1
|
Crack JC, Le Brun NE. Synergy of native mass spectrometry and other biophysical techniques in studies of iron‑sulfur cluster proteins and their assembly. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119865. [PMID: 39442807 DOI: 10.1016/j.bbamcr.2024.119865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The application of mass spectrometric methodologies has revolutionised biological chemistry, from identification through to structural and conformational studies of proteins and other macromolecules. Native mass spectrometry (MS), in which proteins retain their native structure, is a rapidly growing field. This is particularly the case for studies of metalloproteins, where non-covalently bound cofactors remain bound following ionisation. Such metalloproteins include those that contain an iron‑sulfur (FeS) cluster and, despite their fragility and O2 sensitivity, they have been a particular focus for applications of native MS because of its capacity to accurately monitor mass changes that reveal chemical changes at the cluster. Here we review recent advances in these applications of native MS, which, together with data from more traditionally applied biophysical methods, have yielded a remarkable breadth of information about the FeS species present, and provided key mechanistic insight not only for FeS cluster proteins themselves, but also their assembly.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Nick E Le Brun
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK..
| |
Collapse
|
2
|
Guiza Beltran D, Wan T, Zhang L. WhiB-like proteins: Diversity of structure, function and mechanism. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119787. [PMID: 38879133 PMCID: PMC11365794 DOI: 10.1016/j.bbamcr.2024.119787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
The WhiB-Like (Wbl) proteins are a large family of iron-sulfur (Fe-S) cluster-containing transcription factors exclusively found in the phylum Actinobacteria, including the notable genera like Mycobacteria, Streptomycetes and Corynebacteria. These proteins play pivotal roles in diverse biological processes, such as cell development, redox stress response and antibiotic resistance. Members of the Wbl family exhibit remarkable diversity in their sequences, structures and functions, attracting great attention since their first discovery. This review highlights the most recent breakthroughs in understanding the structural and mechanistic aspects of Wbl-dependent transcriptional regulation.
Collapse
Affiliation(s)
- Daisy Guiza Beltran
- Department of Biochemistry, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA
| | - Tao Wan
- Department of Biochemistry, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA
| | - LiMei Zhang
- Department of Biochemistry, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA; Redox Biology Center, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA.
| |
Collapse
|
3
|
Jiang Q, Hu R, Liu F, Huang F, Zhang L, Zhang H. Characterization of a Novel Oxidative Stress Responsive Transcription Regulator in Mycobacterium bovis. Biomedicines 2024; 12:1872. [PMID: 39200336 PMCID: PMC11351531 DOI: 10.3390/biomedicines12081872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
The antioxidant defense is critical for the survival of intracellular pathogens such as Mycobacterium tuberculosis complex (MTBC) species, including Mycobacterium bovis, which are often exposed to an oxidative environment caused by reactive oxygen species (ROS) in hosts. However, the signaling pathway in mycobacteria for sensing and responding to oxidative stress remains largely unclear. In this study, we characterize a TetR-type transcription regulator BCG_3893c, designated AotM, as a novel redox sensor in Mycobacterium bovis that increases mycobacterial tolerance to oxidative stress. AotM is required for the growth of M. bovis in the presence of 1 mM hydrogen peroxide. Loss of the aotM gene leads to altered transcriptional profiles with 352 genes significantly up-regulated and 25 genes significantly down-regulated. AotM recognizes a 14-bp palindrome sequence motif and negatively regulates the expression of a FAD-dependent oxidoreductase encoded by bcg_3892c. Overexpression of BCG_3892c increases intracellular ROS production and reduces the growth of M. bovis. In summary, we propose that AotM enhances the mycobacterial resistance against oxidative stress probably by inhibiting intracellular ROS production. Our findings reveal a novel underlying regulatory mechanism behind mycobacterial oxidative stress adaptation.
