1
|
Hicks R, Gozal D, Ahmed S, Khalyfa A. Interplay between gut microbiota and exosome dynamics in sleep apnea. Sleep Med 2025; 131:106493. [PMID: 40203611 DOI: 10.1016/j.sleep.2025.106493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/19/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Sleep-disordered breathing (SDB) is characterized by recurrent reductions or interruptions in airflow during sleep, termed hypopneas and apneas, respectively. SDB impairs sleep quality and is linked to substantive health issues including cardiovascular and metabolic disorders, as well as cognitive decline. Recent evidence suggests a link between gut microbiota (GM) composition and sleep apnea. Indeed, GM, a community of microorganisms residing in the gut, has emerged as a potential player in various diseases, and several studies have identified associations between sleep apnea and GM diversity along with shifts in bacterial populations. Additionally, the concept of "leaky gut," a compromised intestinal barrier with potentially increased inflammation, has emerged as another key player in the potential bidirectional relationship between GM and sleep apnea. One of the potential effectors could be extracellular vesicles (EVs) underlying gut-brain communication pathways that are relevant to sleep regulation and function. Thus, therapeutic implications afforded by targeting the GM or exosomes for sleep apnea management have surfaced as promising areas of research. This review explores current understanding of the relationship between GM, exosomes and sleep apnea, highlighting key research dynamics and potential mechanisms. A comprehensive review of the literature was conducted, focusing on studies investigating GM composition, intestinal barrier function and gut-brain communication in relation to sleep apnea.
Collapse
Affiliation(s)
- Rebecca Hicks
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - David Gozal
- Department of Pediatrics and Office of the Dean, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Sarfraz Ahmed
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Abdelnaby Khalyfa
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
2
|
Jiao Y, Yang L, Wang R, Song G, Fu J, Wang J, Gao N, Wang H. Drug Delivery Across the Blood-Brain Barrier: A New Strategy for the Treatment of Neurological Diseases. Pharmaceutics 2024; 16:1611. [PMID: 39771589 PMCID: PMC11677317 DOI: 10.3390/pharmaceutics16121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The blood-brain barrier (BBB) serves as a highly selective barrier between the blood and the central nervous system (CNS), and its main function is to protect the brain from foreign substances. This physiological property plays a crucial role in maintaining CNS homeostasis, but at the same time greatly limits the delivery of drug molecules to the CNS, thus posing a major challenge for the treatment of neurological diseases. Given that the high incidence and low cure rate of neurological diseases have become a global public health problem, the development of effective BBB penetration technologies is important for enhancing the efficiency of CNS drug delivery, reducing systemic toxicity, and improving the therapeutic outcomes of neurological diseases. This review describes the physiological and pathological properties of the BBB, as well as the current challenges of trans-BBB drug delivery, detailing the structural basis of the BBB and its role in CNS protection. Secondly, this paper reviews the drug delivery strategies for the BBB in recent years, including physical, biological and chemical approaches, as well as nanoparticle-based delivery technologies, and provides a comprehensive assessment of the effectiveness, advantages and limitations of these delivery strategies. It is hoped that the review in this paper will provide valuable references and inspiration for future researchers in therapeutic studies of neurological diseases.
Collapse
Affiliation(s)
- Yimai Jiao
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Luosen Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Rujuan Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Guoqiang Song
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Jingxuan Fu
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Na Gao
- Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| |
Collapse
|
3
|
Li B, Lin Y, Chen G, Cai M, Zhong H, Xiao Z, Lin M, Li T, Cai Y, Shuai X, Ren J. Anchoring Microbubbles on Cerebrovascular Endothelium as a New Strategy Enabling Low-Energy Ultrasound-Assisted Delivery of Varisized Agents Across Blood-Brain Barrier. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302134. [PMID: 37870165 PMCID: PMC10667842 DOI: 10.1002/advs.202302134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/20/2023] [Indexed: 10/24/2023]
Abstract
The protective blood-brain barrier (BBB) prevents most therapeutic agents from entering the brain. Currently, focused ultrasound (FUS) is mostly employed to create microbubbles that induce a cavitation effect to open the BBB. However, microbubbles pass quickly through brain microvessels, substantially limiting the cavitation effect. Here, we constructed a novel perfluoropropane-loaded microbubble, termed ApoER-Pep-MB, which possessed a siloxane bonds-crosslinked surface to increase the microbubble stability against turbulence in blood circulation and was decorated with binding peptide for apolipoprotein E receptor (ApoER-Pep). The microbubble with tailor-made micron size (2 µm) and negative surface charge (-30 mV) performed ApoER-mediated binding rather than internalization into brain capillary endothelial cells. Consequently, the microbubble accumulated on the brain microvessels, based on which even a low-energy ultrasound with less safety risk than FUS, herein diagnostic ultrasound (DUS), could create a strong cavitation effect to open the BBB. Evans Blue and immunofluorescence staining studies demonstrated that the DUS-triggered cavitation effect not only temporarily opened the BBB for 2 h but also caused negligible damage to the brain tissue. Therefore, various agents, ranging from small molecules to nanoscale objects, can be efficiently delivered to target regions of the brain, offering tremendous opportunities for the treatment of brain diseases.
Collapse
Affiliation(s)
- Bo Li
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Yuejun Lin
- Department of Medical UltrasonicThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Gengjia Chen
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Mingyue Cai
- Department of Minimally Invasive Interventional Radiologythe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510260China
| | - Huihai Zhong
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Zecong Xiao
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Minzhao Lin
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Tan Li
- Department of Minimally Invasive Interventional Radiologythe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510260China
| | - Yujun Cai
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Xintao Shuai
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Jie Ren
- Department of Medical UltrasonicThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| |
Collapse
|
4
|
Gallen AF, Romero-Arias JR, Barrio RA, Hernandez-Machado A. Vesicle formation induced by thermal fluctuations. SOFT MATTER 2023; 19:2908-2918. [PMID: 37006200 DOI: 10.1039/d2sm01167k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The process of fission and vesicle formation depends on the geometry of the membrane that will split. For instance, a flat surface finds it difficult to form vesicles because of the lack of curved regions where to start the process. Here we show that vesicle formation can be promoted by temperature, by using a membrane phase field model with Gaussian curvature. We find a phase transition between fluctuating and vesiculation phases that depends on temperature, spontaneous curvature, and the ratio between bending and Gaussian moduli. We analysed the energy dynamical behaviour of these processes and found that the main driving ingredient is the Gaussian energy term, although the curvature energy term usually helps with the process as well. We also found that the chemical potential can be used to investigate the temperature of the system. Finally we address how temperature changes the condition for spontaneous vesiculation for all geometries, making it happen in a wider range of values of the Gaussian modulus.
