicological effects, particularly in the liver, remain insufficiently understood. This study aimed to investigate the impact of different doses of HQ on liver injury and lipid metabolism in C57BL/6 mice, with a specific focus on the SCD1/AMPK signaling pathway. We administered HQ at doses of 0, 12.5, 25.0, and 50.0 mg/kg over a period of 13 weeks, followed by biochemical analyses, RNA sequencing, and Western blotting to elucidate the underlying mechanisms. Our findings indicated that lower doses of HQ (12.5 and 25.0 mg/kg) led to lipid accumulation in the liver, accompanied by increased liver TG and serum TC. In contrast, the highest dose (50.0 mg/kg) resulted in elevated liver enzyme levels, indicative of liver damage, while lipid levels decreased. Notably, the mRNA or protein levels of SCD1 were upregulated in response to the lower doses of HQ (12.5 and 25.0 mg/kg), whereas AMPK activation and enhanced autophagy were observed in the 50.0 mg/kg HQ-treated group, reflecting an energy stress response. These findings suggest that lipid dysregulation may serve as an early indicator of HQ-induced liver injury, and that the SCD1/AMPK pathway may play a protective role against chemically induced hepatotoxicity. This study offers new insights into the toxicological effects of HQ on the liver and underscores the necessity for further exploration of the protective mechanisms of SCD1 and AMPK in mitigating HQ-induced hepatotoxicity.
Collapse
Affiliation(s)
- Lijun Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Fen Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jinying Wen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jinyu Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Yue Tan
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Hui Huang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Gonghua Hu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China.
| |
Collapse
|
3
|
Roser LA, Sakellariou C, Lindstedt M, Neuhaus V, Dehmel S, Sommer C, Raasch M, Flandre T, Roesener S, Hewitt P, Parnham MJ, Sewald K, Schiffmann S. IL-2-mediated hepatotoxicity: knowledge gap identification based on the irAOP concept. J Immunotoxicol 2024; 21:2332177. [PMID: 38578203 DOI: 10.1080/1547691x.2024.2332177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Drug-induced hepatotoxicity constitutes a major reason for non-approval and post-marketing withdrawal of pharmaceuticals. In many cases, preclinical models lack predictive capacity for hepatic damage in humans. A vital concern is the integration of immune system effects in preclinical safety assessment. The immune-related Adverse Outcome Pathway (irAOP) approach, which is applied within the Immune Safety Avatar (imSAVAR) consortium, presents a novel method to understand and predict immune-mediated adverse events elicited by pharmaceuticals and thus targets this issue. It aims to dissect the molecular mechanisms involved and identify key players in drug-induced side effects. As irAOPs are still in their infancy, there is a need for a model irAOP to validate the suitability of this tool. For this purpose, we developed a hepatotoxicity-based model irAOP for recombinant human IL-2 (aldesleukin). Besides producing durable therapeutic responses against renal cell carcinoma and metastatic melanoma, the boosted immune activation upon IL-2 treatment elicits liver damage. The availability of extensive data regarding IL-2 allows both the generation of a comprehensive putative irAOP and to validate the predictability of the irAOP with clinical data. Moreover, IL-2, as one of the first cancer immunotherapeutics on the market, is a blueprint for various biological and novel treatment regimens that are under investigation today. This review provides a guideline for further irAOP-directed research in immune-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Luise A Roser
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | | | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | | - Thierry Flandre
- Translational Medicine, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Sigrid Roesener
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- EpiEndo Pharmaceuticals ehf, Reykjavík, Iceland
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | |
Collapse
|
4
|
Heusinkveld HJ, Zwart EP, de Haan A, Braeuning A, Alarcan J, van der Ven LTM. The zebrafish embryo as a model for chemically-induced steatosis: A case study with three pesticides. Toxicology 2024; 508:153927. [PMID: 39151607 DOI: 10.1016/j.tox.2024.153927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
There is an increasing incidence and prevalence of fatty liver disease in the western world, with steatosis as the most prevalent variant. Known causes of steatosis include exposure to food-borne chemicals, and overconsumption of alcohol, carbohydrates and fat, and it is a well-known side effect of certain pharmaceuticals such as tetracycline, amiodarone and tamoxifen (drug-induced hepatic steatosis). Mechanistic knowledge on chemical-induced steatosis has greatly evolved and has been organized into adverse outcome pathways (AOPs) describing the chain of events from first molecular interaction of a substance with a biological system to the adverse outcome, intrahepatic lipid accumulation. In this study, three known steatosis-inducing pesticides (imazalil, clothianidin, and thiacloprid) were tested for their ability to induce hepatic triglyceride accumulation in the zebrafish (Danio rerio) embryo (ZFE) at 5 days post fertilization, both as single compounds and equipotent binary mixtures. The results indicate that the ZFE is very well applicable as a higher tier testing model to confirm effects in downstream key events in AOPs, that is, chemically-induced triglyceride accumulation in the whole organism and production of visible steatosis. Moreover, dose addition could be concluded for binary mixtures of substances with similar and with dissimilar modes of action.