Collapse
Affiliation(s)
- Qiang Jiang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Rong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Feng Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Feng Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Lei Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| |
Collapse
|
4
|
Chen YC, Yang X, Wang N, Sampson NS. Uncovering the roles of Mycobacterium tuberculosis melH in redox and bioenergetic homeostasis: implications for antitubercular therapy. mSphere 2024; 9:e0006124. [PMID: 38564709 PMCID: PMC11036813 DOI: 10.1128/msphere.00061-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb), the pathogenic bacterium that causes tuberculosis, has evolved sophisticated defense mechanisms to counteract the cytotoxicity of reactive oxygen species (ROS) generated within host macrophages during infection. The melH gene in Mtb and Mycobacterium marinum (Mm) plays a crucial role in defense mechanisms against ROS generated during infection. We demonstrate that melH encodes an epoxide hydrolase and contributes to ROS detoxification. Deletion of melH in Mm resulted in a mutant with increased sensitivity to oxidative stress, increased accumulation of aldehyde species, and decreased production of mycothiol and ergothioneine. This heightened vulnerability is attributed to the increased expression of whiB3, a universal stress sensor. The absence of melH also resulted in reduced intracellular levels of NAD+, NADH, and ATP. Bacterial growth was impaired, even in the absence of external stressors, and the impairment was carbon source dependent. Initial MelH substrate specificity studies demonstrate a preference for epoxides with a single aromatic substituent. Taken together, these results highlight the role of melH in mycobacterial bioenergetic metabolism and provide new insights into the complex interplay between redox homeostasis and generation of reactive aldehyde species in mycobacteria. IMPORTANCE This study unveils the pivotal role played by the melH gene in Mycobacterium tuberculosis and in Mycobacterium marinum in combatting the detrimental impact of oxidative conditions during infection. This investigation revealed notable alterations in the level of cytokinin-associated aldehyde, para-hydroxybenzaldehyde, as well as the redox buffer ergothioneine, upon deletion of melH. Moreover, changes in crucial cofactors responsible for electron transfer highlighted melH's crucial function in maintaining a delicate equilibrium of redox and bioenergetic processes. MelH prefers epoxide small substrates with a phenyl substituted substrate. These findings collectively emphasize the potential of melH as an attractive target for the development of novel antitubercular therapies that sensitize mycobacteria to host stress, offering new avenues for combating tuberculosis.
Collapse
Affiliation(s)
- Yu-Ching Chen
- Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York, USA
| | - Xinxin Yang
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Nan Wang
- Department of Chemistry, University of Rochester, Rochester, New York, USA
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
- Department of Chemistry, University of Rochester, Rochester, New York, USA
| |
Collapse
|
5
|
Chen YC, Yang X, Wang N, Sampson NS. Uncovering the Roles of Mycobacterium tuberculosis melH in Redox and Bioenergetic Homeostasis: Implications for Antitubercular Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.02.560593. [PMID: 37873194 PMCID: PMC10592911 DOI: 10.1101/2023.10.02.560593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Mycobacterium tuberculosis ( Mtb ), the pathogenic bacterium that causes tuberculosis, has evolved sophisticated defense mechanisms to counteract the cytotoxicity of reactive oxygen species (ROS) generated within host macrophages during infection. The melH gene in Mtb and Mycobacterium marinum ( Mm ) plays a crucial role in defense mechanisms against ROS generated during infection. We demonstrate that melH encodes an epoxide hydrolase and contributes to ROS detoxification. Deletion of melH in Mm resulted in a mutant with increased sensitivity to oxidative stress, increased accumulation of aldehyde species, and decreased production of mycothiol and ergothioneine. This heightened vulnerability is attributed to the increased expression of whiB3 , a universal stress sensor. The absence of melH also resulted in reduced intracellular levels of NAD + , NADH, and ATP. Bacterial growth was impaired, even in the absence of external stressors, and the impairment was carbon-source-dependent. Initial MelH substrate specificity studies demonstrate a preference for epoxides with a single aromatic substituent. Taken together, these results highlight the role of melH in mycobacterial bioenergetic metabolism and provide new insights into the complex interplay between redox homeostasis and generation of reactive aldehyde species in mycobacteria. Importance This study unveils the pivotal role played by the melH gene in Mycobacterium tuberculosis and Mycobacterium marinum in combatting the detrimental impact of oxidative conditions during infection. This investigation revealed notable alterations in the level of cytokinin-associated aldehyde, para -hydroxybenzaldehyde, as well as the redox buffer ergothioneine, upon deletion of melH . Moreover, changes in crucial cofactors responsible for electron transfer highlighted melH 's crucial function in maintaining a delicate equilibrium of redox and bioenergetic processes. MelH prefers epoxide small substrates with a phenyl substituted substrate. These findings collectively emphasize the potential of melH as an attractive target for the development of novel antitubercular therapies that sensitize mycobacteria to host stress, offering new avenues for combating tuberculosis.