Collapse
Affiliation(s)
- Andreu F Gallen
- Departament Fisica de la Materia Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain.
| | - J Roberto Romero-Arias
- Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, 01000 Ciudad de Mexico, Mexico
| | - Rafael A Barrio
- Instituto de Fisica, U.N.A.M., 01000, Ap. Postal 101000, Mexico D.F, Mexico
| | - Aurora Hernandez-Machado
- Departament Fisica de la Materia Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
| |
Collapse
|
5
|
Gifre-Renom L, Daems M, Luttun A, Jones EAV. Organ-Specific Endothelial Cell Differentiation and Impact of Microenvironmental Cues on Endothelial Heterogeneity. Int J Mol Sci 2022; 23:ijms23031477. [PMID: 35163400 PMCID: PMC8836165 DOI: 10.3390/ijms23031477] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Endothelial cells throughout the body are heterogeneous, and this is tightly linked to the specific functions of organs and tissues. Heterogeneity is already determined from development onwards and ranges from arterial/venous specification to microvascular fate determination in organ-specific differentiation. Acknowledging the different phenotypes of endothelial cells and the implications of this diversity is key for the development of more specialized tissue engineering and vascular repair approaches. However, although novel technologies in transcriptomics and proteomics are facilitating the unraveling of vascular bed-specific endothelial cell signatures, still much research is based on the use of insufficiently specialized endothelial cells. Endothelial cells are not only heterogeneous, but their specialized phenotypes are also dynamic and adapt to changes in their microenvironment. During the last decades, strong collaborations between molecular biology, mechanobiology, and computational disciplines have led to a better understanding of how endothelial cells are modulated by their mechanical and biochemical contexts. Yet, because of the use of insufficiently specialized endothelial cells, there is still a huge lack of knowledge in how tissue-specific biomechanical factors determine organ-specific phenotypes. With this review, we want to put the focus on how organ-specific endothelial cell signatures are determined from development onwards and conditioned by their microenvironments during adulthood. We discuss the latest research performed on endothelial cells, pointing out the important implications of mimicking tissue-specific biomechanical cues in culture.
Collapse
Affiliation(s)
- Laia Gifre-Renom
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Margo Daems
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Aernout Luttun
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Elizabeth A. V. Jones
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence:
| |
Collapse
|
6
|
Naruphontjirakul P, Li S, Pinna A, Barrak F, Chen S, Redpath AN, Rankin SM, Porter AE, Jones JR. Interaction of monodispersed strontium containing bioactive glass nanoparticles with macrophages. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112610. [PMID: 35042635 DOI: 10.1016/j.msec.2021.112610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/24/2022]
Abstract
The cellular response of murine primary macrophages to monodisperse strontium containing bioactive glass nanoparticles (SrBGNPs), with diameters of 90 ± 10 nm and a composition (mol%) of 88.8 SiO2-1.8CaO-9.4SrO (9.4% Sr-BGNPs) was investigated for the first time. Macrophage response is critical as applications of bioactive nanoparticles will involve the nanoparticles circulating in the blood stream and macrophages will be the first cells to encounter the particles, as part of inflammatory response mechanisms. Macrophage viability and total DNA measurements were not decreased by particle concentrations of up to 250 μg/mL. The Sr-BGNPs were actively internalised by the macrophages via formation of endosome/lysosome-like vesicles bordered by a membrane inside the cells. The Sr-BGNPs degraded inside the cells, with the Ca and Sr maintained inside the silica network. When RAW264.7 cells were incubated with Sr-BGNPs, the cells were polarised towards the pro-regenerative M2 population rather than the pro-inflammatory M1 population. Sr-BGNPs are potential biocompatible vehicles for therapeutic cation delivery for applications in bone regeneration.
Collapse
Affiliation(s)
- Parichart Naruphontjirakul
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Thailand
| | - Siwei Li
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; Visiting Specialist Services Ltd, Office 6.072 6th Floor, First Central 200, 2 Lakeside Drive, London NW10 7FQ, UK
| | - Alessandra Pinna
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; The Francis Crick Institute, London NW11AT, UK
| | - Fadi Barrak
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; Visiting Specialist Services Ltd, Office 6.072 6th Floor, First Central 200, 2 Lakeside Drive, London NW10 7FQ, UK
| | - Shu Chen
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Andia N Redpath
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, UK
| | - Sara M Rankin
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, UK
| | - Alexandra E Porter
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
7
|
Taskaeva YS, Bgatova NP, Savchenko SV, Grebenshchikova AS, Oshchepkova NG, Kuznetsov EV. Ultrastructure of Endothelial Cells of Myocardial Capillaries in Burn Septicotoxemia. Bull Exp Biol Med 2021; 171:393-398. [PMID: 34297295 DOI: 10.1007/s10517-021-05235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 10/20/2022]
Abstract
We studied ultrastructure and vesicular structures in endothelial cells of myocardial micro-vessels in burn patients. Electron microscopy revealed a significant decrease in volume density of vesicular structures in the endotheliocytes of myocardial capillaries in patients with burn septicotoxemia. The observed structural signs of endothelial dysfunction revealed in this category of patients can be a promising area for further research and for the development of methods of pathogenetic correction of myocardial disorders in the case of burn injury.
Collapse
Affiliation(s)
- Yu S Taskaeva
- Research Institute of Clinical and Experimental Lymphology - Affiliated Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | - N P Bgatova
- Research Institute of Clinical and Experimental Lymphology - Affiliated Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | - S V Savchenko
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia.
| | - A S Grebenshchikova
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - N G Oshchepkova
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - E V Kuznetsov
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
8
|
Asaro RJ, Cabrales P. Red Blood Cells: Tethering, Vesiculation, and Disease in Micro-Vascular Flow. Diagnostics (Basel) 2021; 11:diagnostics11060971. [PMID: 34072241 PMCID: PMC8228733 DOI: 10.3390/diagnostics11060971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
The red blood cell has become implicated in the progression of a range of diseases; mechanisms by which red cells are involved appear to include the transport of inflammatory species via red cell-derived vesicles. We review this role of RBCs in diseases such as diabetes mellitus, sickle cell anemia, polycythemia vera, central retinal vein occlusion, Gaucher disease, atherosclerosis, and myeloproliferative neoplasms. We propose a possibly unifying, and novel, paradigm for the inducement of RBC vesiculation during vascular flow of red cells adhered to the vascular endothelium as well as to the red pulp of the spleen. Indeed, we review the evidence for this hypothesis that links physiological conditions favoring both vesiculation and enhanced RBC adhesion and demonstrate the veracity of this hypothesis by way of a specific example occurring in splenic flow which we argue has various renderings in a wide range of vascular flows, in particular microvascular flows. We provide a mechanistic basis for membrane loss and the formation of lysed red blood cells in the spleen that may mediate their turnover. Our detailed explanation for this example also makes clear what features of red cell deformability are involved in the vesiculation process and hence require quantification and a new form of quantitative indexing.
Collapse
Affiliation(s)
- Robert J. Asaro
- Department of Structural Engineering, University of California, San Diego, CA 92093, USA
- Correspondence: ; Tel.: +1-619-890-6888; Fax: +1-858-534-6373
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
9
|
Abstract
We propose a three-dimensional mathematical model to describe dynamical processes of membrane fission. The model is based on a phase field equation that includes the Gaussian curvature contribution to the bending energy. With the addition of the Gaussian curvature energy term numerical simulations agree with the predictions that tubular shapes can break down into multiple vesicles. A dispersion relation obtained with linear analysis predicts the wavelength of the instability and the number of formed vesicles. Finally, a membrane shape diagram is obtained for the different Gaussian and bending modulus, showing different shape regimes.
