1
|
Fosnacht KG, Dorogin J, Jefferis PM, Hettiaratchi MH, Pluth MD. An Expanded Palette of Fluorescent COS/H 2S-Releasing Donors for H 2S Delivery, Detection, and In Vivo Application. Angew Chem Int Ed Engl 2024; 63:e202402353. [PMID: 38578835 PMCID: PMC11147686 DOI: 10.1002/anie.202402353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/07/2024]
Abstract
Hydrogen sulfide (H2S) is an important reactive sulfur species that is involved in many biological functions, and H2S imbalances have been indicated as a potential biomarker for various diseases. Different H2S donors have been developed to deliver H2S directly to biological systems, but few reports include donors with optical responses that allow for tracking of H2S release. Moreover, donor systems that use the same chemistry to deliver H2S across a palette of fluorescent responses remain lacking. Here we report five thiol-activated fluorescence turn-on COS/H2S donors that utilize blue, yellow, orange, red, and near infrared-emitting dyes functionalized with an H2S-releasing sulfenyl thiocarbonate scaffold. Upon treatment with thiols, each donor provides a fluorescence turn-on response (3-310-fold) and high H2S release efficiencies (>60 %). Using combined electrode and fluorescence experiments, we directly correlate the measured H2S release with the fluorescence response. All donors are biocompatible and release H2S in live cell environments. In addition, we demonstrate that the NIR donor allows for imaging H2S release in live rats via subcutaneous injection of the donor loaded into an alginate gel, which to the best of our knowledge is the first in vivo tracking of H2S release from a fluorogenic donor in non-transparent organisms.
Collapse
Affiliation(s)
- Kaylin G Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States
| | - Jonathan Dorogin
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States
| | - Payton M Jefferis
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States
| | - Marian H Hettiaratchi
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States
| |
Collapse
|
2
|
Thibault E, Brandizzi F. Post-translational modifications: emerging directors of cell-fate decisions during endoplasmic reticulum stress in Arabidopsis thaliana. Biochem Soc Trans 2024; 52:831-848. [PMID: 38600022 PMCID: PMC11088923 DOI: 10.1042/bst20231025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Homeostasis of the endoplasmic reticulum (ER) is critical for growth, development, and stress responses. Perturbations causing an imbalance in ER proteostasis lead to a potentially lethal condition known as ER stress. In ER stress situations, cell-fate decisions either activate pro-life pathways that reestablish homeostasis or initiate pro-death pathways to prevent further damage to the organism. Understanding the mechanisms underpinning cell-fate decisions in ER stress is critical for crop development and has the potential to enable translation of conserved components to ER stress-related diseases in metazoans. Post-translational modifications (PTMs) of proteins are emerging as key players in cell-fate decisions in situations of imbalanced ER proteostasis. In this review, we address PTMs orchestrating cell-fate decisions in ER stress in plants and provide evidence-based perspectives for where future studies may focus to identify additional PTMs involved in ER stress management.
Collapse
Affiliation(s)
- Ethan Thibault
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
| | - Federica Brandizzi
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
3
|
Łoboda A, Dulak J. Cardioprotective Effects of Hydrogen Sulfide and Its Potential Therapeutic Implications in the Amelioration of Duchenne Muscular Dystrophy Cardiomyopathy. Cells 2024; 13:158. [PMID: 38247849 PMCID: PMC10814317 DOI: 10.3390/cells13020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Hydrogen sulfide (H2S) belongs to the family of gasotransmitters and can modulate a myriad of biological signaling pathways. Among others, its cardioprotective effects, through antioxidant, anti-inflammatory, anti-fibrotic, and proangiogenic activities, are well-documented in experimental studies. Cardiorespiratory failure, predominantly cardiomyopathy, is a life-threatening complication that is the number one cause of death in patients with Duchenne muscular dystrophy (DMD). Although recent data suggest the role of H2S in ameliorating muscle wasting in murine and Caenorhabditis elegans models of DMD, possible cardioprotective effects have not yet been addressed. In this review, we summarize the current understanding of the role of H2S in animal models of cardiac dysfunctions and cardiac cells. We highlight that DMD may be amenable to H2S supplementation, and we suggest H2S as a possible factor regulating DMD-associated cardiomyopathy.
Collapse
Affiliation(s)
- Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland;
| | | |
Collapse
|
4
|
Hu Q, Zhu C, Hankins RA, Murmello AR, Marrs GS, Lukesh JC. An ROS-Responsive Donor That Self-Reports Its H 2S Delivery by Forming a Benzoxazole-Based Fluorophore. J Am Chem Soc 2023; 145:25486-25494. [PMID: 37950698 DOI: 10.1021/jacs.3c10446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
Hydrogen sulfide (H2S), an endogenous signaling molecule, is known to play a pivotal role in neuroprotection, vasodilation, and hormonal regulation. To further explore the biological effects of H2S, refined donors that facilitate its biological delivery, especially under specific (patho) physiological conditions, are needed. In the present study, we demonstrate that ortho-substituted, aryl boronate esters provide two unique and distinct pathways for H2S release from thioamide-based donors: Lewis acid-facilitated hydrolysis and reactive oxygen species (ROS)-induced oxidation/cyclization. Through a detailed structure-activity relationship study, donors that resist hydrolysis and release H2S solely via the latter mechanism were identified, which have the added benefit of providing a potentially useful heterocycle as the lone byproduct of this novel chemistry. To highlight this, we developed an ROS-activated donor (QH642) that simultaneously synthesizes a benzoxazole-based fluorophore en route to its H2S delivery. A distinct advantage of this design over earlier self-reporting donors is that fluorophore formation is possible only if H2S has been discharged from the donor. This key feature eliminates the potential for false positives and provides a more accurate depiction of reaction progress and donor delivery of H2S, including in complex cellular environments.
Collapse
Affiliation(s)
- Qiwei Hu
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Changlei Zhu
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Rynne A Hankins
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Allison R Murmello
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Glen S Marrs
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - John C Lukesh
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| |
Collapse
|
5
|
Majumder A. Targeting Homocysteine and Hydrogen Sulfide Balance as Future Therapeutics in Cancer Treatment. Antioxidants (Basel) 2023; 12:1520. [PMID: 37627515 PMCID: PMC10451792 DOI: 10.3390/antiox12081520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
A high level of homocysteine (Hcy) is associated with oxidative/ER stress, apoptosis, and impairment of angiogenesis, whereas hydrogen sulfide (H2S) has been found to reverse this condition. Recent studies have shown that cancer cells need to produce a high level of endogenous H2S to maintain cell proliferation, growth, viability, and migration. However, any novel mechanism that targets this balance of Hcy and H2S production has yet to be discovered or exploited. Cells require homocysteine metabolism via the methionine cycle for nucleotide synthesis, methylation, and reductive metabolism, and this pathway supports the high proliferative rate of cancer cells. Although the methionine cycle favors cancer cells for their survival and growth, this metabolism produces a massive amount of toxic Hcy that somehow cancer cells handle very well. Recently, research showed specific pathways important for balancing the antioxidative defense through H2S production in cancer cells. This review discusses the relationship between Hcy metabolism and the antiapoptotic, antioxidative, anti-inflammatory, and angiogenic effects of H2S in different cancer types. It also summarizes the historical understanding of targeting antioxidative defense systems, angiogenesis, and other protective mechanisms of cancer cells and the role of H2S production in the genesis, progression, and metastasis of cancer. This review defines a nexus of diet and precision medicine in targeting the delicate antioxidative system of cancer and explores possible future therapeutics that could exploit the Hcy and H2S balance.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
M.sofiullah SS, Murugan DD, Muid SA, Wu YS, Zamakshshari NH, Quan FG, Patrick M, Choy KW. Thymoquinone reverses homocysteine-induced endothelial dysfunction via inhibition of ER-stress induced oxidative stress pathway.. [DOI: 10.21203/rs.3.rs-2964177/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Hyperhomocysteinemia has been linked to an increased risk of cardiovascular diseases. High levels of homocysteine (Hcy) promote endoplasmic reticulum (ER) stress that can increase reactive oxygen species (ROS), leading to endothelial dysfunction. Thymoquinone (TQ) is the major active ingredient in Nigella sativa seeds volatile oil and is shown to have a cardioprotective effect. However, no study evaluated the effect of TQ against Hcy-induced endothelial dysfunction. Thus, this study aims to investigate the effects and mechanisms of TQ in reversing Hcy-induced endothelial dysfunction. Isolated aorta from male Sprague-Dawley (SD) rats incubated with Hcy (500 µM) and co-treated with or without TQ (0.1 µM, 1 µM, and 10 µM), 20 µM TUDCA, 100 µM Apocynin or 1 mM Tempol in organ bath to study the vascular function. Additionally, human umbilical vein endothelial cells (HUVECs) were incubated with Hcy (10 mM) and various concentrations of TQ (1 and 10 𝜇M), Tempol (100 𝜇M), Apocynin (100 𝜇M), TUDCA (100 𝜇M) or H2O2 (0.25 mM) to evaluate the cell viability by using a phase contrast microscope and dye exclusion assay. Involvement of ER stress pathway, ROS and NO bioavailability were accessed via immunoassay and fluorescent staining respectively. Molecular docking was performed to evaluate the binding affinity of TQ to GRP78. Our results revealed that Hcy impaired endothelium-dependant relaxation in isolated aorta and induced apoptosis in HUVECs. These effects were reversed by TQ, TUDCA, tempol and apocynin. Treatment with TQ (10𝜇M) also reduced ROS level, improved NO bioavailability as well reduced GRP78 and NOX4 protein in HUVECs. Result from the molecular docking study showed that TQ could bind well to GRP78 through hydrogen bond and hydrophobic interaction with the amino acid at GRP78 ATP binding pocket. Taken together, the present results suggest that TQ preserved endothelial function in rat aorta and reduced apoptosis of HUVECs induced by Hcy through the inhibition of ER stress-mediated ROS and eNOS uncoupling.
Collapse
|
7
|
Gáll T, Nagy P, Garai D, Potor L, Balla GJ, Balla G, Balla J. Overview on hydrogen sulfide-mediated suppression of vascular calcification and hemoglobin/heme-mediated vascular damage in atherosclerosis. Redox Biol 2022; 57:102504. [PMID: 36240620 PMCID: PMC9576974 DOI: 10.1016/j.redox.2022.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/04/2022] Open
Abstract
Vulnerable atherosclerotic plaques with hemorrhage considerably contribute to cardiovascular morbidity and mortality. Calcification is the main characteristic of advanced atherosclerotic lesions and calcified aortic valve disease (CAVD). Lyses of red blood cells and hemoglobin (Hb) release occur in human hemorrhagic complicated lesions. During the interaction of cell-free Hb with plaque constituents, Hb is oxidized to ferric and ferryl states accompanied by oxidative changes of the globin moieties and heme release. Accumulation of both ferryl-Hb and metHb has been observed in atherosclerotic plaques. The oxidation hotspots in the globin chain are the cysteine and tyrosine amino acids associated with the generation of Hb dimers, tetramers and polymers. Moreover, fragmentation of Hb occurs leading to the formation of globin-derived peptides. A series of these pro-atherogenic cellular responses can be suppressed by hydrogen sulfide (H2S). Since H2S has been explored to exhibit a wide range of physiologic functions to maintain vascular homeostasis, it is not surprising that H2S may play beneficial effects in the progression of atherosclerosis. In the present review, we summarize the findings about the effects of H2S on atherosclerosis and CAVD with a special emphasis on the oxidation of Hb/heme in atherosclerotic plaque development and vascular calcification.