Collapse
|
6
|
Banerjee U, Chedere A, Padaki R, Mohan A, Sambaturu N, Singh A, Chandra N. PathTracer Comprehensively Identifies Hypoxia-Induced Dormancy Adaptations in Mycobacterium tuberculosis. J Chem Inf Model 2023; 63:6156-6167. [PMID: 37756209 DOI: 10.1021/acs.jcim.3c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Mining large-scale data to discover biologically relevant information remains a challenge despite the rapid development of bioinformatics tools. Here, we have developed a new tool, PathTracer, to identify biologically relevant information flows by mining genome-wide protein-protein interaction networks following integration of gene expression data. PathTracer successfully mines interactions between genes and traces the most perturbed paths of perceived activities under the conditions of the study. We further demonstrated the utility of this tool by identifying adaptation mechanisms of hypoxia-induced dormancy in Mycobacterium tuberculosis (Mtb).
Collapse
Affiliation(s)
- Ushashi Banerjee
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Adithya Chedere
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Raksha Padaki
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Abhilash Mohan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Narmada Sambaturu
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Amit Singh
- Center for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, Karnataka, India
- BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
7
|
Hu R, Wan L, Liu X, Lu J, Hu X, Zhang X, Zhang M. K. pneumoniae and M. smegmatis infect epithelial cells via different strategies. J Thorac Dis 2023; 15:4396-4412. [PMID: 37691650 PMCID: PMC10482649 DOI: 10.21037/jtd-23-493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/07/2023] [Indexed: 09/12/2023]
Abstract
Background As the first line of defense, epithelial cells play a vital role in the initiation and control of both innate and adaptive immunity, which participate in the development of disease. Despite its therapeutic significance, little is understood about the specific interaction between pathogenic microorganisms and lung epithelial cells. Methods In this study, we performed a head-to-head comparison of the virulence and infection mechanisms of Klebsiella pneumoniae (K. pneumoniae) and Mycobacterium smegmatis (M. smegmatis), which represent Gram-negative/positive respiratory pathogens, respectively, in lung epithelial cell models for the first time. Results Through scanning electron microscopy combined with bacterial infection experiments, we confirmed the ability of K. pneumoniae and M. smegmatis strains to form biofilm and cord factor out of the cell wall. M. smegmatis has stronger adhesion and intracellular retention ability, while K. pneumoniae is more likely to induce acute infection. These pathogens could stay and proliferate in lung epithelial cells and stimulate the secretion of specific cytokines and chemokines through a gene transcription regulator. M. smegmatis infection can promote crosstalk among epithelial cells and other immune cells in the lung from a very early stage by prompting the secretion of pro-inflammatory cytokines. Meanwhile, there were significant correlations between K. pneumonia infection and higher levels of interleukin-15 (IL-15), interleukin-1Rα (IL-1Rα), fibroblast growth factor (FGF) basic, and granulocyte colony-stimulating factor (G-CSF). At the same time, K. pneumonia infection also led to changes in the expression of cytoskeletal proteins in epithelial cells. Conclusions Our results emphasized the immunoprotection and immunomodulation of lung epithelial cells against exogenous pathogenic microorganisms, indicating that different pathogens damaged the host through different strategies and induced varying innate immune responses. At the same time, they provided important clues and key immune factors for dealing with complicated pulmonary infections.