Collapse
|
10
|
Bakoa F, Préhaud C, Beauclair G, Chazal M, Mantel N, Lafon M, Jouvenet N. Genomic diversity contributes to the neuroinvasiveness of the Yellow fever French neurotropic vaccine. NPJ Vaccines 2021; 6:64. [PMID: 33903598 PMCID: PMC8076279 DOI: 10.1038/s41541-021-00318-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
Mass vaccination with the live attenuated vaccine YF-17D is the current way to prevent infection with Yellow fever virus (YFV). However, 0.000012-0.00002% of vaccinated patients develop post-vaccination neurological syndrome (YEL-AND). Understanding the factors responsible for neuroinvasion, neurotropism, and neurovirulence of the vaccine is critical for improving its biosafety. The YF-FNV vaccine strain, known to be associated with a higher frequency of YEL-AND (0.3-0.4%) than YF-17D, is an excellent model to study vaccine neuroinvasiveness. We determined that neuroinvasiveness of YF-FNV occured both via infection and passage through human brain endothelial cells. Plaque purification and next generation sequencing (NGS) identified several neuroinvasive variants. Their neuroinvasiveness was not higher than that of YF-FNV. However, rebuilding the YF-FNV population diversity from a set of isolated YF-FNV-N variants restored the original neuroinvasive phenotype of YF-FNV. Therefore, we conclude that viral population diversity is a critical factor for YFV vaccine neuroinvasiveness.
Collapse
Affiliation(s)
- Florian Bakoa
- Unité de Neuroimmunologie Virale, Institut Pasteur, Paris, France
- Research and External Innovation Department, Sanofi Pasteur, Marcy L'Etoile, France
- Sorbonne Université, Collège doctoral, Paris, France
- Unité de Signalisation Antivirale, CNRS UMR 3569, Institut Pasteur, Paris, France
| | | | - Guillaume Beauclair
- Unité de Signalisation Antivirale, CNRS UMR 3569, Institut Pasteur, Paris, France
- Institut de Biologie Intégrative de la Cellule, UMR9198, Équipe Autophagie et Immunité Antivirale, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Maxime Chazal
- Unité de Signalisation Antivirale, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Nathalie Mantel
- Research and External Innovation Department, Sanofi Pasteur, Marcy L'Etoile, France
| | - Monique Lafon
- Unité de Neuroimmunologie Virale, Institut Pasteur, Paris, France.
| | - Nolwenn Jouvenet
- Unité de Signalisation Antivirale, CNRS UMR 3569, Institut Pasteur, Paris, France.
| |
Collapse
|
11
|
Lavanya MN, Preethi R, Moses JA, Anandharamakrishnan C. Aerosol-based Pulmonary Delivery of Therapeutic Molecules from Food Sources: Delivery Mechanism, Research Trends, and the Way Forward. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1888971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- M. N. Lavanya
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - R. Preethi
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - J. A. Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - C. Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| |
Collapse
|
12
|
Zhang L, Fan J, Li G, Yin Z, Fu BM. Transcellular Model for Neutral and Charged Nanoparticles Across an In Vitro Blood-Brain Barrier. Cardiovasc Eng Technol 2020; 11:607-620. [PMID: 33113565 PMCID: PMC7592456 DOI: 10.1007/s13239-020-00496-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE The therapeutic drug-loaded nanoparticles (NPs, 20-100 nm) have been widely used to treat brain disorders. To improve systemic brain delivery efficacy of these NPs, it is necessary to quantify their transport parameters across the blood-brain barrier (BBB) and understand the underlying transport mechanism. METHODS Permeability of an in vitro BBB, bEnd3 (mouse brain microvascular endothelial cells) monolayer, to three neutral NPs with the representative diameters was measured using an automated fluorometer system. To elucidate the transport mechanism of the neutral NPs across the in vitro BBB, and that of positively charged NPs whose BBB permeability was measured in a previous study, we developed a novel transcellular model, which incorporates the charge of the in vitro BBB, the mechanical property of the cell membrane, the ion concentrations of the surrounding salt solution and the size and charge of the NPs. RESULTS Our model indicates that the negative charge of the surface glycocalyx and basement membrane of the BBB plays a pivotal role in the transcelluar transport of NPs with diameter 20-100 nm across the BBB. The electrostatic force between the negative charge at the in vitro BBB and the positive charge at NPs greatly enhances NP permeability. The predictions from our transcellular model fit very well with the measured BBB permeability for both neutral and charged NPs. CONCLUSION Our model can be used to predict the optimal size and charge of the NPs and the optimal charge of the BBB for an optimal systemic drug delivery strategy to the brain.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Jie Fan
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Guanglei Li
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Zhaokai Yin
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA.
| |
Collapse
|
13
|
pH-Sensitive Dendrimersomes of Hybrid Triazine-Carbosilane Dendritic Amphiphiles-Smart Vehicles for Drug Delivery. NANOMATERIALS 2020; 10:nano10101899. [PMID: 32977594 PMCID: PMC7598245 DOI: 10.3390/nano10101899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022]
Abstract
Supramolecular constructions of amphiphilic dendritic molecules are promising vehicles for anti-cancer drug delivery due to the flexibility of their architecture, high drug loading capacity and avoiding off-target effects of a drug. Herein, we report a new class of amphiphilic dendritic species—triazine-carbosilane dendrons readily self-assembling into pH-sensitive dendrimersomes. The dendrimersomes efficiently encapsulate anticancer drugs doxorubicin and methotrexate. Chemodrug-loaded dendrimersomes have dose-related cytotoxic activity against leukaemia cell lines 1301 and K562. Our findings suggest that triazine-carbosilane dendrimersomes are prospective drug carriers for anti-cancer therapy.
Collapse
|
14
|
Campos F, Bonhome-Espinosa AB, Chato-Astrain J, Sánchez-Porras D, García-García ÓD, Carmona R, López-López MT, Alaminos M, Carriel V, Rodriguez IA. Evaluation of Fibrin-Agarose Tissue-Like Hydrogels Biocompatibility for Tissue Engineering Applications. Front Bioeng Biotechnol 2020; 8:596. [PMID: 32612984 PMCID: PMC7308535 DOI: 10.3389/fbioe.2020.00596] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Generation of biocompatible and biomimetic tissue-like biomaterials is crucial to ensure the success of engineered substitutes in tissue repair. Natural biomaterials able to mimic the structure and composition of native extracellular matrices typically show better results than synthetic biomaterials. The aim of this study was to perform an in vivo time-course biocompatibility analysis of fibrin-agarose tissue-like hydrogels at the histological, imagenological, hematological, and biochemical levels. Tissue-like hydrogels were produced by a controlled biofabrication process allowing the generation of biomechanically and structurally stable hydrogels. The hydrogels were implanted subcutaneously in 25 male Wistar rats and evaluated after 1, 5, 9, and 12 weeks of in vivo follow-up. At each period of time, animals were analyzed using magnetic resonance imaging (MRI), hematological analyses, and histology of the local area in which the biomaterials were implanted, along with major vital organs (liver, kidney, spleen, and regional lymph nodes). MRI results showed no local or distal alterations during the whole study period. Hematology and biochemistry showed some fluctuation in blood cells values and in some biochemical markers over the time. However, these parameters were progressively normalized in the framework of the homeostasis process. Histological, histochemical, and ultrastructural analyses showed that implantation of fibrin-agarose scaffolds was followed by a progressive process of cell invasion, synthesis of components of the extracellular matrix (mainly, collagen) and neovascularization. Implanted biomaterials were successfully biodegraded and biointegrated at 12 weeks without any associated histopathological alteration in the implanted zone or distal vital organs. In summary, our in vivo study suggests that fibrin-agarose tissue-like hydrogels could have potential clinical usefulness in engineering applications in terms of biosafety and biocompatibility.
