1
|
Sanz-González SM, García-Medina JJ, Zanón-Moreno V, López-Gálvez MI, Galarreta-Mira D, Duarte L, Valero-Velló M, Ramírez AI, Arévalo JF, Pinazo-Durán MD, on behalf of the Valencia Study Group on Diabetic Retinopathy (VSDR) Report number 4. Clinical and Molecular-Genetic Insights into the Role of Oxidative Stress in Diabetic Retinopathy: Antioxidant Strategies and Future Avenues. Antioxidants (Basel) 2020; 9:E1101. [PMID: 33182408 PMCID: PMC7697026 DOI: 10.3390/antiox9111101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) overproduction and ROS-signaling pathways activation attack the eyes. We evaluated the oxidative stress (OS) and the effects of a daily, core nutritional supplement regimen containing antioxidants and omega 3 fatty acids (A/ω3) in type 2 diabetics (T2DM). A case-control study was carried out in 480 participants [287 T2DM patients with (+)/without (-) diabetic retinopathy (DR) and 193 healthy controls (CG)], randomly assigned to a daily pill of A/ω3. Periodic evaluation through 38 months allowed to outline patient characteristics, DR features, and classic/OS blood parameters. Statistics were performed by the SPSS 24.0 program. Diabetics displayed significantly higher circulating pro-oxidants (p = 0.001) and lower antioxidants (p = 0.0001) than the controls. Significantly higher plasma malondialdehyde/thiobarbituric acid reactive substances (MDA/TBARS; p = 0.006) and lower plasma total antioxidant capacity (TAC; p = 0.042) and vitamin C (0.020) was found in T2DM + DR versus T2DM-DR. The differential expression profile of solute carrier family 23 member 2 (SLC23A2) gene was seen in diabetics versus the CG (p = 0.001), and in T2DM + DR versus T2DM - DR (p < 0.05). The A/ω3 regime significantly reduced the pro-oxidants (p < 0.05) and augmented the antioxidants (p < 0.05). This follow-up study supports that a regular A/ω3 supplementation reduces the oxidative load and may serve as a dietary prophylaxis/adjunctive intervention for patients at risk of diabetic blindness.
Collapse
Affiliation(s)
- Silvia M. Sanz-González
- Ophthalmic Research Unit “Santiago Grisolía”, Fundación Investigación Sanitaria y Biomédica (FISABIO), Ave. Gaspar Aguilar 90, 46017 Valencia, Spain; (S.M.S.-G.); (J.J.G.-M.); (V.Z.-M.); (M.V.-V.); (M.D.P.-D.)
- Cellular and Molecular Ophthalmo-Biology Group, University of Valencia, Ave. Blasco Ibañez 15, 46010 Valencia, Spain
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (M.I.L.-G.); (D.G.-M.)
| | - José J. García-Medina
- Ophthalmic Research Unit “Santiago Grisolía”, Fundación Investigación Sanitaria y Biomédica (FISABIO), Ave. Gaspar Aguilar 90, 46017 Valencia, Spain; (S.M.S.-G.); (J.J.G.-M.); (V.Z.-M.); (M.V.-V.); (M.D.P.-D.)
- Cellular and Molecular Ophthalmo-Biology Group, University of Valencia, Ave. Blasco Ibañez 15, 46010 Valencia, Spain
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (M.I.L.-G.); (D.G.-M.)
- Department of Ophthalmology, General University Hospital Morales Meseguer, Ave. Marques de los Velez, s/n 30008 Murcia, Spain
- Department of Ophthalmology and Optometry, University of Murcia, Edificio LAIB Planta 5ª, Carretera Buenavista s/n, 30120 El Palmar Murcia, Spain
| | - Vicente Zanón-Moreno
- Ophthalmic Research Unit “Santiago Grisolía”, Fundación Investigación Sanitaria y Biomédica (FISABIO), Ave. Gaspar Aguilar 90, 46017 Valencia, Spain; (S.M.S.-G.); (J.J.G.-M.); (V.Z.-M.); (M.V.-V.); (M.D.P.-D.)
- Cellular and Molecular Ophthalmo-Biology Group, University of Valencia, Ave. Blasco Ibañez 15, 46010 Valencia, Spain
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (M.I.L.-G.); (D.G.-M.)