Collapse
Affiliation(s)
- Renjing Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Lin Wan
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Xiaoyun Liu
- Center Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jie Lu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Xichi Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Xiaoli Zhang
- Department of Dermatology, Jiangnan University Medical Center, Wuxi, China
| | | |
Collapse
|
8
|
Maxson ME, Das L, Goldberg MF, Porcelli SA, Chan J, Jacobs WR. Mycobacterium tuberculosis Central Metabolism Is Key Regulator of Macrophage Pyroptosis and Host Immunity. Pathogens 2023; 12:1109. [PMID: 37764917 PMCID: PMC10535942 DOI: 10.3390/pathogens12091109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic dysregulation in Mycobacterium tuberculosis results in increased macrophage apoptosis or pyroptosis. However, mechanistic links between Mycobacterium virulence and bacterial metabolic plasticity remain ill defined. In this study, we screened random transposon insertions of M. bovis BCG to identify mutants that induce pyroptotic death of the infected macrophage. Analysis of the transposon insertion sites identified a panel of fdr (functioning death repressor) genes, which were shown in some cases to encode functions central to Mycobacterium metabolism. In-depth studies of one fdr gene, fdr8 (BCG3787/Rv3727), demonstrated its important role in the maintenance of M. tuberculosis and M. bovis BCG redox balance in reductive stress conditions in the host. Our studies expand the subset of known Mycobacterium genes linking bacterial metabolic plasticity to virulence and also reveal that the broad induction of pyroptosis by an intracellular bacterial pathogen is linked to enhanced cellular immunity in vivo.
Collapse
Affiliation(s)
- Michelle E. Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Lahari Das
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| | | | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| | - John Chan
- Department of Medicine, New Jersey Medical School, 205 South Orange Avenue, Newark, NJ 07103, USA;
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| |
Collapse
|
9
|
Wan T, Horová M, Khetrapal V, Li S, Jones C, Schacht A, Sun X, Zhang L. Structural basis of DNA binding by the WhiB-like transcription factor WhiB3 in Mycobacterium tuberculosis. J Biol Chem 2023; 299:104777. [PMID: 37142222 PMCID: PMC10245118 DOI: 10.1016/j.jbc.2023.104777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) WhiB3 is an iron-sulfur cluster-containing transcription factor belonging to a subclass of the WhiB-Like (Wbl) family that is widely distributed in the phylum Actinobacteria. WhiB3 plays a crucial role in the survival and pathogenesis of Mtb. It binds to the conserved region 4 of the principal sigma factor (σA4) in the RNA polymerase holoenzyme to regulate gene expression like other known Wbl proteins in Mtb. However, the structural basis of how WhiB3 coordinates with σA4 to bind DNA and regulate transcription is unclear. Here we determined crystal structures of the WhiB3:σA4 complex without and with DNA at 1.5 Å and 2.45 Å, respectively, to elucidate how WhiB3 interacts with DNA to regulate gene expression. These structures reveal that the WhiB3:σA4 complex shares a molecular interface similar to other structurally characterized Wbl proteins and also possesses a subclass-specific Arg-rich DNA-binding motif. We demonstrate that this newly defined Arg-rich motif is required for WhiB3 binding to DNA in vitro and transcriptional regulation in Mycobacterium smegmatis. Together, our study provides empirical evidence of how WhiB3 regulates gene expression in Mtb by partnering with σA4 and engaging with DNA via the subclass-specific structural motif, distinct from the modes of DNA interaction by WhiB1 and WhiB7.
Collapse
Affiliation(s)
- Tao Wan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Magdaléna Horová
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Vimmy Khetrapal
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Shanren Li
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Camden Jones
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Andrew Schacht
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - LiMei Zhang
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
10
|