Collapse
Affiliation(s)
- Harm J Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Edwin P Zwart
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Angela de Haan
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Jimmy Alarcan
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Leo T M van der Ven
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
5
|
Chung E, Wen X, Jia X, Ciallella HL, Aleksunes LM, Zhu H. Hybrid non-animal modeling: A mechanistic approach to predict chemical hepatotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134297. [PMID: 38677119 PMCID: PMC11519847 DOI: 10.1016/j.jhazmat.2024.134297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
Developing mechanistic non-animal testing methods based on the adverse outcome pathway (AOP) framework must incorporate molecular and cellular key events associated with target toxicity. Using data from an in vitro assay and chemical structures, we aimed to create a hybrid model to predict hepatotoxicants. We first curated a reference dataset of 869 compounds for hepatotoxicity modeling. Then, we profiled them against PubChem for existing in vitro toxicity data. Of the 2560 resulting assays, we selected the mitochondrial membrane potential (MMP) assay, a high-throughput screening (HTS) tool that can test chemical disruptors for mitochondrial function. Machine learning was applied to develop quantitative structure-activity relationship (QSAR) models with 2536 compounds tested in the MMP assay for screening new compounds. The MMP assay results, including QSAR model outputs, yielded hepatotoxicity predictions for reference set compounds with a Correct Classification Ratio (CCR) of 0.59. The predictivity improved by including 37 structural alerts (CCR = 0.8). We validated our model by testing 37 reference set compounds in human HepG2 hepatoma cells, and reliably predicting them for hepatotoxicity (CCR = 0.79). This study introduces a novel AOP modeling strategy that combines public HTS data, computational modeling, and experimental testing to predict chemical hepatotoxicity.
Collapse
Affiliation(s)
- Elena Chung
- Department of Chemistry and Biochemistry, Rowan University, NJ, USA; Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA, USA
| | - Xia Wen
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Xuelian Jia
- Department of Chemistry and Biochemistry, Rowan University, NJ, USA; Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA, USA
| | - Heather L Ciallella
- Department of Toxicology, Cuyahoga County Medical Examiner's Office, Cleveland, OH, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Hao Zhu
- Department of Chemistry and Biochemistry, Rowan University, NJ, USA; Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
6
|
Sanz-Serrano J, Callewaert E, De Boever S, Drees A, Verhoeven A, Vinken M. Chemical-induced liver cancer: an adverse outcome pathway perspective. Expert Opin Drug Saf 2024; 23:425-438. [PMID: 38430529 DOI: 10.1080/14740338.2024.2326479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/29/2024] [Indexed: 03/04/2024]
Abstract
INTRODUCTION The evaluation of the potential carcinogenicity is a key consideration in the risk assessment of chemicals. Predictive toxicology is currently switching toward non-animal approaches that rely on the mechanistic understanding of toxicity. AREAS COVERED Adverse outcome pathways (AOPs) present toxicological processes, including chemical-induced carcinogenicity, in a visual and comprehensive manner, which serve as the conceptual backbone for the development of non-animal approaches eligible for hazard identification. The current review provides an overview of the available AOPs leading to liver cancer and discusses their use in advanced testing of liver carcinogenic chemicals. Moreover, the challenges related to their use in risk assessment are outlined, including the exploitation of available data, the need for semantic ontologies, and the development of quantitative AOPs. EXPERT OPINION To exploit the potential of liver cancer AOPs in the field of risk assessment, 3 immediate prerequisites need to be fulfilled. These include developing human relevant AOPs for chemical-induced liver cancer, increasing the number of AOPs integrating quantitative toxicodynamic and toxicokinetic data, and developing a liver cancer AOP network. As AOPs and other areas in the field continue to evolve, liver cancer AOPs will progress into a reliable and robust tool serving future risk assessment and management.