Collapse
Affiliation(s)
- Tamás Gáll
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary; Institute of Oncochemistry, University of Debrecen, Hungary
| | - Dorottya Garai
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | - László Potor
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | | | - György Balla
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - József Balla
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
8
|
Wang R, Tang C. Hydrogen Sulfide Biomedical Research in China-20 Years of Hindsight. Antioxidants (Basel) 2022; 11:2136. [PMID: 36358508 PMCID: PMC9686505 DOI: 10.3390/antiox11112136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2023] Open
Abstract
Hydrogen sulfide (H2S) is an important gasotransmitter that is produced by mammalian cells and performs profound physiological and pathophysiological functions. Biomedical research on H2S metabolism and function in China began 20 years ago, which pioneered the examination of the correlation of abnormal H2S metabolism and cardiovascular diseases. Over the last two decades, research teams in China have made numerous breakthrough discoveries on the effects of H2S metabolism on hypertension, atherosclerosis, pulmonary hypertension, shock, angiogenesis, chronic obstructive pulmonary disease, pain, iron homeostasis, and testicle function, to name a few. These research developments, carried by numerous research teams all over China, build nationwide research network and advance both laboratory study and clinical applications. An integrated and collaborative research strategy would further promote and sustain H2S biomedical research in China and in the world.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing 100191, China
| |
Collapse
|
9
|
Dugbartey GJ, Alornyo KK, Ohene BO, Boima V, Antwi S, Sener A. Renal consequences of the novel coronavirus disease 2019 (COVID-19) and hydrogen sulfide as a potential therapy. Nitric Oxide 2022; 120:16-25. [PMID: 35032641 PMCID: PMC8755416 DOI: 10.1016/j.niox.2022.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is a global pandemic which is primarily considered a respiratory illness. However, emerging reports show that the virus exhibits both pulmonary and extra-pulmonary manifestations in humans, with the kidney as a major extra-pulmonary target due to its abundant expression of angiotensin-converting enzyme 2 and transmembrane protease serine 2, which facilitate entry of the virus into cells. Acute kidney injury has become prevalent in COVID-19 patients without prior any history of kidney dysfunction. In addition, the virus also worsens kidney conditions and increases mortality of COVID-19 patients with pre-existing chronic kidney disease, renal cancer, diabetic nephropathy, end-stage kidney disease as well as dialysis and kidney transplant patients. In the search for antiviral agents for the treatment of COVID-19, hydrogen sulfide (H2S), the third established member of gasotransmitter family, is emerging as a potential candidate, possessing important therapeutic properties including antiviral, anti-inflammatory, anti-thrombotic and antioxidant properties. A recent clinical study revealed higher serum H2S levels in survivors of COVID-19 pneumonia with reduced interleukin-6 levels compared to fatal cases. In this review, we summarize the global impact of COVID-19 on kidney conditions and discuss the emerging role of H2S as a potential COVID-19 therapy.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Bright O Ohene
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Vincent Boima
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Sampson Antwi
- Department of Child Health, School of Medical Sciences, Kwame Nkrumah University of Science and Technology and Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Alp Sener
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-organ Transplant Program, London Health Sciences Center, Ontario, Canada; Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
10
|
JK-2 loaded electrospun membrane for promoting bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112471. [PMID: 34702545 DOI: 10.1016/j.msec.2021.112471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
Hydrogen sulfide (H2S) has been as an essential gasotransmitter and a potential therapeutic approach for several biomedical treatments such as cardiovascular disorders, hypertension, and other diseases. The endogenous and exogenous H2S also plays a crucial role in the bone anabolic process and a protective mechanism in cell signalling. In this study, we have utilized two types of polymers, polycaprolactone (PCL) and gelatin (Gel), for the fabrication of JK-2 (H2S donor) loaded nanofibrous scaffold via electrospinning process for bone healing and bone tissue engineering. Comparing the PCL/Gel and PCL/Gel-JK-2 scaffolds, the latter demonstrated enhanced cell adhesion and proliferation capabilities. Furthermore, both experimental scaffolds have been subjected to an in vivo experiment for 4 and 8 weeks in a bone-defect model of a rabbit to determine their biological responses under physiological conditions. There was an obvious increase in bone regeneration in the PCL/Gel-JK-2 group compared to the control and PCL/Gel groups. These results indicate the use of PCL/Gel scaffolds loaded with JK-2 should be considered for possible bone regeneration.
Collapse
|
11
|
Dai J, Teng X, Jin S, Wu Y. The Antiviral Roles of Hydrogen Sulfide by Blocking the Interaction between SARS-CoV-2 and Its Potential Cell Surface Receptors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7866992. [PMID: 34497683 PMCID: PMC8421161 DOI: 10.1155/2021/7866992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is posing a great threat to the global economy and public health security. Together with the acknowledged angiotensin-converting enzyme 2, glucose-regulated protein 78, transferrin receptor, AXL, kidney injury molecule-1, and neuropilin 1 are also identified as potential receptors to mediate SARS-CoV-2 infection. Therefore, how to inhibit or delay the binding of SARS-CoV-2 with the abovementioned receptors is a key step for the prevention and treatment of COVID-19. As the third gasotransmitter, hydrogen sulfide (H2S) plays an important role in many physiological and pathophysiological processes. Recently, survivors were reported to have significantly higher H2S levels in COVID-19 patients, and mortality was significantly greater among patients with decreased H2S levels. Considering that the beneficial role of H2S against COVID-19 and COVID-19-induced comorbidities and multiorgan damage has been well-examined and reported in some excellent reviews, this review will discuss the recent findings on the potential receptors of SARS-CoV-2 and how H2S modulates the above receptors, in turn blocking SARS-CoV-2 entry into host cells.
Collapse
Affiliation(s)
- Jing Dai
- Department of Clinical Diagnostics, Hebei Medical University, Hebei 050017, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Hebei 050017, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei 050017, China
- Key Laboratory of Vascular Medicine of Hebei Province, Hebei 050017, China
| |
Collapse
|
12
|
Yarmohammadi F, Hayes AW, Karimi G. The cardioprotective effects of hydrogen sulfide by targeting endoplasmic reticulum stress and the Nrf2 signaling pathway: A review. Biofactors 2021; 47:701-712. [PMID: 34161646 DOI: 10.1002/biof.1763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Cardiac diseases are emerging due to lifestyle, urbanization, and the accelerated aging process. Oxidative stress has been associated with cardiac injury progression through interference with antioxidant strategies and endoplasmic reticulum (ER) function. Hydrogen sulfide (H2 S) is generated endogenously from l-cysteine in various tissues including heart tissue. Pharmacological evaluation of H2 S has suggested a potential role for H2 S against diabetic cardiomyopathy, ischemia/reperfusion injury, myocardial infarction, and cardiotoxicity. Nuclear factor E2-related factor 2 (Nrf2) activity is crucial for cell survival in response to oxidative stress. H2 S up-regulates Nrf2 expression and its related signaling pathway in myocytes. H2 S also suppresses the expression and activity of ER stress-related proteins. H2 S has been reported to improve various cardiac conditions through antioxidant and anti-ER stress-related activities.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, Florida, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Unfolded protein response during cardiovascular disorders: a tilt towards pro-survival and cellular homeostasis. Mol Cell Biochem 2021; 476:4061-4080. [PMID: 34259975 DOI: 10.1007/s11010-021-04223-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that orchestrates the production and proper assembly of an extensive types of secretory and membrane proteins. Endoplasmic reticulum stress is conventionally related to prolonged disruption in the protein folding machinery resulting in the accumulation of unfolded proteins in the ER. This disruption is often manifested due to oxidative stress, Ca2+ leakage, iron imbalance, disease conditions which in turn hampers the cellular homeostasis and induces cellular apoptosis. A mild ER stress is often reverted back to normal. However, cells retaliate to acute ER stress by activating the unfolded protein response (UPR) which comprises three signaling pathways, Activating transcription factor 6 (ATF6), inositol requiring enzyme 1 alpha (IRE1α), and protein kinase RNA-activated-like ER kinase (PERK). The UPR response participates in both protective and pro-apoptotic responses and not much is known about the mechanistic aspects of the switch from pro-survival to pro-apoptosis. When ER stress outpaces UPR response then cell apoptosis prevails which often leads to the development of various diseases including cardiomyopathies. Therefore, it is important to identify molecules that modulate the UPR that may serve as promising tools towards effective treatment of cardiovascular diseases. In this review, we elucidated the latest advances in construing the contribution imparted by the three arms of UPR to combat the adverse environment in the ER to restore cellular homeostasis during cardiomyopathies. We also summarized the various therapeutic agents that plays crucial role in tilting the UPR response towards pro-survival.
Collapse
|
14
|
Chen L, Ma K, Fan H, Wang X, Cao T. Exogenous hydrogen sulfide protects against hepatic ischemia/reperfusion injury by inhibiting endoplasmic reticulum stress and cell apoptosis. Exp Ther Med 2021; 22:799. [PMID: 34093755 PMCID: PMC8170662 DOI: 10.3892/etm.2021.10231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to explore the effect of exogenous hydrogen sulphide (H2S) on endoplasmic reticulum (ER) stress (ERS) in a rat model of hepatic ischemia/reperfusion (I/R) injury. A total of 48 Sprague-Dawley rats were randomly divided into four groups (n=12/group) as follows: Sham, I/R, I/R preceded by NaHS (I/R-NaHS) and I/R preceded by L-C-propargylglycine (PAG), a H2S inhibitor (I/R-PAG). With the exception of the sham group, the rats in the other groups were subjected to 30 min hepatic warm ischemia followed by reperfusion for 6 or 12 h. Hepatic function was evaluated by serum concentrations of alanine aminotransferase (ALT). Apoptosis of hepatic cells was assessed by TUNEL staining and measurement of caspase-12 expression. The expression levels of ERS-associated proteins and mRNAs of pancreatic ER eukaryotic translation initiation factor-2a kinase (PERK), activating transcription factor-6 (ATF6), glucose-regulated protein (GRP) 78, TNF-receptor-associated factor (TRAF)-2, C/EBP homologous protein (CHOP) and caspase-12 were also measured by western blotting and reverse transcription-quantitative PCR. The serum concentrations of ALT in the I/R and I/R-PAG groups were found to be significantly higher compared with those in the sham and I/R-NaHS groups after 6 h of reperfusion; in addition, the ALT level returned to normal in the I/R group, while it increased further in the I/R-PAG group after 12 h of reperfusion. A higher cell apoptosis rate was observed in the I/R and I/R-PAG groups and the highest cell apoptosis rate was observed in the I/R-PAG group; correspondingly, the expression of caspase-12 was increased in the I/R and I/R-PAG groups. H2S appeared to significantly attenuate hepatic I/R-induced ERS response, as indicated by the decreased expression of ATF6, PERK, GRP78, TRAF2 and CHOP. Endogenous H2S may serve a hepatoprotective function after I/R, and inhibition of endogenous H2S results in aggravation of I/R damage. Exogenous H2S was shown to inhibit ERS-related gene expression, leading to suppression of inflammatory reaction and improvement of I/R damage. Therefore, exogenous H2S has therapeutic potential to alleviate hepatic I/R injury.
Collapse
Affiliation(s)
- Liang Chen
- Department of General Surgery, Affiliated Huadu Hospital of Southern Medical University (People's Hospital of Huadu District), Guangzhou, Guangdong 510800, P.R. China
| | - Keqiang Ma
- Department of General Surgery, Affiliated Huadu Hospital of Southern Medical University (People's Hospital of Huadu District), Guangzhou, Guangdong 510800, P.R. China
| | - Haining Fan
- Department of Hepatopancreatobiliary Surgery, the Affiliated Hospital of Qinghai University, Xining, Qinghai 810001, P.R. China
| | - Xiaolong Wang
- Department of General Surgery, Affiliated Huadu Hospital of Southern Medical University (People's Hospital of Huadu District), Guangzhou, Guangdong 510800, P.R. China
| | - Tiansheng Cao
- Department of General Surgery, Affiliated Huadu Hospital of Southern Medical University (People's Hospital of Huadu District), Guangzhou, Guangdong 510800, P.R. China
| |
Collapse
|
15
|
Jiang S, Xu W, Chen Z, Cui C, Fan X, Cai J, Gong Y, Geng B. Hydrogen sulphide reduces hyperhomocysteinaemia-induced endothelial ER stress by sulfhydrating protein disulphide isomerase to attenuate atherosclerosis. J Cell Mol Med 2021; 25:3437-3448. [PMID: 33675119 PMCID: PMC8034471 DOI: 10.1111/jcmm.16423] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperhomocysteinaemia (HHcy)-impaired endothelial dysfunction including endoplasmic reticulum (ER) stress plays a crucial role in atherogenesis. Hydrogen sulphide (H2 S), a metabolic production of Hcy and gasotransmitter, exhibits preventing cardiovascular damages induced by HHcy by reducing ER stress, but the underlying mechanism is unclear. Here, we made an atherosclerosis with HHcy mice model by ApoE knockout mice and feeding Pagien diet and drinking L-methionine water. H2 S donors NaHS and GYY4137 treatment lowered plaque area and ER stress in this model. Protein disulphide isomerase (PDI), a modulation protein folding key enzyme, was up-regulated in plaque and reduced by H2 S treatment. In cultured human aortic endothelial cells, Hcy dose and time dependently elevated PDI expression, but inhibited its activity, and which were rescued by H2 S. H2 S and its endogenous generation key enzyme-cystathionine γ lyase induced a new post-translational modification-sulfhydration of PDI. Sulfhydrated PDI enhanced its activity, and two cysteine-terminal CXXC domain of PDI was identified by site mutation. HHcy lowered PDI sulfhydration association ER stress, and H2 S rescued it but this effect was blocked by cysteine site mutation. Conclusively, we demonstrated that H2 S sulfhydrated PDI and enhanced its activity, reducing HHcy-induced endothelial ER stress to attenuate atherosclerosis development.