Bo H, Moure UAE, Yang Y, Pan J, Li L, Wang M, Ke X, Cui H. Mycobacterium tuberculosis-macrophage interaction: Molecular updates. Front Cell Infect Microbiol 2023; 13:1062963. [PMID: 36936766 PMCID: PMC10020944 DOI: 10.3389/fcimb.2023.1062963] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of Tuberculosis (TB), remains a pathogen of great interest on a global scale. This airborne pathogen affects the lungs, where it interacts with macrophages. Acidic pH, oxidative and nitrosative stressors, and food restrictions make the macrophage's internal milieu unfriendly to foreign bodies. Mtb subverts the host immune system and causes infection due to its genetic arsenal and secreted effector proteins. In vivo and in vitro research have examined Mtb-host macrophage interaction. This interaction is a crucial stage in Mtb infection because lung macrophages are the first immune cells Mtb encounters in the host. This review summarizes Mtb effectors that interact with macrophages. It also examines how macrophages control and eliminate Mtb and how Mtb manipulates macrophage defense mechanisms for its own survival. Understanding these mechanisms is crucial for TB prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Haotian Bo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ulrich Aymard Ekomi Moure
- The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yuanmiao Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jun Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Li Li
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Miao Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Hongjuan Cui, ; Xiaoxue Ke,
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
- *Correspondence: Hongjuan Cui, ; Xiaoxue Ke,
| |
Collapse
|
11
|
Boncella AE, Sabo ET, Santore RM, Carter J, Whalen J, Hudspeth JD, Morrison CN. The expanding utility of iron-sulfur clusters: Their functional roles in biology, synthetic small molecules, maquettes and artificial proteins, biomimetic materials, and therapeutic strategies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Rosa TLSA, Marques MAM, DeBoard Z, Hutchins K, Silva CAA, Montague CR, Yuan T, Amaral JJ, Atella GC, Rosa PS, Mattos KA, VanderVen BC, Lahiri R, Sampson NS, Brennan PJ, Belisle JT, Pessolani MCV, Berrêdo-Pinho M. Reductive Power Generated by Mycobacterium leprae Through Cholesterol Oxidation Contributes to Lipid and ATP Synthesis. Front Cell Infect Microbiol 2021; 11:709972. [PMID: 34395315 PMCID: PMC8355898 DOI: 10.3389/fcimb.2021.709972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
Upon infection, Mycobacterium leprae, an obligate intracellular bacillus, induces accumulation of cholesterol-enriched lipid droplets (LDs) in Schwann cells (SCs). LDs are promptly recruited to M. leprae-containing phagosomes, and inhibition of this process decreases bacterial survival, suggesting that LD recruitment constitutes a mechanism by which host-derived lipids are delivered to intracellular M. leprae. We previously demonstrated that M. leprae has preserved only the capacity to oxidize cholesterol to cholestenone, the first step of the normal cholesterol catabolic pathway. In this study we investigated the biochemical relevance of cholesterol oxidation on bacterial pathogenesis in SCs. Firstly, we showed that M. leprae increases the uptake of LDL-cholesterol by infected SCs. Moreover, fluorescence microscopy analysis revealed a close association between M. leprae and the internalized LDL-cholesterol within the host cell. By using Mycobacterium smegmatis mutant strains complemented with M. leprae genes, we demonstrated that ml1942 coding for 3β-hydroxysteroid dehydrogenase (3β-HSD), but not ml0389 originally annotated as cholesterol oxidase (ChoD), was responsible for the cholesterol oxidation activity detected in M. leprae. The 3β-HSD activity generates the electron donors NADH and NADPH that, respectively, fuel the M. leprae respiratory chain and provide reductive power for the biosynthesis of the dominant bacterial cell wall lipids phthiocerol dimycocerosate (PDIM) and phenolic glycolipid (PGL)-I. Inhibition of M. leprae 3β-HSD activity with the 17β-[N-(2,5-di-t-butylphenyl)carbamoyl]-6-azaandrost-4-en-3one (compound 1), decreased bacterial intracellular survival in SCs. In conclusion, our findings confirm the accumulation of cholesterol in infected SCs and its potential delivery to the intracellular bacterium. Furthermore, we provide strong evidence that cholesterol oxidation is an essential catabolic pathway for M. leprae pathogenicity and point to 3β-HSD as a prime drug target that may be used in combination with current multidrug regimens to shorten leprosy treatment and ameliorate nerve damage.