Collapse
Affiliation(s)
- Julen Sanz-Serrano
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen Callewaert
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sybren De Boever
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Annika Drees
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Anouk Verhoeven
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
7
|
Indolfo NDC, Ganzerla MD, Doratioto TR, Avelino TM, Tofani LB, Peroni LA, Rabelo RS, Arroteia KF, Figueira ACM. Combining a microphysiological system of three organ equivalents and transcriptomics to assess toxicological endpoints for cosmetic ingredients. LAB ON A CHIP 2023; 23:5092-5106. [PMID: 37921576 DOI: 10.1039/d3lc00546a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Animal testing for cosmetic ingredients and final products has been banned in Europe and is gaining legal force worldwide. However, the need for reliable testing methodologies remains for safety assessment of cosmetic ingredients. While new approach methodologies exist for many toxicological endpoints, some complex ones lack appropriate testing methods. Microphysiological systems (MPSs) have emerged as a promising tool to address this gap in pre-clinical testing, offering higher predictivity compared to animal models due to the phylogenetic distance between humans and animals. Moreover, they provide a more physiological approach than traditional in vitro testing by mimicking interconnections between different culture compartments as seen in complex organisms. This study presents a three-organ microfluidic MPS comprising skin, liver, and intestine equivalents. Combining this model with gene expression analysis, we evaluated toxicological endpoints of chemicals, demonstrating its potential for diverse applications. Our findings highlight the MPS model as a reliable and ethical method to be applied in an integrated approach for safety assessment in the cosmetic industry. It offers a promising strategy to evaluate toxicological endpoints for cosmetic ingredients and other chemicals, supporting the elimination of animal testing while ensuring consumer safety.
Collapse
Affiliation(s)
- Nathalia de Carvalho Indolfo
- Natura Cosméticos S.A., Cajamar, São Paulo, Brazil
- Graduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas, Brazil
| | - Melissa Dibbernn Ganzerla
- Graduate Program in Molecular and Morphofunctional Biology, Institute of Biology, State University of Campinas, Brazil
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | | | - Thayná Mendonça Avelino
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | - Larissa Bueno Tofani
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | - Luis Antonio Peroni
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | - Renata Santos Rabelo
- Brazilian Synchrotron Light Laboratory (LNLS), Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | | |
Collapse
|
8
|
Jia X, Wang T, Zhu H. Advancing Computational Toxicology by Interpretable Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17690-17706. [PMID: 37224004 PMCID: PMC10666545 DOI: 10.1021/acs.est.3c00653] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Chemical toxicity evaluations for drugs, consumer products, and environmental chemicals have a critical impact on human health. Traditional animal models to evaluate chemical toxicity are expensive, time-consuming, and often fail to detect toxicants in humans. Computational toxicology is a promising alternative approach that utilizes machine learning (ML) and deep learning (DL) techniques to predict the toxicity potentials of chemicals. Although the applications of ML- and DL-based computational models in chemical toxicity predictions are attractive, many toxicity models are "black boxes" in nature and difficult to interpret by toxicologists, which hampers the chemical risk assessments using these models. The recent progress of interpretable ML (IML) in the computer science field meets this urgent need to unveil the underlying toxicity mechanisms and elucidate the domain knowledge of toxicity models. In this review, we focused on the applications of IML in computational toxicology, including toxicity feature data, model interpretation methods, use of knowledge base frameworks in IML development, and recent applications. The challenges and future directions of IML modeling in toxicology are also discussed. We hope this review can encourage efforts in developing interpretable models with new IML algorithms that can assist new chemical assessments by illustrating toxicity mechanisms in humans.