Collapse
Affiliation(s)
- Shan Jiang
- Institute of Hypoxia Medicine, Wenzhou Medical University, Zhejiang, China
| | - Wenjing Xu
- Department of Pathology, Xi'an Medical University, Shanxi, China
| | - Zhenzhen Chen
- State Key Laboratory of Cardiovascular Disease, Hypertension Center, National Center for Cardiovascular Diseases, Fuwai Hospital of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changting Cui
- State Key Laboratory of Cardiovascular Disease, Hypertension Center, National Center for Cardiovascular Diseases, Fuwai Hospital of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, Wenzhou Medical University, Zhejiang, China
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, Hypertension Center, National Center for Cardiovascular Diseases, Fuwai Hospital of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, Wenzhou Medical University, Zhejiang, China
| | - Bin Geng
- Institute of Hypoxia Medicine, Wenzhou Medical University, Zhejiang, China.,State Key Laboratory of Cardiovascular Disease, Hypertension Center, National Center for Cardiovascular Diseases, Fuwai Hospital of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Luo C, Ji D, Li Y, Cao Y, Zhang S, Yan W, Xue K, Chai J, Wu Y, Liu H, Wang W. Abnormal nitration and S-sulfhydration modification of Sp1-CSE-H 2S pathway trap the progress of hyperhomocysteinemia into a vicious cycle. Free Radic Biol Med 2021; 164:20-33. [PMID: 33418108 DOI: 10.1016/j.freeradbiomed.2020.12.440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/01/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022]
Abstract
Sp1-CSE-H2S pathway plays an important role in homocysteine-metabolism, whose disorder can result in hyperhomocysteinemia. H2S deficiency in hyperhomocysteinemia has been reported, while the underlying mechanism and whether it in turn affects the progress of hyperhomocysteinemia are unclear. This study focused on the post-translational modification of Sp1/CSE and revealed four major findings: (1) Homocysteine-accumulation augmented CSE's nitration, inhibited its bio-activity, thus caused H2S deficiency. (2) H2S deficiency inhibited the S-sulfhydration of Sp1, down-regulated CSE and decreased H2S further, which in turn weakened CSE's own S-sulfhydration. (3) CSE was S-sulfhydrated at Cys84, Cys109, Cys172, Cys229, Cys252, Cys307 and Cys310, among which the S-sulfhydration of Cys172 and Cys310 didn't affect its enzymatic activity, while the S-sulfhydration of Cys84, Cys109, Cys229, Cys252 and Cys307 was necessary for its bio-activity. (4) H2S deficiency trapped homocysteine-metabolism into a vicious cycle, which could be broken by either blocking nitration or restoring S-sulfhydration. This study detected a new mechanism that caused severe hyperhomocysteinemia, thereby provided new therapeutic strategies for hyperhomocysteinemia.
Collapse
Affiliation(s)
- Chenghua Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, 100069, China
| | - Dengyu Ji
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, 100069, China
| | - Yan Li
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Center for Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yan Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, 100069, China
| | - Shangyue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, 100069, China
| | - Wenjing Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, 100069, China
| | - Ke Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, 100069, China
| | - Jiayin Chai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, 100069, China
| | - Ye Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, 100069, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, 100069, China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, 100069, China.
| |
Collapse
|
17
|
Role of Hydrogen Sulfide and 3-Mercaptopyruvate Sulfurtransferase in the Regulation of the Endoplasmic Reticulum Stress Response in Hepatocytes. Biomolecules 2020; 10:biom10121692. [PMID: 33352938 PMCID: PMC7766142 DOI: 10.3390/biom10121692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
It is estimated that over 1.5 billion people suffer from various forms of chronic liver disease worldwide. The emerging prevalence of metabolic syndromes and alcohol misuse, along with the lack of disease-modifying agents for the therapy of many severe liver conditions predicts that chronic liver disease will continue to be a major problem in the future. Better understanding of the underlying pathogenetic mechanisms and identification of potential therapeutic targets remains a priority. Herein, we explored the potential role of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide (H2S) system in the regulation of the endoplasmic reticulum (ER) stress and of its downstream processes in the immortalized hepatic cell line HepG2 in vitro. ER stress suppressed endogenous H2S levels and pharmacological supplementation of H2S with sodium hydrogen sulfide (NaHS) mitigated many aspects of ER stress, culminating in improved cellular bioenergetics and prevention of autophagic arrest, thereby switching cells’ fate towards survival. Genetic silencing of 3-MST or pharmacological inhibition of the key enzymes involved in hepatocyte H2S biosynthesis exacerbated many readouts related to ER-stress or its downstream functional responses. Our findings implicate the 3-MST/H2S system in the intracellular network that governs proteostasis and ER-stress adaptability in hepatocytes and reinforce the therapeutic potential of pharmacological H2S supplementation.
Collapse
|
18
|
Kaplan P, Tatarkova Z, Sivonova MK, Racay P, Lehotsky J. Homocysteine and Mitochondria in Cardiovascular and Cerebrovascular Systems. Int J Mol Sci 2020; 21:ijms21207698. [PMID: 33080955 PMCID: PMC7589705 DOI: 10.3390/ijms21207698] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022] Open
Abstract
Elevated concentration of homocysteine (Hcy) in the blood plasma, hyperhomocysteinemia (HHcy), has been implicated in various disorders, including cardiovascular and neurodegenerative diseases. Accumulating evidence indicates that pathophysiology of these diseases is linked with mitochondrial dysfunction. In this review, we discuss the current knowledge concerning the effects of HHcy on mitochondrial homeostasis, including energy metabolism, mitochondrial apoptotic pathway, and mitochondrial dynamics. The recent studies suggest that the interaction between Hcy and mitochondria is complex, and reactive oxygen species (ROS) are possible mediators of Hcy effects. We focus on mechanisms contributing to HHcy-associated oxidative stress, such as sources of ROS generation and alterations in antioxidant defense resulting from altered gene expression and post-translational modifications of proteins. Moreover, we discuss some recent findings suggesting that HHcy may have beneficial effects on mitochondrial ROS homeostasis and antioxidant defense. A better understanding of complex mechanisms through which Hcy affects mitochondrial functions could contribute to the development of more specific therapeutic strategies targeted at HHcy-associated disorders.
Collapse
|
19
|
Effects of Sulfur Amino Acids on Cardiodynamic Parameters of Isolated Rat Heart. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020. [DOI: 10.2478/sjecr-2020-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Sulfur-containing amino acids are integral part of molecular mechanisms which underlie many aspects of cellular function and homeostasis, facilitated by reversible changes in oxidation states of sulfur atoms. Dysregulation of these pathways is associated with diverse pathologies, notably of the cardiovascular system, which are typically characterized by inappropriate plasma levels of sulfur-containing amino acids. The aim of this study was to assess the acute, direct effects of sulfur-containing amino acids and inorganic NaHS, as H2S donor, on cardiodynamic parameters in homocysteine treated rats. Moderate hyperhomocysteinemia did not cause significant decrease in myocardial contractility, but our findings suggest that NaHS and L-methionine cause negative effects on cardiac function in hearts of the rats treated with homo-cysteine, even in a single administration. Further investigations need to be carried out with purpose of better understanding and highlightening the impact of Hcy and sulphur amino acids on cardiac function.
Collapse
|
20
|
Ercole F, Li Y, Whittaker MR, Davis TP, Quinn JF. H 2S-Donating trisulfide linkers confer unexpected biological behaviour to poly(ethylene glycol)-cholesteryl conjugates. J Mater Chem B 2020; 8:3896-3907. [PMID: 32227031 DOI: 10.1039/c9tb02614b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inspired by the properties of the naturally occurring H2S donor, diallyl trisulfide (DATS, extracted from garlic), the biological behaviour of trisulfide-bearing PEG-conjugates was explored. Specifically, three conjugates comprising an mPEG tail and a cholesteryl head were investigated: conjugates bridged by a trisulfide linker (T), a disulfide linker (D) or a carbamate linker (C), and a fourth comprising two mPEG tails bridged by a trisulfide linker (P). H2S testing using both a fluorescent chemical probe in HEK293 cells and an amperometric sensor to monitor release in suspended cells, demonstrated the ability of the trisulfide conjugates, T and P, to release H2S in the presence of cellular thiols. Cytotoxicity and cyto-protective capacity on HEK293 cells showed that T was the best tolerated of the conjugates studied, and remarkably more so than D or C. Moreover, it was noted that application of T conferred a protective effect to the cells, effectively abolishing the toxicity associated with co-administered C. The interaction of conjugates and combinations thereof with the cell membrane of HEK cells, as well as ROS generation were also investigated. It was found that C caused significant membrane perturbation, correlating with high losses in cell viability and pronounced generation of ROS, especially in the mitochondria. T, however, did not disturb the membrane and was able to mitigate the generation of ROS, especially in the mitochondria. The interplay of the cholesteryl group and H2S donation for conferring cytoprotective effects was clearly demonstrated as P did not display the same beneficial characteristics as T.
Collapse
Affiliation(s)
- Francesca Ercole
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | | | | | | | | |
Collapse
|
21
|
L-Cystathionine Protects against Homocysteine-Induced Mitochondria-Dependent Apoptosis of Vascular Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1253289. [PMID: 31885769 PMCID: PMC6899331 DOI: 10.1155/2019/1253289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022]
Abstract
The study was aimed at investigating the effects of L-cystathionine on vascular endothelial cell apoptosis and its mechanisms. Cultured human umbilical vein endothelial cells (HUVECs) were used in the study. Apoptosis of vascular endothelial cells was induced by homocysteine. Apoptosis, mitochondrial superoxide anion, mitochondrial membrane potential, mitochondrial permeability transition pore (MPTP) opening, and caspase-9 and caspase-3 activities were examined. Expression of Bax, Bcl-2, and cleaved caspase-3 was tested and BTSA1, a Bax agonist, and HUVEC Bax overexpression was used in the study. Results showed that homocysteine obviously induced the apoptosis of HUVECs, and this effect was significantly attenuated by the pretreatment with L-cystathionine. Furthermore, L-cystathionine decreased the production of mitochondrial superoxide anion and the expression of Bax and restrained its translocation to mitochondria, increased mitochondrial membrane potential, inhibited mitochondrial permeability transition pore (MPTP) opening, suppressed the leakage of cytochrome c from mitochondria into the cytoplasm, and downregulated activities of caspase-9 and caspase-3. However, BTSA1, a Bax agonist, or Bax overexpression successfully abolished the inhibitory effect of L-cystathionine on Hcy-induced MPTP opening, caspase-9 and caspase-3 activation, and HUVEC apoptosis. Taken together, our results indicated that L-cystathionine could protect against homocysteine-induced mitochondria-dependent apoptosis of HUVECs.
Collapse
|
22
|
Yang Q, He GW. Imbalance of Homocysteine and H 2S: Significance, Mechanisms, and Therapeutic Promise in Vascular Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7629673. [PMID: 31885816 PMCID: PMC6893243 DOI: 10.1155/2019/7629673] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/16/2019] [Indexed: 12/28/2022]
Abstract
While the role of hyperhomocysteinemia in cardiovascular pathogenesis continuously draws attention, deficiency of hydrogen sulfide (H2S) has been growingly implicated in cardiovascular diseases. Generation of H2S is closely associated with the metabolism of homocysteine via key enzymes such as cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). The level of homocysteine and H2S is regulated by each other. Metabolic switch in the activity of CBS and CSE may occur with a resultant operating preference change of these enzymes in homocysteine and H2S metabolism. This paper presented an overview regarding (1) linkage between the metabolism of homocysteine and H2S, (2) mutual regulation of homocysteine and H2S, (3) imbalance of homocysteine and H2S in cardiovascular disorders, (4) mechanisms underlying the protective effect of H2S against homocysteine-induced vascular injury, and (5) the current status of homocysteine-lowering and H2S-based therapies for cardiovascular disease. The metabolic imbalance of homocysteine and H2S renders H2S/homocysteine ratio a potentially reliable biomarker for cardiovascular disease and development of drugs or interventions targeting the interplay between homocysteine and H2S to maintain the endogenous balance of these two molecules may hold an even bigger promise for management of vascular disorders than targeting homocysteine or H2S alone.