Collapse
Affiliation(s)
- Thabatta L S A Rosa
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Maria Angela M Marques
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Zachary DeBoard
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kelly Hutchins
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Carlos Adriano A Silva
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Christine R Montague
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| | - Tianao Yuan
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Julio J Amaral
- Laboratório de Química Biológica, Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, Brazil
| | - Georgia C Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia S Rosa
- Divisão de Pesquisa e Ensino, Instituto Lauro de Souza Lima, Bauru, Brazil
| | - Katherine A Mattos
- Departmento de Controle de Qualidade, Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Brian C VanderVen
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| | - Ramanuj Lahiri
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Programs, Baton Rouge, LA, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Patrick J Brennan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Maria Cristina V Pessolani
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcia Berrêdo-Pinho
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Wan T, Horová M, Beltran DG, Li S, Wong HX, Zhang LM. Structural insights into the functional divergence of WhiB-like proteins in Mycobacterium tuberculosis. Mol Cell 2021; 81:2887-2900.e5. [PMID: 34171298 DOI: 10.1016/j.molcel.2021.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/12/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
WhiB7 represents a distinct subclass of transcription factors in the WhiB-Like (Wbl) family, a unique group of iron-sulfur (4Fe-4S] cluster-containing proteins exclusive to the phylum of Actinobacteria. In Mycobacterium tuberculosis (Mtb), WhiB7 interacts with domain 4 of the primary sigma factor (σA4) in the RNA polymerase holoenzyme and activates genes involved in multiple drug resistance and redox homeostasis. Here, we report crystal structures of the WhiB7:σA4 complex alone and bound to its target promoter DNA at 1.55-Å and 2.6-Å resolution, respectively. These structures show how WhiB7 regulates gene expression by interacting with both σA4 and the AT-rich sequence upstream of the -35 promoter DNA via its C-terminal DNA-binding motif, the AT-hook. By combining comparative structural analysis of the two high-resolution σA4-bound Wbl structures with molecular and biochemical approaches, we identify the structural basis of the functional divergence between the two distinct subclasses of Wbl proteins in Mtb.
Collapse
Affiliation(s)
- Tao Wan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Magdaléna Horová
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Daisy Guiza Beltran
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Shanren Li
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Huey-Xian Wong
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Li-Mei Zhang
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
14
|
García EA, Blanco FC, Klepp LI, Pazos A, McNeil MR, Jackson M, Bigi F. Role of PhoPR in the response to stress of Mycobacterium bovis. Comp Immunol Microbiol Infect Dis 2020; 74:101593. [PMID: 33285386 DOI: 10.1016/j.cimid.2020.101593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022]
Abstract
PhoP is part of the two-component PhoPR system that regulates the expression of virulence genes of Mycobacteria. The goal of this work was to elucidate the role of PhoP in the mechanism that Mycobacterium bovis, the causative agent of bovine tuberculosis, displays upon stress. An analysis of gene expression and acidic growth curves indicated that M. bovis neutralized the external acidic environment by inducing and secreting ammonia. We found that PhoP is essential for ammonia production/secretion and its role in this process seems to be the induction of asparaginase and urease expression. We also demonstrated that the lack of PhoP negatively affected the synthesis of phthiocerol dimycocerosates. This finding is consistent with the role of the lipid anabolism in maintaining the redox environment upon stress in mycobacteria. Altogether the results of this study indicate that PhoP plays an important role in the response mechanisms to stress of M. bovis.
Collapse
Affiliation(s)
- Elizabeth A García
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria Institute of Biotechnology, National Institute of Agricultural Technology, Argentina.
| | - Federico C Blanco
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria Institute of Biotechnology, National Institute of Agricultural Technology, Argentina.
| | - Laura I Klepp
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria Institute of Biotechnology, National Institute of Agricultural Technology, Argentina.
| | - Adriana Pazos
- Instituto Tecnología de Alimentos (ITA), INTA, Food Technology Institute, Argentina.
| | - Michael R McNeil
- Colorado State University, Dept. of Microbiology, Immunology and Pathology, USA.
| | - Mary Jackson
- Colorado State University, Dept. of Microbiology, Immunology and Pathology, USA.
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria Institute of Biotechnology, National Institute of Agricultural Technology, Argentina.