Collapse
Affiliation(s)
- Xuelian Jia
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Tong Wang
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Hao Zhu
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
9
|
Knebel C, Süssmuth RD, Hammer HS, Braeuning A, Marx-Stoelting P. New Approach Methods for Hazard Identification: A Case Study with Azole Fungicides Affecting Molecular Targets Associated with the Adverse Outcome Pathway for Cholestasis. Cells 2022; 11:cells11203293. [PMID: 36291160 PMCID: PMC9600068 DOI: 10.3390/cells11203293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Triazole fungicides such as propiconazole (Pi) or tebuconazole (Te) show hepatotoxicity in vivo, e.g., hypertrophy and vacuolization of liver cells following interaction with nuclear receptors such as PXR (pregnane-X-receptor) and CAR (constitutive androstane receptor). Accordingly, azoles affect gene expression associated with these adverse outcomes in vivo but also in human liver cells in vitro. Additionally, genes indicative of liver cholestasis are affected in vivo and in vitro. We therefore analyzed the capability of Pi and Te to cause cholestasis in an adverse outcome pathway (AOP)-driven approach in hepatic cells of human origin in vitro, considering also previous in vivo studies. Bile salt export pump (BSEP) activity assays confirmed that both azoles are weak inhibitors of BSEP. They alternate the expression of various cholestasis-associated target genes and proteins as well as the mitochondrial membrane function. Published in vivo data, however, demonstrate that neither Pi nor Te cause cholestasis in rodent bioassays. This discrepancy can be explained by the in vivo concentrations of both azoles being well below their EC50 for BSEP inhibition. From a regulatory perspective, this illustrates that toxicogenomics and human in vitro models are valuable tools to detect the potential of a substance to cause a specific type of toxicity. To come to a sound regulatory conclusion on the in vivo relevance of such a finding, results will have to be considered in a broader context also including toxicokinetics in a weight-of-evidence approach.
Collapse
Affiliation(s)
- Constanze Knebel
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Street 8-10, 10589 Berlin, Germany
| | - Roderich D. Süssmuth
- Institute of Chemistry, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Helen S. Hammer
- Signatope GmbH, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Street 8-10, 10589 Berlin, Germany
- Correspondence: (A.B.); (P.M.-S.); Tel.: +49-(0)30-18412-25100 (A.B.); Fax: +49-(0)30-18412-63758 (A.B.)
| | - Philip Marx-Stoelting
- Department Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Street 8-10, 10589 Berlin, Germany
- Correspondence: (A.B.); (P.M.-S.); Tel.: +49-(0)30-18412-25100 (A.B.); Fax: +49-(0)30-18412-63758 (A.B.)
| |
Collapse
|
10
|
Jia X, Wen X, Russo DP, Aleksunes LM, Zhu H. Mechanism-driven modeling of chemical hepatotoxicity using structural alerts and an in vitro screening assay. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129193. [PMID: 35739723 PMCID: PMC9262097 DOI: 10.1016/j.jhazmat.2022.129193] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 05/20/2023]
Abstract
Traditional experimental approaches to evaluate hepatotoxicity are expensive and time-consuming. As an advanced framework of risk assessment, adverse outcome pathways (AOPs) describe the sequence of molecular and cellular events underlying chemical toxicities. We aimed to develop an AOP that can be used to predict hepatotoxicity by leveraging computational modeling and in vitro assays. We curated 869 compounds with known hepatotoxicity classifications as a modeling set and extracted assay data from PubChem. The antioxidant response element (ARE) assay, which quantifies transcriptional responses to oxidative stress, showed a high correlation to hepatotoxicity (PPV=0.82). Next, we developed quantitative structure-activity relationship (QSAR) models to predict ARE activation for compounds lacking testing results. Potential toxicity alerts were identified and used to construct a mechanistic hepatotoxicity model. For experimental validation, 16 compounds in the modeling set and 12 new compounds were selected and tested using an in-house ARE-luciferase assay in HepG2-C8 cells. The mechanistic model showed good hepatotoxicity predictivity (accuracy = 0.82) for these compounds. Potential false positive hepatotoxicity predictions by only using ARE results can be corrected by incorporating structural alerts and vice versa. This mechanistic model illustrates a potential toxicity pathway for hepatotoxicity, and this strategy can be expanded to develop predictive models for other complex toxicities.
Collapse
Affiliation(s)
- Xuelian Jia
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA
| | - Xia Wen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Daniel P Russo
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Hao Zhu
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA; Department of Chemistry, Rutgers University, Camden, NJ 08102, USA.