- Area of Health, Valencian International University, Calle Pintor Sorolla 21, 46002 Valencia, Spain
| | - María I. López-Gálvez
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (M.I.L.-G.); (D.G.-M.)
- Department of Ophthalmology, The University Clinic Hospital, Ave. Ramón y Cajal 3, 47003 Valladolid, Spain
| | - David Galarreta-Mira
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (M.I.L.-G.); (D.G.-M.)
- Department of Ophthalmology, The University Clinic Hospital, Ave. Ramón y Cajal 3, 47003 Valladolid, Spain
| | - Lilianne Duarte
- Department of Ophthalmology, Complexo Hospitalar “Entre Douro e Vouga”, 4520-211 Santa Maria da Feira, Portugal;
| | - Mar Valero-Velló
- Ophthalmic Research Unit “Santiago Grisolía”, Fundación Investigación Sanitaria y Biomédica (FISABIO), Ave. Gaspar Aguilar 90, 46017 Valencia, Spain; (S.M.S.-G.); (J.J.G.-M.); (V.Z.-M.); (M.V.-V.); (M.D.P.-D.)
| | - Ana I. Ramírez
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (M.I.L.-G.); (D.G.-M.)
- Department of Immunology, Ophthalmology and Otorrinolaringology, Faculty of Optics and Optometry, Universidad Complutense, Calle Arcos de Jalón 118, 28037 Madrid, Spain
- Instituto de Investigaciones Oftalmológicas “Ramón Castroviejo”, Faculty of Medicine, Universidad Complutense, Plaza Ramón y Cajal, s/n 28040 Madrid, Spain
| | - J. Fernando Arévalo
- Wilmer s Eye Institute at the Johns Hopkins Hospital, Baltimore, MD 21287, USA;
| | - María D. Pinazo-Durán
- Ophthalmic Research Unit “Santiago Grisolía”, Fundación Investigación Sanitaria y Biomédica (FISABIO), Ave. Gaspar Aguilar 90, 46017 Valencia, Spain; (S.M.S.-G.); (J.J.G.-M.); (V.Z.-M.); (M.V.-V.); (M.D.P.-D.)
- Cellular and Molecular Ophthalmo-Biology Group, University of Valencia, Ave. Blasco Ibañez 15, 46010 Valencia, Spain
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (M.I.L.-G.); (D.G.-M.)
| | | |
Collapse
|
3
|
Zhang Z, Fan J, Zhao Y, Kang Y, Du J, Peng X. Mitochondria-Accessing Ratiometric Fluorescent Probe for Imaging Endogenous Superoxide Anion in Live Cells and Daphnia magna. ACS Sens 2018; 3:735-741. [PMID: 29508614 DOI: 10.1021/acssensors.8b00082] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Superoxide anion (O2•-), as the precursor of other reactive oxygen species (ROS), is significantly important in the maintenance of redox homeostasis and various cellular signaling pathways. Here we present a ratiometric mitochondria-accessing fluorescent probe (NA-T) based on nucleophilic substitution mechanism for real-time measuring O2•-. By regulating the intramolecular charge of 1,8-naphthalimide, a ratiometric response model was obtained, which evinced 18-fold enhancement of fluorescence ratio ( I540 nm/ I475 nm) in the presence of O2•- over other ROS with rapid response (132 s), high sensitivity (DL = 0.370 μM) and selectivity. Confocal fluorescence images demonstrated that the probe could well permeate through plasma membrane for visualizing endogenous O2•- changes in mitochondria of living cells and in inflammatory Daphnia magna, indicating NA-T a potential tool for the diagnosis and research of corresponding diseases.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Yuhui Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Yao Kang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| |
Collapse
|
4
|
Del Río LA, López-Huertas E. ROS Generation in Peroxisomes and its Role in Cell Signaling. PLANT & CELL PHYSIOLOGY 2016; 57:1364-1376. [PMID: 27081099 DOI: 10.1093/pcp/pcw076] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/07/2016] [Indexed: 05/19/2023]
Abstract
In plant cells, as in most eukaryotic organisms, peroxisomes are probably the major sites of intracellular H2O2 production, as a result of their essentially oxidative type of metabolism. In recent years, it has become increasingly clear that peroxisomes carry out essential functions in eukaryotic cells. The generation of the important messenger molecule hydrogen peroxide (H2O2) by animal and plant peroxisomes and the presence of catalase in these organelles has been known for many years, but the generation of superoxide radicals (O2·- ) and the occurrence of the metalloenzyme superoxide dismutase was reported for the first time in peroxisomes from plant origin. Further research showed the presence in plant peroxisomes of a complex battery of antioxidant systems apart from catalase. The evidence available of reactive oxygen species (ROS) production in peroxisomes is presented, and the different antioxidant systems characterized in these organelles and their possible functions are described. Peroxisomes appear to have a ROS-mediated role in abiotic stress situations induced by the heavy metal cadmium (Cd) and the xenobiotic 2,4-D, and also in the oxidative reactions of leaf senescence. The toxicity of Cd and 2,4-D has an effect on the ROS metabolism and speed of movement (dynamics) of peroxisomes. The regulation of ROS production in peroxisomes can take place by post-translational modifications of those proteins involved in their production and/or scavenging. In recent years, different studies have been carried out on the proteome of ROS metabolism in peroxisomes. Diverse evidence obtained indicates that peroxisomes are an important cellular source of different signaling molecules, including ROS, involved in distinct processes of high physiological importance, and might play an important role in the maintenance of cellular redox homeostasis.