Collapse
Affiliation(s)
- Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
- Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
23
|
Chaouad B, Moudilou EN, Ghoul A, Zerrouk F, Moulahoum A, Othmani-Mecif K, Cherifi MEH, Exbrayat JM, Benazzoug Y. Hyperhomocysteinemia and myocardial remodeling in the sand rat, Psammomys obesus. Acta Histochem 2019; 121:823-832. [PMID: 31377002 DOI: 10.1016/j.acthis.2019.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Numerous studies have shown that a methionine-rich diet induces hyperhomocysteinemia (Hhcy), a risk factor for cardiovascular diseases. The objective of the present study was to determine the involvement of Hhcy in cardiac remodeling in the sand rat Psammomys obesus. MATERIALS AND METHODS An experimental Hhcy was induced, in the sand rat Psammomys obesus, by intraperitoneal injection of 300 mg/kg of body weight/day of methionine for 1 month. The impact of Hhcy on the cellular and matricial structures of the myocardium was analyzed with histological techniques (Masson trichrome and Sirius red staining). Immunohistochemistry allowed us to analyze several factors involved in myocardial remodeling, such as fibrillar collagen I and III, metalloproteases (MMP-2 and -9) and their inhibitors (TIMP-1 and -2), TGF-β1 and activated caspase 3. RESULTS Our results show that Hhcy induced by an excess of methionine causes, in the myocardium of Psammomys obesus, a significant accumulation of fibrillar collagens I and III at the interstitial and perivascular scales, indicating the appearance of fibrosis, which is associated with an immuno-expression increase of TGF-β1, MMP-9 and TIMP-2 and an immuno-expression decrease of MMP-2 and TIMP-1. Also, Hhcy induces apoptosis of some cardiomyocytes and cardiac fibroblasts by increasing of activated caspase 3 expression. These results highlight a remodeling of cardiac tissue in hyperhomocysteinemic Psammomys obesus.
Collapse
Affiliation(s)
- Billel Chaouad
- Biochemistry and Remodeling of the Extracellular Matrix, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, Houari Boumediene University of Science and Technology (USTHB), Bab Ezzouar, El Alia, 16111, Algiers, Algeria; University Djilali Bounaama of Khemis Miliana, Faculty of Natural and Life Sciences and Earth Sciences, Theniet El Had Road, 44225, Khemis Miliana, Algeria
| | - Elara N Moudilou
- UMRS 449, General Biology - Reproduction and Comparative Development, Lyon Catholic University, UDL, EPHE, PSL, 10, Place des Archives, 69288, Lyon Cedex 02, France
| | - Adel Ghoul
- Biochemistry and Remodeling of the Extracellular Matrix, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, Houari Boumediene University of Science and Technology (USTHB), Bab Ezzouar, El Alia, 16111, Algiers, Algeria
| | - Fouzia Zerrouk
- Biochemistry and Remodeling of the Extracellular Matrix, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, Houari Boumediene University of Science and Technology (USTHB), Bab Ezzouar, El Alia, 16111, Algiers, Algeria
| | - Anissa Moulahoum
- Biochemistry and Remodeling of the Extracellular Matrix, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, Houari Boumediene University of Science and Technology (USTHB), Bab Ezzouar, El Alia, 16111, Algiers, Algeria
| | - Khira Othmani-Mecif
- Biochemistry and Remodeling of the Extracellular Matrix, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, Houari Boumediene University of Science and Technology (USTHB), Bab Ezzouar, El Alia, 16111, Algiers, Algeria
| | | | - Jean-Marie Exbrayat
- UMRS 449, General Biology - Reproduction and Comparative Development, Lyon Catholic University, UDL, EPHE, PSL, 10, Place des Archives, 69288, Lyon Cedex 02, France
| | - Yasmina Benazzoug
- Biochemistry and Remodeling of the Extracellular Matrix, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, Houari Boumediene University of Science and Technology (USTHB), Bab Ezzouar, El Alia, 16111, Algiers, Algeria.
| |
Collapse
|
24
|
Fan J, Zheng F, Li S, Cui C, Jiang S, Zhang J, Cai J, Cui Q, Yang J, Tang X, Xu G, Geng B. Hydrogen sulfide lowers hyperhomocysteinemia dependent on cystathionine γ lyase S-sulfhydration in ApoE-knockout atherosclerotic mice. Br J Pharmacol 2019; 176:3180-3192. [PMID: 31140595 PMCID: PMC6692586 DOI: 10.1111/bph.14719] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulfide donors can block the cardiovascular injury of hyperhomocysteinemia. H2 S also lowers serum homocysteine in rats with mild hyperhomocysteinemia, but the pharmacological mechanism is unknown. The present study investigated the mechanism(s) involved. EXPERIMENTAL APPROACH ApoE-knockout mice were fed a Paigen diet and L-methionine in drinking water for 16 weeks to create a mouse model of atherosclerosis with hyperhomocysteinemia. H2 S donors (NaHS and GYY4137) were administered by intraperitoneal injection. We also assayed the H2 S produced (by methylene blue assay and mito-HS [H2 S fluorescence probe]), cystathionine γ lyase (CSE) mRNA and protein expression, and CSE sulfhydration and nitrosylation and its activity. KEY RESULTS H2 S donor treatment significantly lowered atherosclerotic plaque area, macrophage infiltration, and serum homocysteine level in the mouse model of atherosclerosis with co-existing hyperhomocysteinemia. mRNA and protein levels of CSE, a key enzyme catalyzing homocysteine trans-sulfuration, were down-regulated with hyperhomocysteinemia, and CSE catalytic activity was inhibited. All these effects were reversed with H2 S donor treatment. Hyperhomocysteinemia induced CSE nitrosylation, whereas H2 S sulfhydrated CSE at the same cysteine residues. Nitrosylated CSE decreased and sulfhydrated CSE increased its catalytic and binding activities towards L-homocysteine. Mutation of C252, C255, C307, and C310 residues in CSE abolished CSE nitrosylation or sulfhydration and prevented its binding to L-homocysteine. CONCLUSIONS AND IMPLICATIONS Sulfhydration or nitrosylation of CSE represents a yin/yang regulation of catalysis or binding to L-homocysteine. H2 S donor treatment enhanced CSE sulfhydration, thus lowering serum L-homocysteine, which contributed in part to the anti-atherosclerosis effects in ApoE-knockout mice with hyperhomocysteinemia.
Collapse
Affiliation(s)
- Jinhui Fan
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Science, State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Fengjiao Zheng
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Science, State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Shuangyue Li
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, P.R. China
| | - Cangting Cui
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Science, State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Shan Jiang
- Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, P.R. China
| | - Jun Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, School of Medicine, Shihezi University, Xinjiang, P.R. China
| | - Jun Cai
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, P.R. China
| | - Qinghua Cui
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Science, State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Science, State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Xinjing Tang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Science, State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Science, State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Bin Geng
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Science, State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China.,Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, P.R. China
| |
Collapse
|
25
|
Zheng Z, Chen A, He H, Chen Y, Chen J, Albashari AA, Li J, Yin J, He Z, Wang Q, Wu J, Wang Q, Kang J, Xian M, Wang X, Xiao J. pH and enzyme dual-responsive release of hydrogen sulfide for disc degeneration therapy. J Mater Chem B 2019; 7:611-618. [PMID: 32254794 DOI: 10.1039/c8tb02566e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The collagen hydrogel controllably releases hydrogen sulfide by responding to pH and enzymes for disc degeneration therapy.
Collapse
|
26
|
Majumder A, Singh M, George AK, Tyagi SC. Restoration of skeletal muscle homeostasis by hydrogen sulfide during hyperhomocysteinemia-mediated oxidative/ER stress condition 1. Can J Physiol Pharmacol 2018; 97:441-456. [PMID: 30422673 DOI: 10.1139/cjpp-2018-0501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Elevated homocysteine (Hcy), i.e., hyperhomocysteinemia (HHcy), causes skeletal muscle myopathy. Among many cellular and metabolic alterations caused by HHcy, oxidative and endoplasmic reticulum (ER) stress are considered the major ones; however, the precise molecular mechanism(s) in this process is unclear. Nevertheless, there is no treatment option available to treat HHcy-mediated muscle injury. Hydrogen sulfide (H2S) is increasingly recognized as a potent anti-oxidant, anti-apoptotic/necrotic/pyroptotic, and anti-inflammatory compound and also has been shown to improve angiogenesis during ischemic injury. Patients with CBS mutation produce less H2S, making them vulnerable to Hcy-mediated cellular damage. Many studies have reported bidirectional regulation of ER stress in apoptosis through JNK activation and concomitant attenuation of cell proliferation and protein synthesis via PI3K/AKT axis. Whether H2S mitigates these detrimental effects of HHcy on muscle remains unexplored. In this review, we discuss molecular mechanisms of HHcy-mediated oxidative/ER stress responses, apoptosis, angiogenesis, and atrophic changes in skeletal muscle and how H2S can restore skeletal muscle homeostasis during HHcy condition. This review also highlights the molecular mechanisms on how H2S could be developed as a clinically relevant therapeutic option for chronic conditions that are aggravated by HHcy.
Collapse
Affiliation(s)
- Avisek Majumder
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,b Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mahavir Singh
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,c Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Akash K George
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,c Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
27
|
Zhang D, Wang X, Tian X, Zhang L, Yang G, Tao Y, Liang C, Li K, Yu X, Tang X, Tang C, Zhou J, Kong W, Du J, Huang Y, Jin H. The Increased Endogenous Sulfur Dioxide Acts as a Compensatory Mechanism for the Downregulated Endogenous Hydrogen Sulfide Pathway in the Endothelial Cell Inflammation. Front Immunol 2018; 9:882. [PMID: 29760703 PMCID: PMC5936987 DOI: 10.3389/fimmu.2018.00882] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/09/2018] [Indexed: 02/04/2023] Open
Abstract
Endogenous hydrogen sulfide (H2S) and sulfur dioxide (SO2) are regarded as important regulators to control endothelial cell function and protect endothelial cell against various injuries. In our present study, we aimed to investigate the effect of endogenous H2S on the SO2 generation in the endothelial cells and explore its significance in the endothelial inflammation in vitro and in vivo. The human umbilical vein endothelial cell (HUVEC) line (EA.hy926), primary HUVECs, primary rat pulmonary artery endothelial cells (RPAECs), and purified aspartate aminotransferase (AAT) protein from pig heart were used for in vitro experiments. A rat model of monocrotaline (MCT)-induced pulmonary vascular inflammation was used for in vivo experiments. We found that endogenous H2S deficiency caused by cystathionine-γ-lyase (CSE) knockdown increased endogenous SO2 level in endothelial cells and enhanced the enzymatic activity of AAT, a major SO2 synthesis enzyme, without affecting the expressions of AAT1 and AAT2. While H2S donor could reverse the CSE knockdown-induced increase in the endogenous SO2 level and AAT activity. Moreover, H2S donor directly inhibited the activity of purified AAT protein, which was reversed by a thiol reductant DTT. Mechanistically, H2S donor sulfhydrated the purified AAT1/2 protein and rescued the decrease in the sulfhydration of AAT1/2 protein in the CSE knockdown endothelial cells. Furthermore, an AAT inhibitor l-aspartate-β-hydroxamate (HDX), which blocked the upregulation of endogenous SO2/AAT generation induced by CSE knockdown, aggravated CSE knockdown-activated nuclear factor-κB pathway in the endothelial cells and its downstream inflammatory factors including ICAM-1, TNF-α, and IL-6. In in vivo experiment, H2S donor restored the deficiency of endogenous H2S production induced by MCT, and reversed the upregulation of endogenous SO2/AAT pathway via sulfhydrating AAT1 and AAT2. In accordance with the results of the in vitro experiment, HDX exacerbated the pulmonary vascular inflammation induced by the broken endogenous H2S production in MCT-treated rat. In conclusion, for the first time, the present study showed that H2S inhibited endogenous SO2 generation by inactivating AAT via the sulfhydration of AAT1/2; and the increased endogenous SO2 generation might play a compensatory role when H2S/CSE pathway was downregulated, thereby exerting protective effects in endothelial inflammatory responses in vitro and in vivo.
