1
|
Alonso A, Ebben A, Dabagh M. Impact of disturbed flow and arterial stiffening on mechanotransduction in endothelial cells. Biomech Model Mechanobiol 2023; 22:1919-1933. [PMID: 37709992 DOI: 10.1007/s10237-023-01743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/05/2023] [Indexed: 09/16/2023]
Abstract
Disturbed flow promotes progression of atherosclerosis at particular regions of arteries where the recent studies show the arterial wall becomes stiffer. Objective of this study is to show how mechanotransduction in subcellular organelles of endothelial cells (ECs) will alter with changes in blood flow profiles applied on ECs surface and mechanical properties of arterial wall where ECs are attached to. We will examine the exposure of ECs to atherogenic flow profiles (disturbed flow) and non-atherogenic flow profiles (purely forward flow), while stiffness and viscoelasticity of arterial wall will change. A multicomponent model of endothelial cell monolayer was applied to quantify the response of subcellular organelles to the changes in their microenvironment. Our results show that arterial stiffening alters mechanotransduction in intra/inter-cellular organelles of ECs by slight increase in the transmitted stresses, particularly over central stress fibers (SFs). We also observed that degradation of glycocalyx and exposure to non-atherogenic flow profiles result in significantly higher stresses in subcellular organelles, while degradation of glycocalyx and exposure to atherogenic flow profiles result in dramatically lower stresses in the organelles. Moreover, we show that increasing the arterial wall viscoelasticity leads to slight increase in the stresses transmitted to subcellular organelles. FAs are particularly influenced with the changes in the arterial wall properties and viscoelasticity. Our study suggests that changes in viscoelasticity of arterial wall and degradation state of glycocalyx have to be considered along with arterial stiffening in designing more efficient treatment strategies for atherosclerosis. Our study provides insight into significant role of mechanotransduction in the localization of atherosclerosis by quantifying the role of ECs mechanosensors and suggests that mechanotransduction may play a key role in design of more efficient and precision therapeutics to slow down or block the progression of atherosclerosis.
Collapse
Affiliation(s)
- Andrea Alonso
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Alessandra Ebben
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Mahsa Dabagh
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA.
| |
Collapse
|
2
|
Son YJ, Keum C, Kim M, Jeong G, Jin S, Hwang HW, Kim H, Lee K, Jeon H, Kim H, Pahk KJ, Jang HW, Sun JY, Han HS, Lee KH, Ok MR, Kim YC, Jeong Y. Selective Cell-Cell Adhesion Regulation via Cyclic Mechanical Deformation Induced by Ultrafast Nanovibrations. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37751467 DOI: 10.1021/acsami.3c08941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The adoption of dynamic mechanomodulation to regulate cellular behavior is an alternative to the use of chemical drugs, allowing spatiotemporal control. However, cell-selective targeting of mechanical stimuli is challenging due to the lack of strategies with which to convert macroscopic mechanical movements to different cellular responses. Here, we designed a nanoscale vibrating surface that controls cell behavior via selective repetitive cell deformation based on a poroelastic cell model. The vibrating indentations induce repetitive water redistribution in the cells with water redistribution rates faster than the vibrating rate; however, in the opposite case, cells perceive the vibrations as a one-time stimulus. The selective regulation of cell-cell adhesion through adjusting the frequency of nanovibration was demonstrated by suppression of cadherin expression in smooth muscle cells (fast water redistribution rate) with no change in vascular endothelial cells (slow water redistribution rate). This technique may provide a new strategy for cell-type-specific mechanical stimulation.