Collapse
Affiliation(s)
- Fernando Campos
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ana Belen Bonhome-Espinosa
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Department of Applied Physics, Faculty of Science, University of Granada, Granada, Spain
| | - Jesús Chato-Astrain
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Sánchez-Porras
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain
| | - Óscar Darío García-García
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ramón Carmona
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Modesto T López-López
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Department of Applied Physics, Faculty of Science, University of Granada, Granada, Spain
| | - Miguel Alaminos
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Víctor Carriel
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ismael A Rodriguez
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Department of Histology, Faculty of Dentistry, National University of Cordoba, Cordoba, Argentina
| |
Collapse
|
15
|
Alimohamadi H, Ovryn B, Rangamani P. Modeling membrane nanotube morphology: the role of heterogeneity in composition and material properties. Sci Rep 2020; 10:2527. [PMID: 32054874 PMCID: PMC7018976 DOI: 10.1038/s41598-020-59221-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 01/27/2020] [Indexed: 01/14/2023] Open
Abstract
Membrane nanotubes are dynamic structures that may connect cells over long distances. Nanotubes are typically thin cylindrical tubes, but they may occasionally have a beaded architecture along the tube. In this paper, we study the role of membrane mechanics in governing the architecture of these tubes and show that the formation of bead-like structures along the nanotubes can result from local heterogeneities in the membrane either due to protein aggregation or due to membrane composition. We present numerical results that predict how membrane properties, protein density, and local tension compete to create a phase space that governs the morphology of a nanotube. We also find that there exists a discontinuity in the energy that impedes two beads from fusing. These results suggest that the membrane-protein interaction, membrane composition, and membrane tension closely govern the tube radius, number of beads, and the bead morphology.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Ben Ovryn
- Department of Physics, New York Institute of Technology, New York, NY, 11568, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, 92093, USA.
| |
Collapse
|
16
|
Taskaeva I, Bgatova N, Gogaeva I. Lithium effects on vesicular trafficking in hepatocellular carcinoma cells. Ultrastruct Pathol 2019; 43:301-311. [PMID: 31826700 DOI: 10.1080/01913123.2019.1701167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most commonly malignant tumors worldwide, characterized by the presence of many heterogeneous molecular cell events that contribute to tumor growth and progression. Endocytic processes are intimately involved in various pathological conditions, including cancer, since they interface with various cellular signaling programs. The ability of lithium to induce cell death and autophagy and affect cell proliferation and intracellular signaling has been shown in various experimental tumor models. The aim of this study was to evaluate the effects of lithium on vesicular transport in hepatocellular carcinoma cells. Using transmission electron microscopy we have characterized the endocytic apparatus in hepatocellular carcinoma-29 (HCC-29) cells in vivo and detailed changes in endocytotic vesicles after 20 mM lithium carbonate administration. Immunofluorescent analysis was used to quantify cells positive for EEA1-positive early endosomes, Rab11-positive recycling endosomes and Rab7-positive late endosomes. Lithium treatment caused an increase in EEA1- and Rab11-positive structures and a decrease in Rab7-positive vesicles. Thus, lithium affects diverse endocytic pathways in HCC-29 cells which may modulate growth and development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Iuliia Taskaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Laboratory of Boron-Neutron Capture Therapy, Department of Physics, Novosibirsk State University, Novosibirsk, Russia
| | - Nataliya Bgatova
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Izabella Gogaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
17
|
Pulgar VM. Transcytosis to Cross the Blood Brain Barrier, New Advancements and Challenges. Front Neurosci 2019; 12:1019. [PMID: 30686985 PMCID: PMC6337067 DOI: 10.3389/fnins.2018.01019] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/18/2018] [Indexed: 01/21/2023] Open
Abstract
The blood brain barrier (BBB) presents a formidable challenge to the delivery of drugs into the brain. Several strategies aim to overcome this obstacle and promote efficient and specific crossing through BBB of therapeutically relevant agents. One of those strategies uses the physiological process of receptor-mediated transcytosis (RMT) to transport cargo through the brain endothelial cells toward brain parenchyma. Recent developments in our understanding of intracellular trafficking and receptor binding as well as in protein engineering and nanotechnology have potentiated the opportunities for treatment of CNS diseases using RMT. In this mini-review, the current understanding of BBB structure is discussed, and recent findings exemplifying critical advances in RMT-mediated brain drug delivery are briefly presented.
Collapse
Affiliation(s)
- Victor M Pulgar
- Department of Pharmaceutical Sciences, Campbell University, Buies Creek, NC, United States.,Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
18
|
Picchietti S, Bernini C, Stocchi V, Taddei AR, Meschini R, Fausto AM, Rocco L, Buonocore F, Cervia D, Scapigliati G. Engineered nanoparticles of titanium dioxide (TIO 2): Uptake and biological effects in a sea bass cell line. FISH & SHELLFISH IMMUNOLOGY 2017; 63:53-67. [PMID: 28159697 DOI: 10.1016/j.fsi.2017.01.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/26/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
With the rapid development of nanotechnology there has been a corresponding increase in the application of titanium dioxide nanoparticles (TiO2-NPs) in various consumer and industrial products, consequently their potential health hazards and environmental effects are considered an aspect of great concern. In the present study, in order to assess the impact of TiO2-NPs in the marine environment, the biological effects of TiO2-NPs on a sea bass cell line (DLEC) were investigated. Cells were exposed for 24 h to different concentrations of TiO2-NPs (1, 8, 40, 200 and 1000 μg/ml) or co-exposed with CdCl2 (Cd). The effects of UV light irradiation were also investigated in cells treated with TiO2-NPs and/or Cd. The internalization of TiO2-NPs and the morphological cell modifications induced by the treatments were examined by transmission and scanning electron microscopy, this latter coupled with energy dispersive X-ray spectroscopy (EDS) for particle element detection. In addition, the effects of controlled exposures were studied evaluating the cytotoxicity, the DNA damage and the expression of inflammatory genes. Our study indicates that TiO2-NPs were localized on the cell surface mainly as agglomerates revealed by EDS analysis and that they were uptaken by the cells inducing morphological changes. Photoactivation of TiO2-NPs and/or co-exposure with Cd affects ATP levels and it contributes to induce acute cellular toxicity in DLEC cells dependent on Ti concentration. The inflammatory potential and the DNA damage, this latter displayed through a caspase-3 independent apoptotic process, were also demonstrated. Overall our data suggest that the interaction of TiO2-NPs with marine water contaminants, such as cadmium, and the UV irradiation, may be an additional threat to marine organisms.
Collapse
Affiliation(s)
- S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - C Bernini
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - V Stocchi
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - A R Taddei
- Section of Electron Microscopy, Great Equipment Center, University of Tuscia, Viterbo, Italy.
| | - R Meschini
- Department of Environmental and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy.
| | - A M Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - L Rocco
- Department of Environmental, Biological and Pharmaceutical, Sciences and Technologies (DiSTABiF), Second University of Naples, Caserta, Italy.
| | - F Buonocore
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - D Cervia
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - G Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| |
Collapse
|
19
|
Fang F, Zou D, Wang W, Yin Y, Yin T, Hao S, Wang B, Wang G, Wang Y. Non-invasive approaches for drug delivery to the brain based on the receptor mediated transport. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1316-1327. [PMID: 28482500 DOI: 10.1016/j.msec.2017.02.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/13/2016] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
Abstract
The blood brain barrier (BBB) is a physical and biochemical barrier that prevents entry of toxic compounds into brain for preserving homeostasis. However, the BBB also strictly limits influx of most therapeutic agents into the brain. One promising method for overcoming this problem to deliver drugs is receptor mediated transport (RMT) system, which employs the vesicular trafficking machinery to transport substrates across the BBB endothelium in a noninvasive manner. The conjugates of drug or drug-loaded vector linked with appropriate ligands specifically binds to the endogenous targeting receptor on the surface of the endothelial cells. Then drugs could enter the cell body by means of transcytosis and eventual releasing into the brain parenchyma. Over the past 20years, there have been significant developments of RMT targeting strategies. Here, we will review the recent advance of various promising RMT systems and discuss the capability of these approaches for drug delivery to the brain.