Collapse
Affiliation(s)
- Da Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiuli Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoyu Tian
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lulu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Guosheng Yang
- Animal Center, Peking University First Hospital, Beijing, China
| | - Yinghong Tao
- Animal Center, Peking University First Hospital, Beijing, China
| | - Chen Liang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China.,Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Jing Zhou
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China.,Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China.,Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
28
|
Choy KW, Murugan D, Mustafa MR. Natural products targeting ER stress pathway for the treatment of cardiovascular diseases. Pharmacol Res 2018; 132:119-129. [PMID: 29684674 DOI: 10.1016/j.phrs.2018.04.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/06/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022]
Abstract
Endoplasmic reticulum (ER) is the main organelle for the synthesis, folding, and processing of secretory and transmembrane proteins. Pathological stimuli including hypoxia, ischaemia, inflammation and oxidative stress interrupt the homeostatic function of ER, leading to accumulation of unfolded proteins, a condition referred to as ER stress. ER stress triggers a complex signalling network referred as the unfolded protein response (UPR). Extensive studies have demonstrated that ER stress plays an important role in the pathogenesis of various cardiovascular diseases such as heart failure, ischemic heart disease and atherosclerosis. The importance of natural products in modern medicine are well recognized and continues to be of interests as a source of novel lead compounds. Natural products targeting components of UPR and reducing ER stress offers an innovative strategic approach to treat cardiovascular diseases. In this review, we discussed several therapeutic interventions using natural products with potential cardiovascular protective properties targeting ER stress signalling pathways.
Collapse
Affiliation(s)
- Ker Woon Choy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Dharmani Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Natural Products Research and Drug Discovery (CENAR), University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
29
|
Paul BD, Snyder SH. Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem Pharmacol 2018; 149:101-109. [PMID: 29203369 PMCID: PMC5868969 DOI: 10.1016/j.bcp.2017.11.019] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/29/2017] [Indexed: 01/17/2023]
Abstract
Hydrogen sulfide is a gaseous signaling molecule or gasotransmitter which plays important roles in a wide spectrum of physiologic processes in the brain and peripheral tissues. Unlike nitric oxide and carbon monoxide, the other major gasotransmitters, research on hydrogen sulfide is still in its infancy. One of the modes by which hydrogen sulfide signals is via a posttranslational modification termed sulfhydration/persulfidation, which occurs on reactive cysteine residues on target proteins, where the reactive SH group is converted to an SSH group. Sulfhydration is a substantially prevalent modification, which modulates the structure or function of proteins being modified. Thus, precise control of endogenous hydrogen sulfide production and metabolism is critical for maintenance of optimal cellular function, with excess generation and paucity, both contributing to pathology. Dysregulation of the reverse transsulfuration pathway which generates hydrogen sulfide occurs in several neurodegenerative diseases such as Parkinson's disease, Huntington's disease and Alzheimer's disease. Accordingly, treatment with donors of hydrogen sulfide or stimulation of the reverse transsulfuration have proved beneficial in several neurodegenerative states. In this review we focus on hydrogen sulfide mediated neuronal signaling processes that contribute to neuroprotection.
Collapse
Affiliation(s)
- Bindu D Paul
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
30
|
Lin F, Liao C, Sun Y, Zhang J, Lu W, Bai Y, Liao Y, Li M, Ni X, Hou Y, Qi Y, Chen Y. Hydrogen Sulfide Inhibits Cigarette Smoke-Induced Endoplasmic Reticulum Stress and Apoptosis in Bronchial Epithelial Cells. Front Pharmacol 2017; 8:675. [PMID: 29033840 PMCID: PMC5625329 DOI: 10.3389/fphar.2017.00675] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/08/2017] [Indexed: 01/23/2023] Open
Abstract
Background: Apoptosis of lung structural cells contributes to the process of lung damage and remodeling in chronic obstructive pulmonary disease (COPD). Our previous studies demonstrated that exogenous hydrogen sulfide (H2S) can reduce the lung tissue pathology score, anti-inflammation and anti-oxidation effects in COPD, but the effect of H2S in regulating cigarette smoke (CS) induced bronchial epithelial cell apoptosis and the underlying mechanisms are not clear. Objectives: To investigate the effect of H2S on CS induced endoplasmic reticulum stress (ERS) and bronchial epithelial cell apoptosis. Methods: Male Sprague–Dawley rats randomly divided into four groups for treatment: control, CS, NaHS + CS, and propargylglycine (PPG) + CS. The rats in the CS group were exposed to CS generated from 20 commercial unfiltered cigarettes for 4 h/day, 7 days/week for 4 months. Since the beginning of the third month, freshly prepared NaHS (14 μmol/kg) and PPG (37.5 mg/kg) were intraperitoneally administered 30 min before CS-exposure in the NaHS and PPG groups. 16HBE cells were pretreated with Taurine (10 mM), 5 mmol/L 4-phenylbutyric acid (4-PBA) or NaHS (100, 200, and 400 μM) for 30 min, and then cells were exposed to 40 μmol/L nicotine for 72 h. ERS markers (GRP94, GRP78) and ERS-mediated apoptosis markers 4-C/EBP homologous protein (CHOP), caspase-3 and caspase-12 were assessed in rat lung tissues and human bronchial epithelial cells. The apoptotic bronchial epithelial cells were detected by Hoechst staining in vitro and TUNEL staining in vivo. Results: In CS exposed rats, peritoneal injection of NaHS significantly inhibited CS induced overexpression ERS-mediated apoptosis markers and upregulation of apoptotic rate in rat lungs, and inhibiting the endogenous H2S production by peritoneal injection of PPG exacerbated these effects. In the nicotine-exposed bronchial epithelial cells, appropriate concentration of NaHS and ERS inhibitors taurine and 4-PBA inhibited nicotine-induced upregulation of apoptotic rate and overexpression of ERS-mediated apoptosis markers. Conclusion: H2S inhibited lung tissue damage by attenuating CS induced ERS in rat lung and exogenous H2S attenuated nicotine induced ERS-mediated apoptosis in bronchial epithelial cells.
Collapse
Affiliation(s)
- Fan Lin
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China.,Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Chengcheng Liao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yun Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jinsheng Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Weiwei Lu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yu Bai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yixuan Liao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Minxia Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Xianqiang Ni
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yuelong Hou
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yongfen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yahong Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
31
|
Hydrogen sulfide ameliorates cognitive dysfunction in streptozotocin-induced diabetic rats: involving suppression in hippocampal endoplasmic reticulum stress. Oncotarget 2017; 8:64203-64216. [PMID: 28969063 PMCID: PMC5609995 DOI: 10.18632/oncotarget.19448] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/20/2017] [Indexed: 01/21/2023] Open
Abstract
Diabetes induces impairment in cognitive function. There is substantial evidence that hippocampal endoplasmic reticulum (ER) stress is involved in diabetic cognitive impairment. Hydrogen sulfide (H2S) attenuates the learning and memory decline in experimental Alzheimer's disease and inhibits the hippocampal ER stress in homocysteine-exposed rats. Therefore, this aim of the present work was to investigate whether H2S ameliorates the diabetic cognitive dysfunction involving inhibition of hippocampal ER stress. In the present work, we found that stretozotocin (STZ, 40 mg/kg)-induced diabetic rats exhibited impairment in cognitive function, as judged by the novel objective recognition task (NOR) test, the Y-maze test and the Morris water maze (MWM) test. Notably, treatment of diabetic rats with sodium hydrosulfide (NaHS, a donor of H2S, 30 or 100 μmol/kg/d, for 30 d) significantly reversed diabetes-induced impairment in cognitive function. We also found that STZ (40 mg/kg)-induced diabetic rats exhibited hippocampal ER stress, as evidenced by upregulations of glucose regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and cleaved caspase-12 in the hippocampus. However, treatment with NaHS (30 or 100 μmol/kg/d, for 30 d) markedly suppressed the increases in GRP78, CHOP, and cleaved caspase-12 expressions in the hippocampus of diabetic rats. In addition, we noted that NaHS (30 or 100 μmol/kg/d, for 30 d) significantly enhanced the generation of hippocampal endogenous H2S in STZ-induced diabetic rats. These results suggest that H2S exhibits therapeutic potential for diabetes-associated cognitive dysfunction, which is most likely related to its protective effects against hippocampal ER stress.
Collapse
|
32
|
Wang CY, Zou W, Liang XY, Jiang ZS, Li X, Wei HJ, Tang YY, Zhang P, Tang XQ. Hydrogen sulfide prevents homocysteine‑induced endoplasmic reticulum stress in PC12 cells by upregulating SIRT‑1. Mol Med Rep 2017; 16:3587-3593. [PMID: 28713986 DOI: 10.3892/mmr.2017.7004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 05/15/2017] [Indexed: 11/06/2022] Open
Abstract
It was previously confirmed that hydrogen sulfide (H2S) has a neuroprotective effect, preventing homocysteine‑induced neurotoxicity. However, the exact molecular mechanisms underlying this protective effect remain to be fully elucidated. Endoplasmic reticulum (ER) stress contributes to homocysteine‑induced neurotoxicity. Silent mating type information regulator 2 homolog 1 (SIRT‑1) can attenuate ER stress, exerting its neuroprotective effect. Therefore, the present study aimed to investigate whether H2S protects PC12 cells against homocysteine‑induced ER stress and whether SIRT‑1 mediates this protective effect of H2S. Western blotting was used to detect the expression of SIRT‑1, glucose‑regulated protein 78 (GRP78), and cleaved caspase‑12 in PC12 cells. It was observed that sodium hydrosulfide (NaHS), an exogenous H2S donor, significantly attenuated the homocysteine‑induced ER stress responses, including increases in the protein expression levels of GRP78 and cleaved caspase‑12. Simultaneously, NaHS upregulated the expression of SIRT‑1 and reversed the homocysteine‑induced downregulation of SIRT‑1 in PC12 cells. Sirtinol, a specific inhibitor of SIRT‑1, eliminated the protective effects of H2S in homocysteine‑induced ER stress. These data indicated that H2S prevented homocysteine‑induced ER stress via enhancing the expression of SIRT‑1. These findings offer novel insight into the protective mechanisms of H2S against homocysteine‑induced neurotoxicity.
Collapse
Affiliation(s)
- Chun-Yan Wang
- The Institute of Cardiovascular Disease, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wei Zou
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiao-Yu Liang
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhi-Sheng Jiang
- The Institute of Cardiovascular Disease, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiang Li
- Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hai-Jun Wei
- Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yi-Yun Tang
- Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ping Zhang
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiao-Qing Tang
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
33
|
Yadav V, Gao XH, Willard B, Hatzoglou M, Banerjee R, Kabil O. Hydrogen sulfide modulates eukaryotic translation initiation factor 2α (eIF2α) phosphorylation status in the integrated stress-response pathway. J Biol Chem 2017. [PMID: 28637872 DOI: 10.1074/jbc.m117.778654] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) regulates various physiological processes, including neuronal activity, vascular tone, inflammation, and energy metabolism. Moreover, H2S elicits cytoprotective effects against stressors in various cellular models of injury. However, the mechanism of the signaling pathways mediating the cytoprotective functions of H2S is not well understood. We previously uncovered a heme-dependent metabolic switch for transient induction of H2S production in the trans-sulfuration pathway. Here, we demonstrate that increased endogenous H2S production or its exogenous administration modulates major components of the integrated stress response promoting a metabolic state primed for stress response. We show that H2S transiently increases phosphorylation of eukaryotic translation initiation factor 2 (eIF2α) resulting in inhibition of general protein synthesis. The H2S-induced increase in eIF2α phosphorylation was mediated at least in part by inhibition of protein phosphatase-1 (PP1c) via persulfidation at Cys-127. Overexpression of a PP1c cysteine mutant (C127S-PP1c) abrogated the H2S effect on eIF2α phosphorylation. Our data support a model in which H2S exerts its cytoprotective effect on ISR signaling by inducing a transient adaptive reprogramming of global mRNA translation. Although a transient increase in endogenous H2S production provides cytoprotection, its chronic increase such as in cystathionine β-synthase deficiency may pose a problem.