Collapse
Affiliation(s)
- Young Ju Son
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Changjoon Keum
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Minsoo Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Goeen Jeong
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soyeong Jin
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Hae Won Hwang
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyewon Kim
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyungwoo Lee
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hojun Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Joo Pahk
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Seop Han
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Kwan Hyi Lee
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Myoung-Ryul Ok
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yu-Chan Kim
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Youngdo Jeong
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
3
|
Effects of shear stress on vascular endothelial functions in atherosclerosis and potential therapeutic approaches. Biomed Pharmacother 2023; 158:114198. [PMID: 36916427 DOI: 10.1016/j.biopha.2022.114198] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
Different blood flow patterns in the arteries can alter the adaptive phenotype of vascular endothelial cells (ECs), thereby affecting the functions of ECs and are directly associated with the occurrence of lesions in the early stages of atherosclerosis (AS). Atherosclerotic plaques are commonly found at curved or bifurcated arteries, where the blood flow pattern is dominated by oscillating shear stress (OSS). OSS can induce ECs to transform into pro-inflammatory phenotypes, increase cellular inflammation, oxidative stress response, mitochondrial dysfunction, metabolic abnormalities and endothelial permeability, thereby promoting the progression of AS. On the other hand, the straight artery has a stable laminar shear stress (LSS), which promotes the transformation of ECs into an anti-inflammatory phenotype, improves endothelial cell function, thereby inhibits atherosclerotic progression. ECs have the ability to actively sense, integrate, and convert mechanical stimuli by shear stress into biochemical signals that further induces intracellular changes (such as the opening and closing of ion channels, activation and transcription of signaling pathways). Here we not only outline the relationship between functions of vascular ECs and different forms of fluid shear stress in AS, but also aim to provide new solutions for potential atherosclerotic therapies targeting intracellular mechanical transductions.
Collapse
|
4
|
Zhou X, Tang Y, Cao T, Ning L, Li Y, Xie X, Hu Y, He B, Peng B, Liu S. Treponema pallidum lipoprotein Tp0768 promotes the migration and adhesion of THP-1 cells to vascular endothelial cells through stress of the endoplasmic reticulum and the NF-κB/HIF-1α pathway. Mol Microbiol 2023; 119:86-100. [PMID: 36480422 DOI: 10.1111/mmi.15010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 10/23/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
Endothelial cell injury is a key factor in the spread of infection and pathogenicity of Treponema pallidum. The migration and adhesion reaction mediated by T. pallidum lipoprotein plays an important role. This study aimed to systematically explore the migration and adhesion effect of T. pallidum lipoprotein Tp0768 and its molecular mechanism. Stimulating vascular endothelial cells with Tp0768 increased the expression of ICAM-1, MCP-1, and IL-8. Moreover, it promoted the migration and adhesion of THP-1 cells to vascular endothelial cells. Our results revealed that Tp0768 promoted the THP-1 cells migrating and adhering to vascular endothelial cells by the PERK and IRE-1α pathways of endoplasmic reticulum (ER) stress. We further demonstrated that the inhibition of the NF-κB pathway and the downregulation of hypoxia-inducible factor 1 alpha (HIF-1α) reduced the mRNA levels of ICAM-1, MCP-1, and IL-8 induced by Tp0768. Also, the adhesion rate of THP-1 cells to endothelial cells decreased. After inhibiting ER stress, NF-κB p65 nuclear translocation was weakened, and the mRNA level of HIF-1α was also significantly downregulated. Our results indicated that T. pallidum lipoprotein Tp0768 promoted the migration and adhesion of THP-1 cells to vascular endothelial cells through ER stress and NF-κB/HIF-1α pathway.