Collapse
Affiliation(s)
- Fei Fang
- Key Laboratory of Bio-rheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Shapingba Street 174, Chongqing 404100, China
| | - Dan Zou
- Key Laboratory of Bio-rheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Shapingba Street 174, Chongqing 404100, China
| | - Wei Wang
- Key Laboratory of Bio-rheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Shapingba Street 174, Chongqing 404100, China
| | - Ying Yin
- Key Laboratory of Bio-rheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Shapingba Street 174, Chongqing 404100, China
| | - Tieying Yin
- Key Laboratory of Bio-rheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Shapingba Street 174, Chongqing 404100, China
| | - Shilei Hao
- Key Laboratory of Bio-rheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Shapingba Street 174, Chongqing 404100, China
| | - Bochu Wang
- Key Laboratory of Bio-rheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Shapingba Street 174, Chongqing 404100, China
| | - Guixue Wang
- Key Laboratory of Bio-rheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Shapingba Street 174, Chongqing 404100, China
| | - Yazhou Wang
- Key Laboratory of Bio-rheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Shapingba Street 174, Chongqing 404100, China.
| |
Collapse
|
20
|
Nandi S, Malishev R, Parambath Kootery K, Mirsky Y, Kolusheva S, Jelinek R. Membrane analysis with amphiphilic carbon dots. Chem Commun (Camb) 2015; 50:10299-302. [PMID: 25057851 DOI: 10.1039/c4cc03504f] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Newly-synthesized amphiphilic carbon dots were used for spectroscopic analysis and multicolour microscopic imaging of membranes and live cells. We show that Förster resonance energy transfer (FRET) occurred from the amphiphilic carbon dots to different membrane-associated fluorescence acceptors. The amphiphilic carbon dots enabled imaging of membrane disruption by the beta-amyloid peptide.
Collapse
Affiliation(s)
- Sukhendu Nandi
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| | | | | | | | | | | |
Collapse
|
21
|
Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol 2014; 55:613-31. [PMID: 25340933 DOI: 10.1146/annurev-pharmtox-010814-124852] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Biologics are an emerging class of medicines with substantial promise to treat neurological disorders such as Alzheimer's disease, stroke, and multiple sclerosis. However, the blood-brain barrier (BBB) presents a formidable obstacle that appreciably limits brain uptake and hence the therapeutic potential of biologics following intravenous administration. One promising strategy for overcoming the BBB to deliver biologics is the targeting of endogenous receptor-mediated transport (RMT) systems that employ vesicular trafficking to transport ligands across the BBB endothelium. If a biologic is modified with an appropriate targeting ligand, it can gain improved access to the brain via RMT. Various RMT-targeting strategies have been developed over the past 20 years, and this review explores exciting recent advances, emphasizing studies that show brain targeting in vivo.
Collapse
Affiliation(s)
- Jason M Lajoie
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | | |
Collapse
|
22
|
Hamm R, Chen YR, Seo EJ, Zeino M, Wu CF, Müller R, Yang NS, Efferth T. Induction of cholesterol biosynthesis by archazolid B in T24 bladder cancer cells. Biochem Pharmacol 2014; 91:18-30. [PMID: 24976507 DOI: 10.1016/j.bcp.2014.06.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Resistance of cancer cells towards chemotherapeutics represents a major cause of therapy failure. The objective of our study was to evaluate cellular defense strategies in response to the novel vacuolar H(+)-ATPase inhibitor, archazolid B. EXPERIMENTAL APPROACH The effects of archazolid B on T24 bladder carcinoma cells were investigated by combining "omics" technologies (transcriptomics (mRNA and miRNA) and proteomics). Free cholesterol distribution was determined by filipin staining using flow cytometry and fluorescence microscopy. Flow cytometry was performed for LDLR surface expression studies. Uptake of LDL cholesterol was visualized by confocal microscopy. SREBP activation was determined performing Western Blotting. The efficiency of archazolid B/fluvastatin combination was tested by cytotoxicity assays. RESULTS Archazolid B led to accumulation of free cholesterol within intracellular compartments and drastic disturbances in cholesterol homeostasis resulting in activation of SREBP-2 (sterol regulatory element-binding protein 2) and up-regulation of target genes including HMGCR (HMG-CoA reductase), the key enzyme of cholesterol biosynthesis. LDLR surface expression was reduced and LDL uptake was completely inhibited after 24h, indicating newly synthesized cholesterol to be the main source of cholesterol in archazolid B treated cells. By combining archazolid B with the HMGCR inhibitor fluvastatin, cholesterol was reduced and cell viability decreased by about 20% compared to archazolid B treatment alone. CONCLUSIONS Our study revealed cholesterol biosynthesis as an important resistance mechanism in T24 cells after archazolid B treatment. The combination of archazolid B with statins may be an attractive strategy to potentiate archazolid B induced cell killing by affecting cholesterol biosynthesis.
Collapse
Affiliation(s)
- R Hamm
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Y-R Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ean-Jeong Seo
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Maen Zeino
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ching-Fen Wu
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - R Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - N-S Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - T Efferth
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
23
|
Rappaport J, Garnacho C, Muro S. Clathrin-mediated endocytosis is impaired in type A-B Niemann-Pick disease model cells and can be restored by ICAM-1-mediated enzyme replacement. Mol Pharm 2014; 11:2887-95. [PMID: 24949999 PMCID: PMC4144747 DOI: 10.1021/mp500241y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
Drugs
often use endocytosis to achieve intracellular delivery,
either by passive uptake from the extracellular fluid or by active
targeting of cell surface features such as endocytic receptors. An
example is enzyme replacement therapy, a clinically practiced treatment
for several lysosomal storage diseases where glycosylated recombinant
enzymes naturally target the mannose-6-phosphate receptor and are
internalized by clathrin mediated endocytosis (CME). However, lysosomal
substrate accumulation, a hallmark of these diseases, has been indirectly
linked to aberrant endocytic activity. These effects are poorly understood,
creating an obstacle to therapeutic efficiency. Here we explored endocytic
activity in fibroblasts from patients with type A Niemann–Pick
disease, a lysosomal storage disease characterized by acid sphingomyelinase
(ASM) deficiency. The uptake of fluid phase markers and clathrin-associated
ligands, formation of endocytic structures, and recruitment of intracellular
clathrin to ligand binding sites were all altered, demonstrating aberrant
CME in these cells. Model polymer nanocarriers targeted to intercellular
adhesion molecule-1 (ICAM-1), which are internalized by a clathrin-independent
route, enhanced the intracellular delivery of recombinant ASM more
than 10-fold compared to free enzyme. This strategy reduced substrate
accumulation and restored clathrin endocytic activity to wild-type
levels. There appears to be a relationship between lysosomal storage
and diminished CME, and bypassing this pathway by targeting ICAM-1
may enhance future therapies for lysosomal storage diseases.