| |
Collapse
|
11
|
Hu M, Zhong Y, Liu J, Zheng S, Lin L, Lin X, Liang B, Huang Y, Xian H, Li Z, Zhang B, Wang B, Meng H, Du J, Ye R, Lu Z, Yang X, Yang X, Huang Z. An adverse outcome pathway-based approach to assess aurantio-obtusin-induced hepatotoxicity. Toxicology 2022; 478:153293. [PMID: 35995123 DOI: 10.1016/j.tox.2022.153293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022]
Abstract
Cassiae semen (CS), a traditional Chinese medicine, has various bioactivities in preclinical and clinical practice. Aurantio-obtusin (AO) is a major anthraquinone (AQ) ingredient derived from CS, and has drawn public concerns over its potential hepatotoxicity. We previously found that AO induces hepatic necroinflammation by activating NOD-like receptor protein 3 inflammasome signaling. However, the mechanisms contributing to AO-motivated hepatotoxicity remain unclear. Herein, we evaluated hepatotoxic effects of AO on three liver cell lines by molecular and biochemical analyses. We found that AO caused cell viability inhibition and biochemistry dysfunction in the liver cells. Furthermore, AO elevated reactive oxygen species (ROS), followed by mitochondrial dysfunction (decreases in mitochondrial membrane potential and adenosine triphosphate) and apoptosis (increased Caspase-3, Cleaved caspase-3, Cytochrome c and Bax expression, and decreased Bcl-2 expression). We also found that AO increased the lipid peroxidation (LPO) and enhanced ferroptosis by activating cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-cAMP response element-binding (CREB) pathway (increases in PKA, p-CREB, acyl-CoA synthetase long chain family member 4). Based on these results, we used an AOP framework to explore the mechanisms underlying AO's hepatotoxicity. It starts from molecular initiating event (ROS), and follows two critical toxicity pathways (i.e., mitochondrial dysfunction-mediated apoptosis and LPO-enhanced ferroptosis) over a series of key events (KEs) to the adverse outcome of hepatotoxicity. The results of an assessment confidence in the adverse outcome pathway (AOP) framework supported the evidence concordance in dose-response, temporal and incidence relationships between KEs in AO-induced hepatotoxicity. This study's findings offer a novel toxicity pathway network for AO-caused hepatotoxicity.
Collapse
Affiliation(s)
- Manjiang Hu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jun Liu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shaozhen Zheng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Li Lin
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xi Lin
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bingli Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bo Wang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hao Meng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhi Lu
- Infinitus (China) Inc., Guangzhou 510623, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
12
|
Driessen M, van der Plas-Duivesteijn S, Kienhuis AS, van den Brandhof EJ, Roodbergen M, van de Water B, Spaink HP, Palmblad M, van der Ven LTM, Pennings JLA. Identification of proteome markers for drug-induced liver injury in zebrafish embryos. Toxicology 2022; 477:153262. [PMID: 35868597 DOI: 10.1016/j.tox.2022.153262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
Abstract
The zebrafish embryo (ZFE) is a promising alternative non-rodent model in toxicology, and initial studies suggested its applicability in detecting hepatic responses related to drug-induced liver injury (DILI). Here, we hypothesize that detailed analysis of underlying mechanisms of hepatotoxicity in ZFE contributes to the improved identification of hepatotoxic properties of compounds and to the reduction of rodents used for hepatotoxicity assessment. ZFEs were exposed to nine reference hepatotoxicants, targeted at induction of steatosis, cholestasis, and necrosis, and effects compared with negative controls. Protein profiles of the individual compounds were generated using LC-MS/MS. We identified differentially expressed proteins and pathways, but as these showed considerable overlap, phenotype-specific responses could not be distinguished. This led us to identify a set of common hepatotoxicity marker proteins. At the pathway level, these were mainly associated with cellular adaptive stress-responses, whereas single proteins could be linked to common hepatotoxicity-associated processes. Applying several stringency criteria to our proteomics data as well as information from other data sources resulted in a set of potential robust protein markers, notably Igf2bp1, Cox5ba, Ahnak, Itih3b.2, Psma6b, Srsf3a, Ces2b, Ces2a, Tdo2b, and Anxa1c, for the detection of adverse responses.
Collapse
Affiliation(s)
- Marja Driessen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | | | - Anne S Kienhuis
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands
| | - Evert-Jan van den Brandhof
- Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands
| | - Marianne Roodbergen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Magnus Palmblad
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Leo T M van der Ven
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands.