Collapse
Affiliation(s)
- Xiangping Zhou
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Yun Tang
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Cao
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Lichang Ning
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Yumeng Li
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoping Xie
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Yibao Hu
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Bisha He
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Binfeng Peng
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuangquan Liu
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
5
|
Ebben A, Dabagh M. Mechanotransduction in Endothelial Cells in Vicinity of Cancer Cells. Cell Mol Bioeng 2022; 15:313-330. [DOI: 10.1007/s12195-022-00728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
|
6
|
Hou J, Deng Q, Deng X, Zhong W, Liu S, Zhong Z. MicroRNA-146a-5p alleviates lipopolysaccharide-induced NLRP3 inflammasome injury and pro-inflammatory cytokine production via the regulation of TRAF6 and IRAK1 in human umbilical vein endothelial cells (HUVECs). ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1433. [PMID: 34733985 PMCID: PMC8506750 DOI: 10.21037/atm-21-3903] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/30/2021] [Indexed: 01/02/2023]
Abstract
Background Microribonucleic acids (miRNAs) have an evident role in regulating endothelial inflammation and dysfunction, which characterizes the early stages of atherosclerosis. The NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome has been reported to contribute to the endothelial inflammatory response that promotes atherosclerosis development and progression. This study sought to investigate the effects of miR-146a-5p on lipopolysaccharide (LPS)-induced NLRP3 inflammasome injury and pro-inflammatory cytokine production in human umbilical vein endothelial cells (HUVECs). Methods HUVECs were transfected with a miR-146a-5p mimic, small-interfering RNA (siRNA) (si-TRAF6, and si-IRAK1), and were then stimulated with LPS for 24 h. The messenger (mRNA) and the protein levels of p-NF-κB/NF-κB, NLRP3, Caspase-1, pro-inflammatory cytokine [interleukin (IL)-6, IL-1β and tumor necrosis factor alpha (TNF-α)] in the HUVECs were analyzed by quantitative real-time polymerase chain reactions (PCRs) and western blot assays, respectively. The secretion of IL-6 from the cells was detected by enzyme-linked immunoassay (ELISA). Bioinformatic and dual-luciferase reporter assays were performed to identify the targets of miR-146a-5p. Results LPS promoted pro-inflammatory cytokine expression in a dose-dependent manner and significantly increased the expression levels of p-NF-κB/NF-κB p65, NLRP3, and Caspase-1. After transfection with a miR-146a-5p mimic, or si-TRAF6 or si-IRAK1, we observed that the mRNA and protein levels of NF-κB/p-NF-κB, NLRP3, Caspase-1, and pro-inflammatory cytokine in the HUVECs were all down-regulated, and the secretion of IL-6 from cells declined significantly. After transfection with a miR-146-5p mimic, the expression of TRAF6 and IRAK1 in HUVECs were both down-regulated. Dual-luciferase reporter assays confirmed that miR-146-5p directly targets the 3'-untranslated region (3'-UTR) of TRAF6 and IRAK1 to regulate their expression. Conclusions As a modulator of TRAF6 and IRAK1, miR-146a-5p negatively regulated LPS-induced NF-κB activation and the NLRP3 inflammasome signaling pathway in HUVECs. Thus, miRNA-146a-5p may serve as a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Jingyuan Hou
- Meizhou Academy of Medical Sciences Cardiovascular Disease Research Institute, Meizhou People's Hospital, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Qiaoting Deng
- Meizhou Academy of Medical Sciences Cardiovascular Disease Research Institute, Meizhou People's Hospital, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China.,Guangdong Provincial Engineering and Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| | - Xunwei Deng
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China.,Guangdong Provincial Engineering and Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| | - Wei Zhong
- Meizhou Academy of Medical Sciences Cardiovascular Disease Research Institute, Meizhou People's Hospital, Meizhou, China
| | - Sudong Liu
- Meizhou Academy of Medical Sciences Cardiovascular Disease Research Institute, Meizhou People's Hospital, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| | - Zhixiong Zhong
- Meizhou Academy of Medical Sciences Cardiovascular Disease Research Institute, Meizhou People's Hospital, Meizhou, China
| |
Collapse
|
7
|
Bioinformatics Analysis Reveals Diagnostic Markers and Vital Pathways Involved in Acute Coronary Syndrome. Cardiol Res Pract 2020; 2020:3162581. [PMID: 33224526 PMCID: PMC7670299 DOI: 10.1155/2020/3162581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/06/2020] [Accepted: 10/24/2020] [Indexed: 12/16/2022] Open
Abstract
Background Acute coronary syndrome (ACS) has a high incidence and mortality rate. Early detection and intervention would provide clinical benefits. This study aimed to reveal hub genes, transcription factors (TFs), and microRNAs (miRNAs) that affect plaque stability and provide the possibility for the early diagnosis and treatment of ACS. Methods We obtained gene expression matrix GSE19339 for ACS patients and healthy subjects from public database. The differentially expressed genes (DEGs) were screened using Limma package in R software. The biological functions of DEGs were shown by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). Protein-protein interaction (PPI) network was mapped in Cytoscape, followed by screening of hub genes based on the Molecular Complex Detection (MCODE) plug-in. Functional Enrichment analysis tool (FunRich) and Database for Annotation, Visualization and Integrated Discovery (DAVID) were used to predict miRNAs and TFs, respectively. Finally, GSE60993 expression matrix was chosen to plot receiver operating characteristic (ROC) curves with the aim of further assessing the reliability of our findings. Results We obtained 176 DEGs and further identified 16 hub genes by MCODE. The results of functional enrichment analysis showed that DEGs mediated inflammatory response and immune-related pathways. Among the predicted miRNAs, hsa-miR-4770, hsa-miR-5195, and hsa-miR-6088 all possessed two target genes, which might be closely related to the development of ACS. Moreover, we identified 11 TFs regulating hub gene transcriptional processes. Finally, ROC curves confirmed three genes with high confidence (area under the curve > 0.9), including VEGFA, SPP1, and VCAM1. Conclusion This study suggests that three genes (VEGFA, SPP1, and VCAM1) were involved in the molecular mechanisms of ACS pathogenesis and could serve as biomarkers of disease progression.