Collapse
Affiliation(s)
- Jeff Rappaport
- Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742-4450, United States
| | | | | |
Collapse
|
24
|
Bakhshi FR, Mao M, Shajahan AN, Piegeler T, Chen Z, Chernaya O, Sharma T, Elliott WM, Szulcek R, Bogaard HJ, Comhair S, Erzurum S, van Nieuw Amerongen GP, Bonini MG, Minshall RD. Nitrosation-dependent caveolin 1 phosphorylation, ubiquitination, and degradation and its association with idiopathic pulmonary arterial hypertension. Pulm Circ 2013; 3:816-30. [PMID: 25006397 PMCID: PMC4070841 DOI: 10.1086/674753] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/18/2013] [Indexed: 01/15/2023] Open
Abstract
In the present study, we tested the hypothesis that chronic inflammation and oxidative/nitrosative stress induce caveolin 1 (Cav-1) degradation, providing an underlying mechanism of endothelial cell activation/dysfunction and pulmonary vascular remodeling in patients with idiopathic pulmonary arterial hypertension (IPAH). We observed reduced Cav-1 protein despite increased Cav-1 messenger RNA expression and also endothelial nitric oxide synthase (eNOS) hyperphosphorylation in human pulmonary artery endothelial cells (PAECs) from patients with IPAH. In control human lung endothelial cell cultures, tumor necrosis factor α-induced nitric oxide (NO) production and S-nitrosation (SNO) of Cav-1 Cys-156 were associated with Src displacement and activation, Cav-1 Tyr-14 phosphorylation, and destabilization of Cav-1 oligomers within 5 minutes that could be blocked by eNOS or Src inhibition. Prolonged stimulation (72 hours) with NO donor DETANONOate reduced oligomerized and total Cav-1 levels by 40%-80%, similar to that observed in IPAH patient-derived PAECs. NO donor stimulation of endothelial cells for >72 hours, which was associated with sustained Src activation and Cav-1 phosphorylation, ubiquitination, and degradation, was blocked by NOS inhibitor L-NAME, Src inhibitor PP2, and proteosomal inhibitor MG132. Thus, chronic inflammation, sustained eNOS and Src signaling, and Cav-1 degradation may be important causal factors in the development of IPAH by promoting PAEC dysfunction/activation via sustained oxidative/nitrosative stress.
Collapse
Affiliation(s)
- Farnaz R. Bakhshi
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mao Mao
- Department of Medicine, Section of Cardiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ayesha N. Shajahan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tobias Piegeler
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zhenlong Chen
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Olga Chernaya
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tiffany Sharma
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - W. Mark Elliott
- Pulmonary Division, James Hogg Research Centre Biobank, University of British Columbia, Vancouver, Canada
| | - Robert Szulcek
- Department of Physiology, Institute for Cardiovascular Research, Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
- Department of Pulmonology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Suzy Comhair
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Serpil Erzurum
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Geerten P. van Nieuw Amerongen
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Physiology, Institute for Cardiovascular Research, Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
| | - Marcelo G. Bonini
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Medicine, Section of Cardiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D. Minshall
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
25
|
Janssen SF, Gorgels TG, van der Spek PJ, Jansonius NM, Bergen AA. In silico analysis of the molecular machinery underlying aqueous humor production: potential implications for glaucoma. J Clin Bioinforma 2013; 3:21. [PMID: 24165276 PMCID: PMC3875900 DOI: 10.1186/2043-9113-3-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/23/2013] [Indexed: 12/03/2022] Open
Abstract
Background The ciliary body epithelia (CBE) of the eye produce the aqueous humor (AH). The equilibrium between the AH production by the CBE and the outflow through the trabecular meshwork ultimately determines the intraocular pressure (IOP). An increased IOP is a major risk factor for primary open angle glaucoma (POAG). This study aims to elucidate the molecular machinery of the most important function of the CBE: the AH production and composition, and aims to find possible new molecular clues for POAG and AH production-lowering drugs. Methods We performed a gene expression analysis of the non-pigmented (NPE) and pigmented epithelia (PE) of the human CBE of post mortem eyes. We used 44 k Agilent microarrays against a common reference design. Functional annotations were performed with the Ingenuity knowledge database. Results We built a molecular model of AH production by combining previously published physiological data with our current genomic expression data. Next, we investigated molecular CBE transport features which might influence AH composition. These features included caveolin- and clathrin vesicle-mediated transport of large biomolecules, as well as a range of substrate specific transporters. The presence of these transporters implies that, for example, immunoglobins, thyroid hormone, prostaglandins, cholesterol and vitamins can be secreted by the CBE along with the AH. In silico, we predicted some of the molecular apical interactions between the NPE and PE, the side where the two folded epithelia face each other. Finally, we found high expression of seven POAG disease genes in the plasma membrane of extracellular space of the CBE, namely APOE, CAV1, COL8A2, EDNRA, FBN1, RFTN1 and TLR4 and we found possible new targets for AH lowering drugs in the AH. Conclusions The CBE expresses many transporters, which account for AH production and/or composition. Some of these entries have also been associated with POAG. We hypothesize that the CBE may play a more prominent role than currently thought in the pathogenesis of POAG, for example by changing the composition of AH.
Collapse
Affiliation(s)
| | | | | | | | - Arthur Ab Bergen
- Department of Clinical and Molecular Ophthalmogenetics the Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
26
|
Mechanisms of absorption and elimination of drugs administered by inhalation. Ther Deliv 2013; 4:1027-45. [PMID: 23919477 DOI: 10.4155/tde.13.67] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary drug delivery is an effective route for local or systemic drug administration. However, compared with other routes of administration, there is a scarcity of information on how drugs are absorbed from the lung. The different cell composition lining the airways and alveoli makes this task extremely complicated. Lung cell lines and primary culture cells are useful in studying the absorption mechanisms. However, it is imperative that these cell cultures express essential features required to study these mechanisms such as intact tight junctions and transporters. In vivo, the drug has to face defensive physical and immunological barriers such as mucociliary clearance and alveolar macrophages. Knowledge of the physicochemical properties of the drug and aerosol formulation is required. All of these factors interact together leading to either successful drug deposition followed by absorption or drug elimination. These aspects concerning drug transport in the lung are addressed in this review.
Collapse
|
27
|
Metcalf DJ, Edwards R, Kumarswami N, Knight AE. Test samples for optimizing STORM super-resolution microscopy. J Vis Exp 2013. [PMID: 24056752 PMCID: PMC3857894 DOI: 10.3791/50579] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
STORM is a recently developed super-resolution microscopy technique with up to 10 times better resolution than standard fluorescence microscopy techniques. However, as the image is acquired in a very different way than normal, by building up an image molecule-by-molecule, there are some significant challenges for users in trying to optimize their image acquisition. In order to aid this process and gain more insight into how STORM works we present the preparation of 3 test samples and the methodology of acquiring and processing STORM super-resolution images with typical resolutions of between 30-50 nm. By combining the test samples with the use of the freely available rainSTORM processing software it is possible to obtain a great deal of information about image quality and resolution. Using these metrics it is then possible to optimize the imaging procedure from the optics, to sample preparation, dye choice, buffer conditions, and image acquisition settings. We also show examples of some common problems that result in poor image quality, such as lateral drift, where the sample moves during image acquisition and density related problems resulting in the 'mislocalization' phenomenon.