| |
Collapse
|
13
|
Sonawane A, Vadloori B, Poosala S, Kandarova H, Kulkarni M, Olayanju A, Dey T, Saxena U, Smirnova L, Kanda Y, Reddy J, Dravida S, Biswas S, Vinken M, Gettayacamin M, Ahluwalia A, Mondini F, Bhattacharya S, Kulkarni P, Jacobsen KR, Vangala S, Millás AL. Advances in Animal Models and Cutting-Edge Research in Alternatives: Proceedings of the Second International Conference on 3Rs Research and Progress, Hyderabad, 2021. Altern Lab Anim 2022; 50:156-171. [PMID: 35410493 DOI: 10.1177/02611929221089216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The fact that animal models fail to replicate human disease faithfully is now being widely accepted by researchers across the globe. As a result, they are exploring the use of alternatives to animal models. The time has come to refine our experimental practices, reduce the numbers and eventually replace the animals used in research with human-derived and human-relevant 3-D disease models. Oncoseek Bio-Acasta Health, which is an innovative biotechnology start-up company based in Hyderabad and Vishakhapatnam, India, organises an annual International Conference on 3Rs Research and Progress. In 2021, this conference was on 'Advances in Research Animal Models and Cutting-Edge Research in Alternatives'. This annual conference is a platform that brings together eminent scientists and researchers from various parts of the world, to share recent advances from their research in the field of alternatives to animals including new approach methodologies, and to promote practices to help refine animal experiments where alternatives are not available. This report presents the proceedings of the conference, which was held in hybrid mode (i.e. virtual and in-person) in November 2021.
Collapse
Affiliation(s)
| | | | | | - Helena Kandarova
- Centre of Experimental Medicine, Slovak Academy of Science, Slovakia
| | | | | | - Tuli Dey
- Savitribai Phule Pune University, India
| | | | - Lena Smirnova
- Johns Hopkins Bloomberg School of Public Health, USA
| | | | | | | | | | | | - Montip Gettayacamin
- Association for Accreditation of Laboratory Animal Care (AAALAC international), USA
| | - Arti Ahluwalia
- University of Pisa, and Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research (Centro 3R), Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Arnesdotter E, Gijbels E, Dos Santos Rodrigues B, Vilas-Boas V, Vinken M. Adverse Outcome Pathways as Versatile Tools in Liver Toxicity Testing. Methods Mol Biol 2022; 2425:521-535. [PMID: 35188645 DOI: 10.1007/978-1-0716-1960-5_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adverse outcome pathways (AOPs) are tools to capture and visualize mechanisms driving toxicological effects. They share a common structure consisting of a molecular initiating event, a series of key events connected by key event relationships and an adverse outcome. Development and evaluation of AOPs ideally comply with guidelines issued by the Organization for Economic Cooperation and Development. AOPs have been introduced for major types of hepatotoxicity, which is not a surprise, as the liver is a frequent target for systemic adversity. Various applications for AOPs have been proposed in the areas of toxicology and chemical risk assessment, in particular in relation to the establishment of quantitative structure-activity relationships, the elaboration of prioritization strategies, and the development of novel in vitro toxicity screening tests and testing strategies.
Collapse
Affiliation(s)
- Emma Arnesdotter
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva Gijbels
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruna Dos Santos Rodrigues
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vânia Vilas-Boas
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
15
|
Bassan A, Alves VM, Amberg A, Anger LT, Auerbach S, Beilke L, Bender A, Cronin MT, Cross KP, Hsieh JH, Greene N, Kemper R, Kim MT, Mumtaz M, Noeske T, Pavan M, Pletz J, Russo DP, Sabnis Y, Schaefer M, Szabo DT, Valentin JP, Wichard J, Williams D, Woolley D, Zwickl C, Myatt GJ. In silico approaches in organ toxicity hazard assessment: current status and future needs in predicting liver toxicity. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 20:100187. [PMID: 35340402 PMCID: PMC8955833 DOI: 10.1016/j.comtox.2021.100187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Hepatotoxicity is one of the most frequently observed adverse effects resulting from exposure to a xenobiotic. For example, in pharmaceutical research and development it is one of the major reasons for drug withdrawals, clinical failures, and discontinuation of drug candidates. The development of faster and cheaper methods to assess hepatotoxicity that are both more sustainable and more informative is critically needed. The biological mechanisms and processes underpinning hepatotoxicity are summarized and experimental approaches to support the prediction of hepatotoxicity are described, including toxicokinetic considerations. The paper describes the increasingly important role of in silico approaches and highlights challenges to the adoption of these methods including the lack of a commonly agreed upon protocol for performing such an assessment and the need for in silico solutions that take dose into consideration. A proposed framework for the integration of in silico and experimental information is provided along with a case study describing how computational methods have been used to successfully respond to a regulatory question concerning non-genotoxic impurities in chemically synthesized pharmaceuticals.