Collapse
Affiliation(s)
- Vinita Yadav
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Xing-Huang Gao
- the Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Belinda Willard
- the Proteomics and Metabolomics Laboratory, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106
| | - Maria Hatzoglou
- the Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Ruma Banerjee
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Omer Kabil
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109,
| |
Collapse
|
34
|
Yu W, Jin H, Tang C, Du J, Zhang Z. Sulfur-containing gaseous signal molecules, ion channels and cardiovascular diseases. Br J Pharmacol 2017; 175:1114-1125. [PMID: 28430359 DOI: 10.1111/bph.13829] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/23/2017] [Accepted: 04/11/2017] [Indexed: 01/05/2023] Open
Abstract
Sulfur-containing gaseous signal molecules including hydrogen sulphide and sulfur dioxide were previously recognized as toxic gases. However, extensive studies have revealed that they can be generated in the cardiovascular system via a sulfur-containing amino acid metabolic pathway, and have an important role in cardiovascular physiology and pathophysiology. Ion channels are pore-forming membrane proteins present in the membrane of all biological cells; their functions include the establishment of a resting membrane potential and the control of action potentials and other electrical signals by conducting ions across the cell membrane. Evidence has now accumulated suggesting that the sulfur-containing gaseous signal molecules are important regulators of ion channels and transporters. The aims of this review are (1) to discuss the recent experimental evidences in the cardiovascular system regarding the regulatory effects of sulfur-containing gaseous signal molecules on a variety of ion channels, including ATP-sensitive potassium, calcium-activated potassium, voltage-gated potassium, L- and T-type calcium, transient receptor potential and chloride and sodium channels, and (2) to understand how the gaseous signal molecules affect ion channels and cardiovascular diseases. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Wen Yu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Zhiren Zhang
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
35
|
Homocysteine Induces Apoptosis of Human Umbilical Vein Endothelial Cells via Mitochondrial Dysfunction and Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28630659 PMCID: PMC5467318 DOI: 10.1155/2017/5736506] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Homocysteine- (Hcy-) induced endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury, while the proposed molecular pathways underlying this process are unclear. In this study, we investigated the adverse effects of Hcy on human umbilical vein endothelial cells (HUVEC) and the underlying mechanisms. Our results demonstrated that moderate-dose Hcy treatment induced HUVEC apoptosis in a time-dependent manner. Furthermore, prolonged Hcy treatment increased the expression of NOX4 and the production of intracellular ROS but decreased the ratio of Bcl-2/Bax and mitochondrial membrane potential (MMP), resulting in the leakage of cytochrome c and activation of caspase-3. Prolonged Hcy treatment also upregulated glucose-regulated protein 78 (GRP78), activated protein kinase RNA-like ER kinase (PERK), and induced the expression of C/EBP homologous protein (CHOP) and the phosphorylation of NF-κb. The inhibition of NOX4 decreased the production of ROS and alleviated the Hcy-induced HUVEC apoptosis and ER stress. Blocking the PERK pathway partly alleviated Hcy-induced HUVEC apoptosis and the activation of NF-κb. Taken together, our results suggest that Hcy-induced mitochondrial dysfunction crucially modulated apoptosis and contributed to the activation of ER stress in HUVEC. The excessive activation of the PERK pathway partly contributed to Hcy-induced HUVEC apoptosis and the phosphorylation of NF-κb.
Collapse
|
36
|
Liu SY, Li D, Zeng HY, Kan LY, Zou W, Zhang P, Gu HF, Tang XQ. Hydrogen Sulfide Inhibits Chronic Unpredictable Mild Stress-Induced Depressive-Like Behavior by Upregulation of Sirt-1: Involvement in Suppression of Hippocampal Endoplasmic Reticulum Stress. Int J Neuropsychopharmacol 2017; 20:867-876. [PMID: 28482013 PMCID: PMC5737807 DOI: 10.1093/ijnp/pyx030] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/03/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a crucial signaling molecule with a wide range of physiological functions. Previously, we confirmed that stress-induced depression is accompanied with disturbance of H2S generation in hippocampus. The present work attempted to investigate the inhibitory effect of H2S on chronic unpredictable mild stress-induced depressive-like behaviors and the underlying mechanism. METHODS We established the rat model of chronic unpredictable mild stress to simulate depression. Open field test, forced swim test, and tail suspension test were used to assess depressive-like behaviors. The expression of Sirt-1 and three marked proteins related to endoplasmic reticulum stress (GRP-78, CHOP, and cleaved caspase-12) were detected by western blot. RESULTS We found that chronic unpredictable mild stress-exposed rats exhibit depression-like behavior responses, including significantly increased immobility time in the forced swim test and tail suspension test, and decreased climbing time and swimming time in the forced swim test. In parallel, chronic unpredictable mild stress-exposed rats showed elevated levels of hippocampal endoplasmic reticulum stress and reduced levels of Sirt-1. However, NaHS (a donor of H2S) not only alleviated chronic unpredictable mild stress-induced depressive-like behaviors and hippocampal endoplasmic reticulum stress, but it also increased the expression of hippocampal Sirt-1 in chronic unpredictable mild stress-exposed rats. Furthermore, Sirtinol, an inhibitor of Sirt-1, reversed the protective effects of H2S against chronic unpredictable mild stress-induced depression-like behaviors and hippocampal endoplasmic reticulum stress. CONCLUSION These results demonstrated that H2S has an antidepressant potential, and the underlying mechanism is involved in the inhibition of hippocampal endoplasmic reticulum stress by upregulation of Sirt-1 in hippocampus. These findings identify H2S as a novel therapeutic target for depression.
Collapse
Affiliation(s)
- Shu-Yun Liu
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Dan Li
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Hai-Ying Zeng
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Li-Yuan Kan
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Wei Zou
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Ping Zhang
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Hong-Feng Gu
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Xiao-Qing Tang
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang).,Correspondence: Xiao-Qing Tang, MD, PhD, Department of Physiology, Institute of Neuroscience, Medical College, University of South China, 28 West Changsheng Road, Hengyang 421001, Hunan Province, P. R. China ()
| |
Collapse
|
37
|
Huang P, Shen Z, Yu W, Huang Y, Tang C, Du J, Jin H. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Myocardial Oxidative Stress and Myocardial Hypertrophy in Dahl Rats. Front Pharmacol 2017; 8:128. [PMID: 28360857 PMCID: PMC5352693 DOI: 10.3389/fphar.2017.00128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 12/27/2022] Open
Abstract
The study aimed to examine the protective effect of hydrogen sulfide (H2S) on high-salt-induced oxidative stress and myocardial hypertrophy in salt-sensitive (Dahl) rats. Thirty male Dahl rats and 40 SD rats were included in the study. They were randomly divided into Dahl control (Dahl + NS), Dahl high salt (Dahl + HS), Dahl + HS + NaHS, SD + NS, SD + HS, SD + HS + NaHS, and SD + HS + hydroxylamine (HA). Rats in Dahl + NS and SD + NS groups were given chow with 0.5% NaCl and 0.9% normal saline intraperitoneally daily. Myocardial structure, α-myosin heavy chain (α-MHC) and β-myosin heavy chain (β-MHC) expressions were determined. Endogenous myocardial H2S pathway and oxidative stress in myocardial tissues were tested. Myocardial H2S pathway was downregulated with myocardial hypertrophy featured by increased heart weight/body weight and cardiomyocytes cross-sectional area, decreased α-MHC and increased β-MHC expressions in Dahl rats with high-salt diet (all P < 0.01), and oxidative stress in myocardial tissues was significantly activated, demonstrated by the increased contents of hydroxyl radical, malondialdehyde and oxidized glutathione and decreased total antioxidant capacity, carbon monoxide, catalase, glutathione, glutathione peroxidase, superoxide dismutase (SOD) activities and decreased SOD1 and SOD2 protein expressions (P < 0.05, P < 0.01). However, H2S reduced myocardial hypertrophy with decreased heart weight/body weight and cardiomyocytes cross-sectional area, increased α-MHC, decreased β-MHC expressions and inhibited oxidative stress in myocardial tissues of Dahl rats with high-salt diet. However, no significant difference was found in H2S pathway, myocardial structure, α-MHC and β-MHC protein and oxidative status in myocardial tissues among SD + NS, SD + HS, and SD + HS + NaHS groups. HA, an inhibitor of cystathionine β-synthase, inhibited myocardial H2S pathway (P < 0.01), and stimulated myocardial hypertrophy and oxidative stress in SD rats with high-salt diet. Hence, H2S inhibited myocardial hypertrophy in high salt-stimulated Dahl rats in association with the enhancement of antioxidant capacity, thereby inhibiting oxidative stress in myocardial tissues.
Collapse
Affiliation(s)
- Pan Huang
- Department of Pediatrics, Peking University First Hospital Beijing, China
| | - Zhizhou Shen
- Department of Pediatrics, Peking University First Hospital Beijing, China
| | - Wen Yu
- Department of Pediatrics, Peking University First Hospital Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital Beijing, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First HospitalBeijing, China; Key Laboratory of Molecular Cardiology, Ministry of Education, Peking UniversityBeijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital Beijing, China
| |
Collapse
|
38
|
Yang F, Yu X, Li T, Wu J, Zhao Y, Liu J, Sun A, Dong S, Wu J, Zhong X, Xu C, Lu F, Zhang W. Exogenous H 2S regulates endoplasmic reticulum-mitochondria cross-talk to inhibit apoptotic pathways in STZ-induced type I diabetes. Am J Physiol Endocrinol Metab 2017; 312:E190-E203. [PMID: 27998959 DOI: 10.1152/ajpendo.00196.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 01/07/2023]
Abstract
The upregulation of reactive oxygen species (ROS) is a primary cause of cardiomyocyte apoptosis in diabetes cardiomyopathy (DCM). Mitofusin-2 (Mfn-2) is a key protein that bridges the mitochondria and endoplasmic reticulum (ER). Hydrogen sulfide (H2S)-mediated cardioprotection is related to antioxidant effects. The present study demonstrated that H2S inhibited the interaction between the ER and mitochondrial apoptotic pathway. This study investigated cardiac function, ultrastructural changes in the ER and mitochondria, apoptotic rate using TUNEL, and the expression of ER stress-associated proteins and mitochondrial apoptotic proteins in cardiac tissues in STZ-induced type I diabetic rats treated with or without NaHS (donor of H2S). Mitochondria of cardiac tissues were isolated, and MPTP opening and cytochrome c (cyt C) and Mfn-2 expression were also detected. Our data showed that hyperglycemia decreased the cardiac function by ultrasound cardiogram, and the administration of exogenous H2S ameliorated these changes. We demonstrated that the expression of ER stress sensors and apoptotic rates were elevated in cardiac tissue of DCM and cultured H9C2 cells, but the expression of these proteins was reduced following exogenous H2S treatment. The expression of mitochondrial apoptotic proteins, cyt C, and mPTP opening was decreased following treatment with exogenous H2S. In our experiment, the expression and immunofluorescence of Mfn-2 were both decreased after transfection with Mfn-2-siRNA. Hyperglycemia stimulated ER interactions and mitochondrial apoptotic pathways, which were inhibited by exogenous H2S treatment through the regulation of Mfn-2 expression.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Blood Glucose/metabolism
- Blotting, Western
- Cytochromes c/drug effects
- Cytochromes c/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/metabolism
- Diabetic Cardiomyopathies
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/ultrastructure
- Endoplasmic Reticulum Stress/drug effects
- Fluorescent Antibody Technique
- GTP Phosphohydrolases
- Gasotransmitters/pharmacology
- Heart/drug effects
- Heart/physiopathology
- Hydrogen Sulfide/pharmacology
- In Situ Nick-End Labeling
- Male
- Membrane Proteins/drug effects
- Membrane Proteins/metabolism
- Microscopy, Electron
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/ultrastructure
- Mitochondrial Proteins/drug effects
- Mitochondrial Proteins/metabolism
- Myocardium/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Rats
- Rats, Wistar
- Sulfides/pharmacology
Collapse
Affiliation(s)
- Fan Yang
- Department of Pathophysiology, Harbin Medical University, Harbin, China; and
| | - Xiangjing Yu
- Department of Pathophysiology, Harbin Medical University, Harbin, China; and
| | - Ting Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China; and
| | - Jianjun Wu
- Department of Cardiology, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Yajun Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, China; and
| | - Jiaqi Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, China; and
| | - Aili Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China; and
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, Harbin, China; and
| | - Jichao Wu
- Department of Pathophysiology, Harbin Medical University, Harbin, China; and
| | - Xin Zhong
- Department of Pathophysiology, Harbin Medical University, Harbin, China; and
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, China; and
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, China; and
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China; and
| |
Collapse
|
39
|
Zhang Z, Zhao L, Zhou Y, Lu X, Wang Z, Wang J, Li W. Taurine ameliorated homocysteine-induced H9C2 cardiomyocyte apoptosis by modulating endoplasmic reticulum stress. Apoptosis 2017; 22:647-661. [DOI: 10.1007/s10495-017-1351-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Long Y, Zhen X, Zhu F, Hu Z, Lei W, Li S, Zha Y, Nie J. Hyperhomocysteinemia Exacerbates Cisplatin-induced Acute Kidney Injury. Int J Biol Sci 2017; 13:219-231. [PMID: 28255274 PMCID: PMC5332876 DOI: 10.7150/ijbs.16725] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/21/2016] [Indexed: 12/12/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) has been linked to several clinical manifestations including chronic kidney disease. However, it is not known whether HHcy has a role in the development of acute kidney injury (AKI). In the present study, we reported that HHcy mice developed more severe renal injury after cisplatin injection and ischemia-reperfusion injury shown as more severe renal tubular damage and higher serum creatinine. In response to cisplatin, HHcy mice showed more prevalent tubular cell apoptosis and decreased tubular cell proliferation. Mechanistically, a heightened ER stress and a reduced Akt activity were observed in kidney tissues of HHcy mice after cisplatin injection. Stimulating cultured NRK-52E cells with Hcy significantly increased the fraction of cells in G2/M phase and cell apoptosis together with decreased Akt kinase activity. Akt agonist IGF-1 rescued HHcy-induced cell cycle arrest and cell apoptosis. In conclusion, the present study provides evidence that HHcy increases the sensitivity and severity of AKI.