Collapse
|
28
|
Li Q, Shu Y. Pharmacological modulation of cytotoxicity and cellular uptake of anti-cancer drugs by PDE5 inhibitors in lung cancer cells. Pharm Res 2013; 31:86-96. [PMID: 23884568 DOI: 10.1007/s11095-013-1134-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/24/2013] [Indexed: 02/04/2023]
Abstract
PURPOSE Previous research has led to the recognition of a cGMP signaling pathway governing drug transport. This study is to investigate whether inhibitors of phosphodiesterase type 5 (PDE5), which increase intracellular cGMP levels, modulate the cytotoxicity and uptake of anti-cancer drugs in cancer cells. METHODS The experiments were conducted with and without PDE5 inhibitors: dipyridamole, vardenafil, and/or sildenafil. The cytotoxicity of doxorubicin, cisplatin and oxaliplatin was determined in multiple cancer cell lines derived from different tissues. The cellular uptake of structurally diverse compounds was further examined in lung cancer cells with and without various endocytotic inhibitors. The tumor accumulation and the anti-tumor effect of trastuzumab were examined in a lung cancer xenograft mouse model. RESULTS Dipyridamole could modulate the cytotoxicity of doxorubicin, cisplatin, and oxaliplatin in cancer cells. Particularly, PDE5 inhibitors increased cellular uptake of structurally diverse compounds into lung cancer cells both in vitro and in vivo. The effect of vardenafil on drug uptake could be blocked by endocytotic inhibitors. The growth of lung cancer xenograft in nude mice was significantly suppressed by addition of vardenafil to trastuzumab treatment. CONCLUSION PDE5 inhibitors may increase the efficacy of anti-cancer drugs by increasing endocytosis-mediated cellular drug uptake, and thus serve as adjuvant therapy for certain cancers such as lung cancer.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, 20 Penn Street, HSFII Room 555, Baltimore, Maryland, 21201, USA
| | | |
Collapse
|
29
|
Yao W, Peng Y, Du M, Luo J, Zong L. Preventative vaccine-loaded mannosylated chitosan nanoparticles intended for nasal mucosal delivery enhance immune responses and potent tumor immunity. Mol Pharm 2013; 10:2904-14. [PMID: 23768205 DOI: 10.1021/mp4000053] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chitosan (CS) has been extensively used as a protein drug and gene delivery carrier, but its delivery efficiency is unsatisfactory. In this study, a mannose ligand was used to modify CS, which could enhance the delivery efficiency of CS via mannose receptor-mediated endocytosis. A preventative anti-GRP DNA vaccine (pCR3.1-VS-HSP65-TP-GRP6-M2, pGRP) was condensed with mannosylated chitosan (MCS) to form MCS/pGRP nanoparticles. Nanoparticles were intranasally administered in a subcutaneous mice prostate carcinoma model to evaluate the efficacy on inhibition of the growth of tumor cells. The titers of anti-GRP IgG that lasted for 11 weeks were significantly higher than that for administration of CS/pGRP nanoparticles (p < 0.01) and intramuscular administration of a pGRP solution (p < 0.05) to mice. In addition, immunization with MCS/pGRP nanoparticles could suppress the growth of tumor cells. The average tumor weight (0.79 ± 0.30 g) was significantly lower than that in the CS/pGRP nanoparticle group (1.69 ± 0.15 g) (p < 0.01) or that in the pGRP group (1.12 ± 0.37 g) (p < 0.05). Cell binding and cellular uptake results indicated that MCS/pGRP nanoparticles bound with C-type lectin receptors on macrophages. MCS was an efficient targeting gene delivery carrier and could be used in antitumor immunotherapy.
Collapse
Affiliation(s)
- Wenjun Yao
- School of Pharmacy, China Pharmaceutical University , TongJiaXiang No. 24, Nanjing 210009, PR China
| | | | | | | | | |
Collapse
|
30
|
Rosnoblet C, Legrand D, Demaegd D, Hacine-Gherbi H, de Bettignies G, Bammens R, Borrego C, Duvet S, Morsomme P, Matthijs G, Foulquier F. Impact of disease-causing mutations on TMEM165 subcellular localization, a recently identified protein involved in CDG-II. Hum Mol Genet 2013; 22:2914-28. [PMID: 23575229 DOI: 10.1093/hmg/ddt146] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
TMEM165 has recently been identified as a novel protein involved in CDG-II. TMEM165 has no biological function described so far. Different mutations were recently found in patients with Golgi glycosylation defects and harboring a peculiar skeletal phenotype. In this study, we examined the effect of naturally occurring mutations on the intracellular localization of TMEM165 and their abilities to complement the TMEM165-deficient yeast, gdt1▵. Wild-type TMEM165 was present within Golgi compartment, plasma membrane and late endosomes/lysosomes, whereas mutated TMEM165 were found differentially localized according to the mutations. We demonstrated that, in the yeast functional assay with TMEM165 ortholog Gdt1, the homozygous point mutation correlating with a mild phenotype restores the yeast functional assay, whereas the truncated mutation, associated with severe disease, failed to restore Gdt1 function. These studies highly suggest that these clinically relevant point mutations do not affect the protein function but critically changes the subcellular protein localization. Moreover, the data point to a critical role of the YNRL motif in TMEM165 subcellular localization.
Collapse
Affiliation(s)
- Claire Rosnoblet
- CNRS-UMR 8576, Structural and Functional Glycobiology Unit, IFR 147, University of Lille 1, 59655 Villeneuve d’Ascq, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lige B, Romano JD, Sampels V, Sonda S, Joiner KA, Coppens I. Introduction of caveolae structural proteins into the protozoan Toxoplasma results in the formation of heterologous caveolae but not caveolar endocytosis. PLoS One 2012; 7:e51773. [PMID: 23272165 PMCID: PMC3522706 DOI: 10.1371/journal.pone.0051773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/08/2012] [Indexed: 11/30/2022] Open
Abstract
Present on the plasma membrane of most metazoans, caveolae are specialized microdomains implicated in several endocytic and trafficking mechanisms. Caveolins and the more recently discovered cavins are the major protein components of caveolae. Previous studies reported that caveolar invaginations can be induced de novo on the surface of caveolae-negative mammalian cells upon heterologous expression of caveolin-1. However, it remains undocumented whether other components in the transfected cells participate in caveolae formation. To address this issue, we have exploited the protozoan Toxoplasma as a heterologous expression system to provide insights into the minimal requirements for caveogenesis and caveolar endocytosis. Upon expression of caveolin-1, Toxoplasma accumulates prototypical exocytic caveolae 'precursors' in the cytoplasm. Toxoplasma expressing caveolin-1 alone, or in conjunction with cavin-1, neither develops surface-located caveolae nor internalizes caveolar ligands. These data suggest that the formation of functional caveolae at the plasma membrane in Toxoplasma and, by inference in all non-mammalian cells, requires effectors other than caveolin-1 and cavin-1. Interestingly, Toxoplasma co-expressing caveolin-1 and cavin-1 displays an impressive spiraled network of membranes containing the two proteins, in the cytoplasm. This suggests a synergistic activity of caveolin-1 and cavin-1 in the morphogenesis and remodeling of membranes, as illustrated for Toxoplasma.