Collapse
Affiliation(s)
- Arianna Bassan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova, Italy
| | - Vinicius M. Alves
- The National Institute of Environmental Health Sciences, Division of the National Toxicology, Program, Research Triangle Park, NC 27709, USA
| | - Alexander Amberg
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Hoechst, D-65926 Frankfurt am Main, Germany
| | | | - Scott Auerbach
- The National Institute of Environmental Health Sciences, Division of the National Toxicology, Program, Research Triangle Park, NC 27709, USA
| | - Lisa Beilke
- Toxicology Solutions Inc., San Diego, CA, USA
| | - Andreas Bender
- AI and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| | - Mark T.D. Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | | | - Jui-Hua Hsieh
- The National Institute of Environmental Health Sciences, Division of the National Toxicology, Program, Research Triangle Park, NC 27709, USA
| | - Nigel Greene
- Data Science and AI, DSM, IMED Biotech Unit, AstraZeneca, Boston, USA
| | - Raymond Kemper
- Nuvalent, One Broadway, 14th floor, Cambridge, MA, 02142, USA
| | - Marlene T. Kim
- US Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, 20993, USA
| | - Moiz Mumtaz
- Office of the Associate Director for Science (OADS), Agency for Toxic Substances and Disease, Registry, US Department of Health and Human Services, Atlanta, GA, USA
| | - Tobias Noeske
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Manuela Pavan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova, Italy
| | - Julia Pletz
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Daniel P. Russo
- Department of Chemistry, Rutgers University, Camden, NJ 08102, USA
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA
| | - Yogesh Sabnis
- UCB Biopharma SRL, Chemin du Foriest – B-1420 Braine-l’Alleud, Belgium
| | - Markus Schaefer
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Hoechst, D-65926 Frankfurt am Main, Germany
| | | | | | - Joerg Wichard
- Bayer AG, Genetic Toxicology, Müllerstr. 178, 13353 Berlin, Germany
| | - Dominic Williams
- Functional & Mechanistic Safety, Clinical Pharmacology & Safety Sciences, AstraZeneca, Darwin Building 310, Cambridge Science Park, Milton Rd, Cambridge CB4 0FZ, UK
| | - David Woolley
- ForthTox Limited, PO Box 13550, Linlithgow, EH49 7YU, UK
| | - Craig Zwickl
- Transendix LLC, 1407 Moores Manor, Indianapolis, IN 46229, USA
| | | |
Collapse
|
16
|
Nymark P, Sachana M, Leite SB, Sund J, Krebs CE, Sullivan K, Edwards S, Viviani L, Willett C, Landesmann B, Wittwehr C. Systematic Organization of COVID-19 Data Supported by the Adverse Outcome Pathway Framework. Front Public Health 2021; 9:638605. [PMID: 34095051 PMCID: PMC8170012 DOI: 10.3389/fpubh.2021.638605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Adverse Outcome Pathways (AOP) provide structured frameworks for the systematic organization of research data and knowledge. The AOP framework follows a set of key principles that allow for broad application across diverse disciplines related to human health, including toxicology, pharmacology, virology and medical research. The COVID-19 pandemic engages a great number of scientists world-wide and data is increasing with exponential speed. Diligent data management strategies are employed but approaches for systematically organizing the data-derived information and knowledge are lacking. We believe AOPs can play an important role in improving interpretation and efficient application of scientific understanding of COVID-19. Here, we outline a newly initiated effort, the CIAO project (https://www.ciao-covid.net/), to streamline collaboration between scientists across the world toward development of AOPs for COVID-19, and describe the overarching aims of the effort, as well as the expected outcomes and research support that they will provide.
Collapse
Affiliation(s)
- Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Magdalini Sachana
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Cooperation and Development, Paris, France
| | | | - Jukka Sund
- European Commission, Joint Research Centre, Ispra, Italy
| | - Catharine E. Krebs
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | - Kristie Sullivan
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | - Stephen Edwards
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC, United States
| | - Laura Viviani
- Humane Society International, Washington, DC, United States
| | | | | | | |
Collapse
|
17
|
Llewellyn SV, Niemeijer M, Nymark P, Moné MJ, van de Water B, Conway GE, Jenkins GJS, Doak SH. In Vitro Three-Dimensional Liver Models for Nanomaterial DNA Damage Assessment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006055. [PMID: 33448117 DOI: 10.1002/smll.202006055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Whilst the liver possesses the ability to repair and restore sections of damaged tissue following acute injury, prolonged exposure to engineered nanomaterials (ENM) may induce repetitive injury leading to chronic liver disease. Screening ENM cytotoxicity using 3D liver models has recently been performed, but a significant challenge has been the application of such in vitro models for evaluating ENM associated genotoxicity; a vital component of regulatory human health risk assessment. This review considers the benefits, limitations, and adaptations of specific in vitro approaches to assess DNA damage in the liver, whilst identifying critical advancements required to support a multitude of biochemical endpoints, focusing on nano(geno)toxicology (e.g., secondary genotoxicity, DNA damage, and repair following prolonged or repeated exposures).