Collapse
|
8
|
Dominic A, Banerjee P, Hamilton DJ, Le NT, Abe JI. Time-dependent replicative senescence vs. disturbed flow-induced pre-mature aging in atherosclerosis. Redox Biol 2020; 37:101614. [PMID: 32863187 PMCID: PMC7767754 DOI: 10.1016/j.redox.2020.101614] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/07/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Accumulation of senescent cells has a causative role in the pathology of age-related disorders including atherosclerosis (AS) and cardiovascular diseases (CVDs). However, the concept of senescence is now drastically changing, and the new concept of senescence-associated reprogramming/stemness has emerged, suggesting that senescence is not merely related to “cell cycle arrest” or halting various cellular functions. It is well known that disturbed flow (D-flow) accelerates pre-mature aging and plays a significant role in the development of AS. We will discuss in this review that pre-mature aging induced by D-flow is not comparable to time-dependent aging, particularly with a focus on the possible involvement of senescence-associated secretory phenotype (SASP) in senescence-associated reprogramming/stemness, or increasing cell numbers. We will also present our outlook of nicotinamide adenine dinucleotides (NAD)+ deficiency-induced mitochondrial reactive oxygen species (mtROS) in evoking SASP by activating DNA damage response (DDR). MtROS plays a key role in developing cross-talk between nuclear-mitochondria, SASP, and ultimately atherosclerosis formation. Although senescence induced by time and various stress factors is a classical concept, we wish that the readers will see the undergoing Copernican-like change in this concept, as well as to recognize the significant contrast between pre-mature aging induced by D-flow and time-dependent aging.
Collapse
Affiliation(s)
- Abishai Dominic
- Department of Molecular and Cellular Biology Texas A&M Health Science Center, USA; Department of Cardio-Vascular Regeneration, Houston Methodist Research Institute, Texas, USA
| | - Priyanka Banerjee
- Department of Cardio-Vascular Regeneration, Houston Methodist Research Institute, Texas, USA
| | - Dale J Hamilton
- Department of Medicine, Center for Bioenergetics Houston Methodist Research Institute, Texas, USA
| | - Nhat-Tu Le
- Department of Cardio-Vascular Regeneration, Houston Methodist Research Institute, Texas, USA.
| | - Jun-Ichi Abe
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Niu N, Xu S, Xu Y, Little PJ, Jin ZG. Targeting Mechanosensitive Transcription Factors in Atherosclerosis. Trends Pharmacol Sci 2019; 40:253-266. [PMID: 30826122 DOI: 10.1016/j.tips.2019.02.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is the primary underlying cause of cardiovascular disease which preferentially develops at arterial regions exposed to disturbed flow (DF), but much less at regions of unidirectional laminar flow (UF). Recent studies have demonstrated that DF and UF differentially regulate important aspects of endothelial function, such as vascular inflammation, oxidative stress, vascular tone, cell proliferation, senescence, mitochondrial function, and glucose metabolism. DF and UF regulate vascular pathophysiology via differential regulation of mechanosensitive transcription factors (MSTFs) (KLF2, KLF4, NRF2, YAP/TAZ/TEAD, HIF-1α, NF-κB, AP-1, and others). Emerging studies show that MSTFs represent promising therapeutic targets for the prevention and treatment of atherosclerosis. We present here a comprehensive overview of the role of MSTFs in atherosclerosis, and highlight future directions for developing novel therapeutic agents by targeting MSTFs.