Collapse
Affiliation(s)
- Yanjun Long
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China;; Division of Nephrology, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic & Urinary Disease, Guiyang, P.R. China
| | - Xin Zhen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Fengxin Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zheng Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Wenjing Lei
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Shuang Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yan Zha
- Division of Nephrology, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic & Urinary Disease, Guiyang, P.R. China
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
41
|
Xu D, Jin H, Wen J, Chen J, Chen D, Cai N, Wang Y, Wang J, Chen Y, Zhang X, Wang X. Hydrogen sulfide protects against endoplasmic reticulum stress and mitochondrial injury in nucleus pulposus cells and ameliorates intervertebral disc degeneration. Pharmacol Res 2017; 117:357-369. [PMID: 28087442 DOI: 10.1016/j.phrs.2017.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/17/2016] [Accepted: 01/05/2017] [Indexed: 11/16/2022]
Abstract
It has been suggested that excessive apoptosis in intervertebral disc cells induced by inflammatory cytokines, such as interleukin (IL)-1β, is related to the process of intervertebral disc degeneration (IVDD). Hydrogen sulfide (H2S), a gaseous signaling molecule, has drawn attention for its anti-apoptosis role in various pathophysiological processes in degenerative diseases. To date, there has been no investigation of the correlation of H2S production and IVDD or of the effects of H2S on IL-1β-induced apoptosis in nucleus pulposus (NP) cells. Here, we found that the expression levels of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), two key enzymes in the generation of H2S, were significantly decreased in human degenerate NP tissues as well as in IL-1β-treated NP cells. NaHS (H2S donor) administration showed a protective effect by inhibiting the endoplasmic reticulum (ER) stress response and mitochondrial dysfunction induced by IL-1β stimulation in vitro, the effect was related to activation of the PI3K/Akt and ERK1/2 signaling pathways. Suppression of these pathways by specific inhibitors, LY294002 and PD98059, partially reduced the protective effect of NaHS. Moreover, in the percutaneous needle puncture disc degeneration rat tail model, disc degeneration was partially reversed by NaHS administration. Taken together, our results suggest that H2S plays a protective role in IVDD and the underlying mechanism involves PI3K/Akt and ERK1/2 signaling pathways-mediated suppression of ER stress and mitochondrial dysfunction in IL-1β-induced NP cells.
Collapse
Affiliation(s)
- Daoliang Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiming Jin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianxia Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaoxiang Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Deheng Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ningyu Cai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongli Wang
- Department of Orthopaedic Surgery, Huzhou Central Hospital, Huzhou, China
| | - Jianle Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, China.
| | - Xiangyang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
42
|
Yu W, Liu D, Liang C, Ochs T, Chen S, Chen S, Du S, Tang C, Huang Y, Du J, Jin H. Sulfur Dioxide Protects Against Collagen Accumulation in Pulmonary Artery in Association With Downregulation of the Transforming Growth Factor β1/Smad Pathway in Pulmonary Hypertensive Rats. J Am Heart Assoc 2016; 5:e003910. [PMID: 27792648 PMCID: PMC5121494 DOI: 10.1161/jaha.116.003910] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND We aimed to explore the role of endogenous sulfur dioxide (SO2) in pulmonary vascular collagen remodeling induced by monocrotaline and its mechanisms. METHODS AND RESULTS A rat model of monocrotaline-induced pulmonary vascular collagen remodeling was developed and administered with l-aspartate-β-hydroxamate or SO2 donor. The morphology of small pulmonary arteries and collagen metabolism were examined. Cultured pulmonary arterial fibroblasts stimulated by transforming growth factor β1 (TGF-β1) were used to explore the mechanism. The results showed that in monocrotaline-treated rats, mean pulmonary artery pressure increased markedly, small pulmonary arterial remodeling developed, and collagen deposition in lung tissue and pulmonary arteries increased significantly in association with elevated SO2 content, aspartate aminotransferase (AAT) activity, and expression of AAT1 compared with control rats. Interestingly, l-aspartate-β-hydroxamate, an inhibitor of SO2 generation, further aggravated pulmonary vascular collagen remodeling in monocrotaline-treated rats, and inhibition of SO2 in pulmonary artery smooth muscle cells activated collagen accumulation in pulmonary arterial fibroblasts. SO2 donor, however, alleviated pulmonary vascular collagen remodeling with inhibited collagen synthesis, augmented collagen degradation, and decreased TGF-β1 expression of pulmonary arteries. Mechanistically, overexpression of AAT1, a key enzyme of SO2 production, prevented the activation of the TGF-β/type I TGF-β receptor/Smad2/3 signaling pathway and abnormal collagen synthesis in pulmonary arterial fibroblasts. In contrast, knockdown of AAT1 exacerbated Smad2/3 phosphorylation and deposition of collagen types I and III in TGF-β1-treated pulmonary arterial fibroblasts. CONCLUSIONS Endogenous SO2 plays a protective role in pulmonary artery collagen accumulation induced by monocrotaline via inhibition of the TGF-β/type I TGF-β receptor/Smad2/3 pathway.
Collapse
Affiliation(s)
- Wen Yu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Die Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chen Liang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Todd Ochs
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Stella Chen
- Department of Biochemistry and Cellular Biology, University of California, San Diego, La Jolla, CA
| | - Selena Chen
- Department of Biochemistry and Cellular Biology, University of California, San Diego, La Jolla, CA
| | - Shuxu Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
43
|
Tse G, Yan BP, Chan YWF, Tian XY, Huang Y. Reactive Oxygen Species, Endoplasmic Reticulum Stress and Mitochondrial Dysfunction: The Link with Cardiac Arrhythmogenesis. Front Physiol 2016; 7:313. [PMID: 27536244 PMCID: PMC4971160 DOI: 10.3389/fphys.2016.00313] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/11/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cardiac arrhythmias represent a significant problem globally, leading to cerebrovascular accidents, myocardial infarction, and sudden cardiac death. There is increasing evidence to suggest that increased oxidative stress from reactive oxygen species (ROS), which is elevated in conditions such as diabetes and hypertension, can lead to arrhythmogenesis. METHOD A literature review was undertaken to screen for articles that investigated the effects of ROS on cardiac ion channel function, remodeling and arrhythmogenesis. RESULTS Prolonged endoplasmic reticulum stress is observed in heart failure, leading to increased production of ROS. Mitochondrial ROS, which is elevated in diabetes and hypertension, can stimulate its own production in a positive feedback loop, termed ROS-induced ROS release. Together with activation of mitochondrial inner membrane anion channels, it leads to mitochondrial depolarization. Abnormal function of these organelles can then activate downstream signaling pathways, ultimately culminating in altered function or expression of cardiac ion channels responsible for generating the cardiac action potential (AP). Vascular and cardiac endothelial cells become dysfunctional, leading to altered paracrine signaling to influence the electrophysiology of adjacent cardiomyocytes. All of these changes can in turn produce abnormalities in AP repolarization or conduction, thereby increasing likelihood of triggered activity and reentry. CONCLUSION ROS plays a significant role in producing arrhythmic substrate. Therapeutic strategies targeting upstream events include production of a strong reducing environment or the use of pharmacological agents that target organelle-specific proteins and ion channels. These may relieve oxidative stress and in turn prevent arrhythmic complications in patients with diabetes, hypertension, and heart failure.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong KongHong Kong, China
| | - Bryan P. Yan
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong KongHong Kong, China
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourne, VIC, Australia
| | - Yin W. F. Chan
- Department of Psychology, School of Biological Sciences, University of CambridgeCambridge, UK
| | - Xiao Yu Tian
- Faculty of Medicine, School of Biomedical Sciences, Chinese University of Hong KongHong Kong, China
| | - Yu Huang
- Faculty of Medicine, School of Biomedical Sciences, Chinese University of Hong KongHong Kong, China
| |
Collapse
|
44
|
Hydrogen Sulfide Improves Vascular Calcification in Rats by Inhibiting Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9095242. [PMID: 27022436 PMCID: PMC4789052 DOI: 10.1155/2016/9095242] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 01/20/2023]
Abstract
In this study, the vitamin D3 plus nicotine (VDN) model of rats was used to prove that H2S alleviates vascular calcification (VC) and phenotype transformation of vascular smooth muscle cells (VSMC). Besides, H2S can also inhibit endoplasmic reticulum stress (ERS) of calcified aortic tissues. The effect of H2S on alleviating VC and phenotype transformation of VSMC can be blocked by TM, while PBA also alleviated VC and phenotype transformation of VSMC that was similar to the effect of H2S. These results suggest that H2S may alleviate rat aorta VC by inhibiting ERS, providing new target and perspective for prevention and treatment of VC.
Collapse
|
45
|
Ying R, Wang XQ, Yang Y, Gu ZJ, Mai JT, Qiu Q, Chen YX, Wang JF. Hydrogen sulfide suppresses endoplasmic reticulum stress-induced endothelial-to-mesenchymal transition through Src pathway. Life Sci 2015; 144:208-17. [PMID: 26656263 DOI: 10.1016/j.lfs.2015.11.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 10/20/2015] [Accepted: 11/24/2015] [Indexed: 01/09/2023]
Abstract
AIMS Hydrogen sulfide (H2S) ameliorates cardiac fibrosis in several models by suppressing endoplasmic reticulum (ER) stress. Endothelial-to-mesenchymal transition (EndMT) is implicated in the development of cardiac fibrosis. Therefore, we investigated whether H2S could attenuate EndMT by suppressing ER stress. MAIN METHODS ER stress was induced by tunicamycin (TM) and thapsigargin (TG) and inhibited by 4-phenylbutyrate (4-PBA) in human umbilical vein endothelial cells (HUVECs). ER stress and EndMT were measured by Western blot, Real-Time PCR and immunofluorescence staining. Inhibition Smad2 and Src pathway were performed by specific inhibitors and siRNA. Ultrastructural examination was detected by transmission electron microscope. The functions of HUVECs were investigated by cell migration assay and tube formation in vitro. KEY FINDINGS Under ER stress, the expression of endothelial marker CD31 significantly decreased while mesenchymal markers α-SMA, vimentin and collagen 1 increased which could be inhibited by 4-PBA. Moreover, HUVECs changed into a fibroblast-like appearance with the activation of Smad2 and Src kinase pathway. After inhibiting Src pathway, EndMT would be significantly inhibited. TM reduced H2S levels in cell lysate and H2S pretreatment could preserve endothelial cell appearance with decreased ER stress and ameliorated dilation of ER. H2S could also downregulate the mesenchymal marker expression, and upregulate the endothelial markers expression, accompanied with the suppression of Src pathway. Moreover, H2S partially restored the capacity of migration and tube formation in HUVECs. SIGNIFICANCE These results revealed that H2S could protect against ER stress-induced EndMT through Src pathway, which may be a novel role for the cardioprotection of H2S.