Collapse
Affiliation(s)
- Bao Lige
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health Baltimore, Maryland, United States of America
| | - Julia D. Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health Baltimore, Maryland, United States of America
| | - Vera Sampels
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health Baltimore, Maryland, United States of America
| | - Sabrina Sonda
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Keith A. Joiner
- Arizona Health Science Center, University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health Baltimore, Maryland, United States of America
| |
Collapse
|
32
|
Maniatis NA, Chernaya O, Shinin V, Minshall RD. Caveolins and lung function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012. [PMID: 22411320 DOI: 10.1007/978-1-4614-1222-911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The primary function of the mammalian lung is to facilitate diffusion of oxygen to venous blood and to ventilate carbon dioxide produced by catabolic reactions within cells. However, it is also responsible for a variety of other important functions, including host defense and production of vasoactive agents to regulate not only systemic blood pressure, but also water, electrolyte and acid-base balance. Caveolin-1 is highly expressed in the majority of cell types in the lung, including epithelial, endothelial, smooth muscle, connective tissue cells, and alveolar macrophages. Deletion of caveolin-1 in these cells results in major functional aberrations, suggesting that caveolin-1 may be crucial to lung homeostasis and development. Furthermore, generation of mutant mice that under-express caveolin-1 results in severe functional distortion with phenotypes covering practically the entire spectrum of known lung diseases, including pulmonary hypertension, fibrosis, increased endothelial permeability, and immune defects. In this Chapter, we outline the current state of knowledge regarding caveolin-1-dependent regulation of pulmonary cell functions and discuss recent research findings on the role of caveolin-1 in various pulmonary disease states, including obstructive and fibrotic pulmonary vascular and inflammatory diseases.
Collapse
Affiliation(s)
- Nikolaos A Maniatis
- 2nd Department of Critical Care, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | | | | | | |
Collapse
|
33
|
Abstract
The primary function of the mammalian lung is to facilitate diffusion of oxygen to venous blood and to ventilate carbon dioxide produced by catabolic reactions within cells. However, it is also responsible for a variety of other important functions, including host defense and production of vasoactive agents to regulate not only systemic blood pressure, but also water, electrolyte and acid-base balance. Caveolin-1 is highly expressed in the majority of cell types in the lung, including epithelial, endothelial, smooth muscle, connective tissue cells, and alveolar macrophages. Deletion of caveolin-1 in these cells results in major functional aberrations, suggesting that caveolin-1 may be crucial to lung homeostasis and development. Furthermore, generation of mutant mice that under-express caveolin-1 results in severe functional distortion with phenotypes covering practically the entire spectrum of known lung diseases, including pulmonary hypertension, fibrosis, increased endothelial permeability, and immune defects. In this Chapter, we outline the current state of knowledge regarding caveolin-1-dependent regulation of pulmonary cell functions and discuss recent research findings on the role of caveolin-1 in various pulmonary disease states, including obstructive and fibrotic pulmonary vascular and inflammatory diseases.
Collapse
|
34
|
Stewart SE, D'Angelo ME, Bird PI. Intercellular communication via the endo-lysosomal system: translocation of granzymes through membrane barriers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:59-67. [PMID: 21683168 DOI: 10.1016/j.bbapap.2011.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 11/24/2022]
Abstract
Cytotoxic lymphocytes (CLs) are responsible for the clearance of virally infected or neoplastic cells. CLs possess specialised lysosome-related organelles called granules which contain the granzyme family of serine proteases and perforin. Granzymes may induce apoptosis in the target cell when delivered by the pore forming protein, perforin. Here we follow the perforin-granzyme pathway from synthesis and storage in the granule, to exocytosis and finally delivery into the target cell. This review focuses on the controversial subject of perforin-mediated translocation of granzymes into the target cell cytoplasm. It remains unclear whether this occurs at the cell surface with granzymes moving through a perforin pore in the plasma membrane, or if it involves internalisation of perforin and granzymes and subsequent release from an endocytic compartment. The latter mechanism would represent an example of cross talk between the endo-lysosomal pathways of individual cells. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Sarah E Stewart
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
35
|
Photochemical activation of endosomal escape of MRI-Gd-agents in tumor cells. Magn Reson Med 2010; 65:212-9. [DOI: 10.1002/mrm.22586] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Francis GL. Albumin and mammalian cell culture: implications for biotechnology applications. Cytotechnology 2010; 62:1-16. [PMID: 20373019 PMCID: PMC2860567 DOI: 10.1007/s10616-010-9263-3] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 03/10/2010] [Indexed: 12/15/2022] Open
Abstract
Albumin has a long historical involvement in design of media for the successful culture of mammalian cells, in both the research and commercial fields. The potential application of albumins, bovine or human serum albumin, for cell culture is a by-product of the physico-chemical, biochemical and cell-specific properties of the molecule. In this review an analysis of these features of albumin leads to a consideration of the extracellular and intracellular actions of the molecule, and importantly the role of its interactions with numerous ligands or bioactive factors that influence the growth of cells in culture: these include hormones, growth factors, lipids, amino acids, metal ions, reactive oxygen and nitrogen species to name a few. The interaction of albumin with the cell in relation to these co-factors has a potential impact on metabolic and biosynthetic activity, cell proliferation and survival. Application of this knowledge to improve the performance in manufacturing biotechnology and in the emerging uses of cell culture for tissue engineering and stem cell derived therapies is an important prospect.
Collapse
Affiliation(s)
- Geoffrey L Francis
- Applied R&D, Novozymes Biopharma AU Ltd, 28 Dalgleish Street, Thebarton, SA, 5031, Australia,
| |
Collapse
|
37
|
Sverdlov M, Shinin V, Place AT, Castellon M, Minshall RD. Filamin A regulates caveolae internalization and trafficking in endothelial cells. Mol Biol Cell 2009; 20:4531-40. [PMID: 19759182 DOI: 10.1091/mbc.e08-10-0997] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transcytosis via caveolae is critical for maintaining vascular homeostasis by regulating the tissue delivery of macromolecules, hormones, and lipids. In the present study, we test the hypothesis that interactions between F-actin cross-linking protein filamin A and caveolin-1 facilitate the internalization and trafficking of caveolae. Small interfering RNA-mediated knockdown of filamin A, but not filamin B, reduced the uptake and transcytosis of albumin by approximately 35 and 60%, respectively, without altering the actin cytoskeletal structure or cell-cell adherens junctions. Mobility of both intracellular caveolin-1-green fluorescent protein (GFP)-labeled vesicles measured by fluorescence recovery after photobleaching and membrane-associated vesicles measured by total internal reflection-fluorescence microscopy was decreased in cells with reduced filamin A expression. In addition, in melanoma cells that lack filamin A (M2 cells), the majority of caveolin-1-GFP was localized on the plasma membrane, whereas in cells in which filamin A expression was reconstituted (A7 cells and M2 cells transfected with filamin A-RFP), caveolin-1-GFP was concentrated in intracellular vesicles. Filamin A association with caveolin-1 in endothelial cells was confirmed by cofractionation of these proteins in density gradients, as well as by coimmunoprecipitation. Moreover, this interaction was enhanced by Src activation, associated with increased caveolin-1 phosphorylation, and blocked by Src inhibition. Taken together, these data suggest that filamin A association with caveolin-1 promotes caveolae-mediated transport by regulating vesicle internalization, clustering, and trafficking.
Collapse
Affiliation(s)
- Maria Sverdlov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|