Collapse
Affiliation(s)
- Niu Niu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Yanni Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; National Health Commission (NHC) Key Laboratory of Biotechnology of Antibiotics, National Center for Drug (Microbiology) Screening Laboratory, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Beijing, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-Sen University, Guangzhou 510520, China
| | - Zheng-Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
10
|
Dabagh M, Jalali P, Butler PJ, Randles A, Tarbell JM. Mechanotransmission in endothelial cells subjected to oscillatory and multi-directional shear flow. J R Soc Interface 2018; 14:rsif.2017.0185. [PMID: 28515328 DOI: 10.1098/rsif.2017.0185] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022] Open
Abstract
Local haemodynamics are linked to the non-uniform distribution of atherosclerosic lesions in arteries. Low and oscillatory (reversing in the axial flow direction) wall shear stress (WSS) induce inflammatory responses in endothelial cells (ECs) mediating disease localization. The objective of this study is to investigate computationally how the flow direction (reflected in WSS variation on the EC surface over time) influences the forces experienced by structural components of ECs that are believed to play important roles in mechanotransduction. A three-dimensional, multi-scale, multi-component, viscoelastic model of focally adhered ECs is developed, in which oscillatory WSS (reversing or non-reversing) parallel to the principal flow direction, or multi-directional oscillatory WSS with reversing axial and transverse components are applied over the EC surface. The computational model includes the glycocalyx layer, actin cortical layer, nucleus, cytoskeleton, focal adhesions (FAs), stress fibres and adherens junctions (ADJs). We show the distinct effects of atherogenic flow profiles (reversing unidirectional flow and reversing multi-directional flow) on subcellular structures relative to non-atherogenic flow (non-reversing flow). Reversing flow lowers stresses and strains due to viscoelastic effects, and multi-directional flow alters stress on the ADJs perpendicular to the axial flow direction. The simulations predict forces on integrins, ADJ filaments and other substructures in the range that activate mechanotransduction.
Collapse
Affiliation(s)
- Mahsa Dabagh
- Department of Biomedical Engineering, Duke University, Durham, NC, USA .,School of Energy Systems, Lappeenranta University of Technology, Lappeenranta, Finland
| | - Payman Jalali
- School of Energy Systems, Lappeenranta University of Technology, Lappeenranta, Finland
| | - Peter J Butler
- Department of Biomedical Engineering, The Pennsylvania State University, Pennsylvania, PA, USA
| | - Amanda Randles
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| |
Collapse
|
11
|
Baratchi S, Khoshmanesh K, Woodman OL, Potocnik S, Peter K, McIntyre P. Molecular Sensors of Blood Flow in Endothelial Cells. Trends Mol Med 2017; 23:850-868. [PMID: 28811171 DOI: 10.1016/j.molmed.2017.07.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
Mechanical stress from blood flow has a significant effect on endothelial physiology, with a key role in initiating vasoregulatory signals. Disturbances in blood flow, such as in regions of disease-associated stenosis, arterial branch points, and sharp turns, can induce proatherogenic phenotypes in endothelial cells. The disruption of vascular homeostasis as a result of endothelial dysfunction may contribute to early and late stages of atherosclerosis, the underlying cause of coronary artery disease. In-depth knowledge of the mechanobiology of endothelial cells is essential to identifying mechanosensory complexes involved in the pathogenesis of atherosclerosis. In this review, we describe different blood flow patterns and summarize current knowledge on mechanosensory molecules regulating endothelial vasoregulatory functions, with clinical implications. Such information may help in the search for novel therapeutic approaches.