Collapse
Affiliation(s)
- Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell & Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 419, E-18080 Granada, Spain
| | - Eduardo López-Huertas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell & Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 419, E-18080 Granada, Spain
| |
Collapse
|
5
|
Serrano I, Romero-Puertas MC, Sandalio LM, Olmedilla A. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2827-37. [PMID: 25750430 DOI: 10.1093/jxb/erv099] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Successful sexual reproduction often relies on the ability of plants to recognize self- or genetically-related pollen and prevent pollen tube growth soon after germination in order to avoid self-fertilization. Angiosperms have developed different reproductive barriers, one of the most extended being self-incompatibility (SI). With SI, pistils are able to reject self or genetically-related pollen thus promoting genetic variability. There are basically two distinct systems of SI: gametophytic (GSI) and sporophytic (SSI) based on their different molecular and genetic control mechanisms. In both types of SI, programmed cell death (PCD) has been found to play an important role in the rejection of self-incompatible pollen. Although reactive oxygen species (ROS) were initially recognized as toxic metabolic products, in recent years, a new role for ROS has become apparent: the control and regulation of biological processes such as growth, development, response to biotic and abiotic environmental stimuli, and PCD. Together with ROS, nitric oxide (NO) has become recognized as a key regulator of PCD. PCD is an important mechanism for the controlled elimination of targeted cells in both animals and plants. The major focus of this review is to discuss how ROS and NO control male-female cross-talk during fertilization in order to trigger PCD in self-incompatible pollen, providing a highly effective way to prevent self-fertilization.
Collapse
Affiliation(s)
- Irene Serrano
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - María C Romero-Puertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - Luisa M Sandalio
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - Adela Olmedilla
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
6
|
Matés JM, Segura JA, Alonso FJ, Márquez J. Oxidative stress in apoptosis and cancer: an update. Arch Toxicol 2012; 86:1649-65. [PMID: 22811024 DOI: 10.1007/s00204-012-0906-3] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/03/2012] [Indexed: 02/07/2023]
Abstract
The oxygen paradox tells us that oxygen is both necessary for aerobic life and toxic to all life forms. Reactive oxygen species (ROS) touch every biological and medical discipline, especially those involving proliferative status, supporting the idea that active oxygen may be increased in tumor cells. In fact, metabolism of oxygen and the resulting toxic byproducts can cause cancer and death. Efforts to counteract the damage caused by ROS are gaining acceptance as a basis for novel therapeutic approaches, and the field of prevention of cancer is experiencing an upsurge of interest in medically useful antioxidants. Apoptosis is an important means of regulating cell numbers in the developing cell system, but it is so important that it must be controlled. Normal cell death in homeostasis of multicellular organisms is mediated through tightly regulated apoptotic pathways that involve oxidative stress regulation. Defective signaling through these pathways can contribute to both unbalance in apoptosis and development of cancer. Finally, in this review, we discuss new knowledge about recent tools that provide powerful antioxidant strategies, and designing methods to deliver to target cells, in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- José M Matés
- Department of Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, Spain.
| | | | | | | |
Collapse
|