Collapse
Affiliation(s)
- Samantha V Llewellyn
- In vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Marije Niemeijer
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Penny Nymark
- Division of Toxicology, Misvik Biology, Karjakatu 35 B, Turku, FI-20520, Finland
- Institute of Environmental Medicine, Karolinska Institute, Nobels väg 13, Stockholm, 17 177, Sweden
| | - Martijn J Moné
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Gillian E Conway
- In vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Gareth J S Jenkins
- In vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Shareen H Doak
- In vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| |
Collapse
|
18
|
Serras AS, Rodrigues JS, Cipriano M, Rodrigues AV, Oliveira NG, Miranda JP. A Critical Perspective on 3D Liver Models for Drug Metabolism and Toxicology Studies. Front Cell Dev Biol 2021; 9:626805. [PMID: 33732695 PMCID: PMC7957963 DOI: 10.3389/fcell.2021.626805] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
The poor predictability of human liver toxicity is still causing high attrition rates of drug candidates in the pharmaceutical industry at the non-clinical, clinical, and post-marketing authorization stages. This is in part caused by animal models that fail to predict various human adverse drug reactions (ADRs), resulting in undetected hepatotoxicity at the non-clinical phase of drug development. In an effort to increase the prediction of human hepatotoxicity, different approaches to enhance the physiological relevance of hepatic in vitro systems are being pursued. Three-dimensional (3D) or microfluidic technologies allow to better recapitulate hepatocyte organization and cell-matrix contacts, to include additional cell types, to incorporate fluid flow and to create gradients of oxygen and nutrients, which have led to improved differentiated cell phenotype and functionality. This comprehensive review addresses the drug-induced hepatotoxicity mechanisms and the currently available 3D liver in vitro models, their characteristics, as well as their advantages and limitations for human hepatotoxicity assessment. In addition, since toxic responses are greatly dependent on the culture model, a comparative analysis of the toxicity studies performed using two-dimensional (2D) and 3D in vitro strategies with recognized hepatotoxic compounds, such as paracetamol, diclofenac, and troglitazone is performed, further highlighting the need for harmonization of the respective characterization methods. Finally, taking a step forward, we propose a roadmap for the assessment of drugs hepatotoxicity based on fully characterized fit-for-purpose in vitro models, taking advantage of the best of each model, which will ultimately contribute to more informed decision-making in the drug development and risk assessment fields.
Collapse
Affiliation(s)
- Ana S. Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Madalena Cipriano
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Armanda V. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
19
|
Talikka M, Belcastro V, Boué S, Marescotti D, Hoeng J, Peitsch MC. Applying Systems Toxicology Methods to Drug Safety. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11522-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
20
|
Abstract
Cholestasis can be defined as any situation of impaired bile secretion with concomitant accumulation of bile acids in the liver or in the systemic circulation. A variety of factors may evoke cholestasis, including genetic disorders, metabolic pathologies, infectious diseases, immunogenic stimuli, and drugs. Drug-induced cholestasis is a mechanistically complex process. At least three triggering factors of drug-induced cholestasis have been described, including effects on drug transporters, various hepatocellular changes, and altered bile canaliculi dynamics. These stimuli induce two cellular responses, each typified by a number of key events, namely a deteriorative response activated by bile acid accumulation and an adaptive response aimed at decreasing the uptake and increasing the export of bile acids into and from the liver, respectively. The mechanistic scenario of drug-induced cholestasis is described in this chapter.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
21
|
Vinken M. In vitro prediction of drug-induced cholestatic liver injury: a challenge for the toxicologist. Arch Toxicol 2018; 92:1909-1912. [PMID: 29574564 PMCID: PMC6084771 DOI: 10.1007/s00204-018-2201-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|