Collapse
Affiliation(s)
- Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.
| | | | - Owen L Woodman
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| | - Simon Potocnik
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| | - Karlheinz Peter
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Peter McIntyre
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| |
Collapse
|
12
|
McSweeney SR, Warabi E, Siow RCM. Nrf2 as an Endothelial Mechanosensitive Transcription Factor: Going With the Flow. Hypertension 2015; 67:20-9. [PMID: 26597822 DOI: 10.1161/hypertensionaha.115.06146] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shane R McSweeney
- From the Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom (S.R.M., R.C.M.S.); and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan (E.W.)
| | - Eiji Warabi
- From the Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom (S.R.M., R.C.M.S.); and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan (E.W.)
| | - Richard C M Siow
- From the Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom (S.R.M., R.C.M.S.); and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan (E.W.).
| |
Collapse
|
13
|
Jeon BK, Kwon K, Kang JL, Choi YH. Csk-Induced Phosphorylation of Src at Tyrosine 530 is Essential for H2O2-Mediated Suppression of ERK1/2 in Human Umbilical Vein Endothelial Cells. Sci Rep 2015; 5:12725. [PMID: 26234813 PMCID: PMC4522603 DOI: 10.1038/srep12725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/06/2015] [Indexed: 02/07/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are key signal transducers involved in various cellular events such as growth, proliferation, and differentiation. Previous studies have reported that H2O2 leads to phosphorylation of extracellular signal-regulated kinase (ERK), one of the MAPKs in endothelial cells. The current study shows that H2O2 suppressed ERK1/2 activation and phosphorylation at specific concentrations and times in human umbilical vein endothelial cells but not in immortalized mouse aortic endothelial cells or human astrocytoma cell line CRT-MG. Phosphorylation of other MAPK family members (i.e., p38 and JNK) was not suppressed by H2O2. The decrease in ERK1/2 phosphorylation induced by H2O2 was inversely correlated with the level of phosphorylation of Src tyrosine 530. Using siRNA, it was found that H2O2-induced suppression of ERK1/2 was dependent on Csk. Physiological laminar flow abrogated, but oscillatory flow did not affect, the H2O2-induced suppression of ERK1/2 phosphorylation. In conclusion, H2O2-induced Csk translocation to the plasma membrane leads to phosphorylation of Src at the tyrosine 530 residue resulting in a reduction of ERK1/2 phosphorylation. Physiological laminar flow abrogates this effect of H2O2 by inducing phosphorylation of Src tyrosine 419. These findings broaden our understanding of signal transduction mechanisms in the endothelial cells against oxidative stress.
Collapse
Affiliation(s)
- Bo Kyung Jeon
- 1] Department of Physiology, School of Medicine, Ewha Womans University, Seoul, Korea [2] Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Kihwan Kwon
- Department of Internal Medicine, Division of Cardiology, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Jihee Lee Kang
- 1] Department of Physiology, School of Medicine, Ewha Womans University, Seoul, Korea [2] Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Youn-Hee Choi
- 1] Department of Physiology, School of Medicine, Ewha Womans University, Seoul, Korea [2] Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
| |
Collapse
|
14
|
Tarbell JM, Shi ZD, Dunn J, Jo H. Fluid Mechanics, Arterial Disease, and Gene Expression. ANNUAL REVIEW OF FLUID MECHANICS 2014; 46:591-614. [PMID: 25360054 DOI: 10.1146/annurev-fluid-010313-141418] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.
Collapse
Affiliation(s)
- John M Tarbell
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031
| | - Zhong-Dong Shi
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065
| | - Jessilyn Dunn
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322
| |
Collapse
|
15
|
Tarbell JM, Shi ZD, Dunn J, Jo H. Fluid Mechanics, Arterial Disease, and Gene Expression. ANNUAL REVIEW OF FLUID MECHANICS 2014; 46:591-614. [PMID: 25360054 PMCID: PMC4211638 DOI: 10.1146/annurev-fluid-010313-141309] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.
Collapse
Affiliation(s)
- John M Tarbell
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031
| | - Zhong-Dong Shi
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065
| | - Jessilyn Dunn
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322
| |
Collapse
|