Collapse
Affiliation(s)
- Ru Ying
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China
| | - Xiao-Qiao Wang
- Department of Anesthesia, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Ying Yang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China
| | - Zhen-Jie Gu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China
| | - Jing-Ting Mai
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China
| | - Qiong Qiu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China
| | - Yang-Xin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China.
| | - Jing-Feng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China.
| |
Collapse
|
46
|
Liu ZW, Wang HY, Guan L, Zhao B. Regulatory effects of hydrogen sulfide on alveolar epithelial cell endoplasmic reticulum stress in rats with acute lung injury. World J Emerg Med 2015; 6:67-73. [PMID: 25802570 DOI: 10.5847/wjem.j.1920-8642.2015.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/12/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The present study was undertaken to examine the regulatory effect of hydrogen sulfide (H2S) on endoplasmic reticulum stress in alveolar epithelial cells of rats with acute lung injury (ALI) induced by oleic acid (OA). METHODS Seventy-two male Sprague Dawley (SD) rats were divided into control group, oleic acid-induced ALI group (OA group), oleic acid-induced ALI with sodium hydrosulfide (NaHS) pretreatment group (OA+NaHS group), and sodium hydrosulfide treatment group (NaHS group). Rats of each group were further subdivided into 3 subgroups. Index of quantitative assessment of histological lung injury (IQA), wet/dry weight ratio (W/D) and H2S level of lung tissues were measured. The expressions of endoplasmic reticulum stress markers including glucose-regulated protein 78 (GRP78) and α-subunit of eukaryotic translation initiation factor-2 (elF2α) in lung tissues were measured by immunohistochemical staining and Western blotting. RESULTS The IQA score and W/D ratio of lung tissues at the three time points significantly increased in rats injected with OA, but significantly decreased in other rats injected with OA and NaHS. The level of H2S in lung tissue at the three time points significantly decreased in rats injected with OA, but significantly increased in other rats injected with both OA and NaHS. GRP78 and elF2α decreased in rats injected with OA, but increased in other rats injected with both OA and NaHS, especially at 4-hour and 6-hour time points. CONCLUSION The results suggested that H2S could promote alveolar epithelial cell endoplasmic reticulum stress in rats with ALI.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Hai-Ying Wang
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Lan Guan
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Bin Zhao
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing 100035, China
| |
Collapse
|
47
|
Testai L, D'Antongiovanni V, Piano I, Martelli A, Citi V, Duranti E, Virdis A, Blandizzi C, Gargini C, Breschi MC, Calderone V. Different patterns of H2S/NO activity and cross-talk in the control of the coronary vascular bed under normotensive or hypertensive conditions. Nitric Oxide 2015; 47:25-33. [PMID: 25795591 DOI: 10.1016/j.niox.2015.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 03/02/2015] [Accepted: 03/15/2015] [Indexed: 01/17/2023]
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) play pivotal roles in the cardiovascular system. Conflicting results have been reported about their cross-talk. This study investigated their interplays in coronary bed of normotensive (NTRs) and spontaneously hypertensive rats (SHRs). The effects of H2S- (NaHS) and NO-donors (sodium nitroprusside, SNP) on coronary flow (CF) were measured in Langendorff-perfused hearts of NTRs and SHRs, in the absence or in the presence of propargylglycine (PAG, inhibitor of H2S biosynthesis), L-NAME (inhibitor of NO biosynthesis), ODQ (inhibitor of guanylate cyclase), L-Cysteine (substrate for H2S biosynthesis) or L-Arginine (substrate for NO biosynthesis). In NTRs, NaHS and SNP increased CF; their effects were particularly evident in Angiotensin II (AngII)-contracted coronary arteries. The dilatory effects of NaHS were abolished by L-NAME and ODQ; conversely, PAG abolished the effects of SNP. In SHRs, high levels of myocardial ROS production were observed. NaHS and SNP did not reduce the oxidative stress, but produced clear increases of the basal CF. In contrast, in AngII-contracted coronary arteries of SHRs, significant hyporeactivity to NaHS and SNP was observed. In SHRs, the vasodilatory effects of NaHS were only modestly affected by L-NAME and ODQ; PAG poorly influenced the effects of SNP. Then, in NTRs, the vascular actions of H2S required NO and vice versa. By contrast, in SHRs, the H2S-induced actions scarcely depend on NO release; as well, the NO effects are largely H2S-independent. These results represent the first step for understanding pathophysiological mechanisms of NO/H2S interplays under both normotensive and hypertensive conditions.
Collapse
Affiliation(s)
- L Testai
- Department of Pharmacy, University of Pisa, Via Bonanno, 6. I-56126 Pisa, Italy
| | - V D'Antongiovanni
- Department of Pharmacy, University of Pisa, Via Bonanno, 6. I-56126 Pisa, Italy
| | - I Piano
- Department of Pharmacy, University of Pisa, Via Bonanno, 6. I-56126 Pisa, Italy
| | - A Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno, 6. I-56126 Pisa, Italy
| | - V Citi
- Department of Pharmacy, University of Pisa, Via Bonanno, 6. I-56126 Pisa, Italy
| | - E Duranti
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 55. I-56126 Pisa, Italy
| | - A Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 55. I-56126 Pisa, Italy
| | - C Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 55. I-56126 Pisa, Italy
| | - C Gargini
- Department of Pharmacy, University of Pisa, Via Bonanno, 6. I-56126 Pisa, Italy
| | - M C Breschi
- Department of Pharmacy, University of Pisa, Via Bonanno, 6. I-56126 Pisa, Italy
| | - V Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno, 6. I-56126 Pisa, Italy.
| |
Collapse
|
48
|
Abstract
Ageing, a progressive structural and functional decline, is considered to be a major risk factor for virtually all ageing-associated pathologies and disabilities, including Alzheimer's disease, Parkinson's disease, stroke, diabetes, atherosclerosis and certain cancers. Biogerontology research has now been largely directed towards finding novel drug targets to decelerate the ageing process and attain healthy ageing in order to delay the onset of all ageing-related diseases. H2S has been reported to exert vasodilatory, antioxidant, antiapoptotic and anti-inflammatory actions and has been shown to act as a signalling molecule, neuromodulator and cytoprotectant. Intriguingly, H2S has been reported to regulate cell cycle and survival in healthy cells which suggests that it may regulate cell fate and hence the ageing process. This chapter sets out to provide an overview of the current knowledge regarding the involvement of H2S in ageing, with a specific focus on the invertebrate model nematode C. elegans.
Collapse
Affiliation(s)
- Bedoor Qabazard
- MRC-HPA Centre for Environment and Health, Analytical and Environmental Sciences Division, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | | |
Collapse
|
49
|
Zhou LX, Yang AN, Chen JK, Zhao L, Wang YH, Liu XM, Cai X, Zhang MH, Jiang YD, Cao J. Endoplasmic reticulum oxidoreductin 1α mediates homocysteine-induced hepatocyte endoplasmic reticulum stress. Shijie Huaren Xiaohua Zazhi 2014; 22:5228-5234. [DOI: 10.11569/wcjd.v22.i34.5228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the role of endoplasmic reticulum oxidoreductin 1α (ERO1α) in homocysteine (Hcy)-induced endoplasmic reticulum stress (ERS).
METHODS: Hepatocytes were cultured in the presence or absence of Hcy (100 μmol/L), and ELISA was used to determine the concentrations of of glucose-regulated protein 78 (GRP78), X-box binding protein-1 (XBP-1), protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activating transcription factor 6 (ATF6). Hepatocytes were then cultured with different concentrations of Hcy (0, 50, 100, 200, 500 μmol/L) and 100 μmol/L Hcy plus folic acid and vitamin B12, and the expression of ERO1α was detected by qRT-PCR and Western blot. ERO1α recombinant plasmid and ERO1α small interfering RNAs were then used to transfect hepatocytes, and the expression of ERO1α and the concentrations of GRP78, PERK, ATF6 and XBP-1 were measured.
RESULTS: Compared with non-treated cells, the concentrations of GRP78, PERK, ATF6 and XBP-1 significantly increased in Hcy-treated cells (P < 0.01, P < 0.01, P < 0.05, P < 0.01). Hcy decreased the expression of ERO1α at mRNA and protein levels (P < 0.01) in a dose-dependent manner. Transfection with ERO1α recombinant plasmid significantly increased the expression of ERO1α (P < 0.01), while transfection with three ERO1α small interfering RNAs significantly decreased the expression of ERO1α, with siRNA2 having the most significant effect (P < 0.01). Compared with the Hcy group, the concentrations of GRP78, PERK, ATF6 and XBP-1 significantly decreased in the Hcy + pERO1α recombinant plasmid group (P < 0.05), but increased in the Hcy + siRNA2 group (P < 0.01).
CONCLUSION: ERO1α may be involved in Hcy-induced hepatocyte ERS possibly by regulation of the GRP78-XBP-1/PERK/ATF6 signal pathway.
Collapse
|
50
|
Yang X, Xu H, Hao Y, Zhao L, Cai X, Tian J, Zhang M, Han X, Ma S, Cao J, Jiang Y. Endoplasmic reticulum oxidoreductin 1α mediates hepatic endoplasmic reticulum stress in homocysteine-induced atherosclerosis. Acta Biochim Biophys Sin (Shanghai) 2014; 46:902-10. [PMID: 25187414 DOI: 10.1093/abbs/gmu081] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is emerging as an important modulator of different pathological process and as a mechanism contributing to homocysteine (Hcy)-induced hepar injury. However, the molecular event that Hcy-induced ER stress in the hepar under the atherosclerosis background is currently unknown. Endoplasmic reticulum oxidoreductin 1α (ERO1α) plays a crucial role in maintaining ER stress function. In this study, we determined the expression of ERO1α in the hepar in hyperhomocysteinemia and the effect of ERO1α in hepacytes ER stress in the presence of Hcy. HHcy model was established by feeding the methionine diet in apolipoprotein-E-deficient (ApoE-/-) mice, and the hepatocytes were incubated with folate and different concentrations of Hcy. Our results showed that Hcy triggered ER stress characterized by an increased contents of glucose-regulated protein 78 (GRP78), protein kinase RNA-like ER kinase (PERK), activating transcription factor (ATF) 6 and X-box binding protein-1 (XBP-1). The ERO1α expressions in HHcy mice and Hcy-treated hepatocytes were decreased compared with those in ApoE-/- group and control hepacytes (P < 0.05), respectively. Knocking-down the expression of ERO1α with small-interfering RNA significantly augmented Hcy-induced ER stress. Meanwhile, the expressions of ER stress-related factor including GRP78, PERK, ATF6 and XBP-1, were significantly decreased when the ERO1α gene was over-expressed in hepacytes. Our results suggested that ERO1α may be involved in Hcy-induced hepar ER stress, and the inhibition of ERO1α expression can accelerate this process.
Collapse
Affiliation(s)
- Xiaoling Yang
- Department of Pathophysiology, Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Hua Xu
- Department of Pathophysiology, Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Yinju Hao
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Li Zhao
- Department of Clinical Examination, Ningxia Medical University, Yinchuan 750004, China
| | - Xin Cai
- Department of Clinical Examination, Ningxia Medical University, Yinchuan 750004, China
| | - Jue Tian
- Department of Pathophysiology, Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Minghao Zhang
- Department of Pathophysiology, Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Xuebo Han
- Department of Clinical Examination, Ningxia Medical University, Yinchuan 750004, China
| | - Shengchao Ma
- Department of Pathophysiology, Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Jun Cao
- Department of Pathophysiology, Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Yideng Jiang
- Department of Pathophysiology, Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|