| |
Collapse
|
15
|
Mahatha AC, Mal S, Majumder D, Saha S, Ghosh A, Basu J, Kundu M. RegX3 Activates whiB3 Under Acid Stress and Subverts Lysosomal Trafficking of Mycobacterium tuberculosis in a WhiB3-Dependent Manner. Front Microbiol 2020; 11:572433. [PMID: 33042081 PMCID: PMC7525159 DOI: 10.3389/fmicb.2020.572433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/10/2020] [Indexed: 11/17/2022] Open
Abstract
Two-component systems (TCSs) are central to the ability of Mycobacterium tuberculosis to respond to stress. One such paired TCS is SenX3-RegX3, which responds to phosphate starvation. Here we show that RegX3 is required for M. tuberculosis to withstand low pH, one of the challenges encountered by the bacterium in the host environment, and that RegX3 activates the cytosolic redox sensor WhiB3 to launch an appropriate response to acid stress. We show that the whiB3 promoter of M. tuberculosis harbors a RegX3 binding motif. Electrophoretic mobility shift assays (EMSAs) show that phosphorylated RegX3 (RegX3-P) (but not its unphosphorylated counterpart) binds to this motif, whereas a DNA binding mutant, RegX3 (K204A) fails to do so. Mutation of the putative RegX3 binding motif on the whiB3 promoter, abrogates the binding of RegX3-P. The significance of this binding is established by demonstrating that the expression of whiB3 is significantly attenuated under phosphate starvation or under acid stress in the regX3-inactivated mutant, ΔregX3. Green fluorescent protein (GFP)-based reporter assays further confirm the requirement of RegX3 for the activation of the whiB3 promoter. The compromised survival of ΔregX3 under acid stress and its increased trafficking to the lysosomal compartment are reversed upon complementation with either regX3 or whiB3, suggesting that RegX3 exerts its effects in a WhiB3-dependent manner. Finally, using an in vitro granuloma model, we show that granuloma formation is compromised in the absence of regX3, but restored upon complementation with either regX3 or whiB3. Our findings provide insight into an important role of RegX3 in the network that regulates the survival of M. tuberculosis under acid stress similar to that encountered in its intracellular niche. Our results argue strongly in favor of a role of the RegX3-WhiB3 axis in establishment of M. tuberculosis infection.
Collapse
Affiliation(s)
| | - Soumya Mal
- Department of Chemistry, Bose Institute, Kolkata, India
| | | | - Sudipto Saha
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Abhirupa Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, India
| | | |
Collapse
|
16
|
Wan T, Li S, Beltran DG, Schacht A, Zhang L, Becker DF, Zhang L. Structural basis of non-canonical transcriptional regulation by the σA-bound iron-sulfur protein WhiB1 in M. tuberculosis. Nucleic Acids Res 2020; 48:501-516. [PMID: 31807774 PMCID: PMC6954389 DOI: 10.1093/nar/gkz1133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 11/27/2022] Open
Abstract
WhiB1 is a monomeric iron-sulfur cluster-containing transcription factor in the WhiB-like family that is widely distributed in actinobacteria including the notoriously persistent pathogen Mycobacterium tuberculosis (M. tuberculosis). WhiB1 plays multiple roles in regulating cell growth and responding to nitric oxide stress in M. tuberculosis, but its underlying mechanism is unclear. Here we report a 1.85 Å-resolution crystal structure of the [4Fe-4S] cluster-bound (holo-) WhiB1 in complex with the C-terminal domain of the σ70-family primary sigma factor σA of M. tuberculosis containing the conserved region 4 (σA4). Region 4 of the σ70-family primary sigma factors is commonly used by transcription factors for gene activation, and holo-WhiB1 has been proposed to activate gene expression via binding to σA4. The complex structure, however, unexpectedly reveals that the interaction between WhiB1 and σA4 is dominated by hydrophobic residues in the [4Fe-4S] cluster binding pocket, distinct from previously characterized canonical σ704-bound transcription activators. Furthermore, we show that holo-WhiB1 represses transcription by interaction with σA4in vitro and that WhiB1 must interact with σA4 to perform its essential role in supporting cell growth in vivo. Together, these results demonstrate that holo-WhiB1 regulates gene expression by a non-canonical mechanism relative to well-characterized σA4-dependent transcription activators.
Collapse
Affiliation(s)
| | | | | | | | | | | | - LiMei Zhang
- Department of Biochemistry
- Redox Biology Center
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
17
|
Nandi M, Sikri K, Chaudhary N, Mande SC, Sharma RD, Tyagi JS. Multiple transcription factors co-regulate the Mycobacterium tuberculosis adaptation response to vitamin C. BMC Genomics 2019; 20:887. [PMID: 31752669 PMCID: PMC6868718 DOI: 10.1186/s12864-019-6190-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022] Open
Abstract
Background Latent tuberculosis infection is attributed in part to the existence of Mycobacterium tuberculosis in a persistent non-replicating dormant state that is associated with tolerance to host defence mechanisms and antibiotics. We have recently reported that vitamin C treatment of M. tuberculosis triggers the rapid development of bacterial dormancy. Temporal genome-wide transcriptome analysis has revealed that vitamin C-induced dormancy is associated with a large-scale modulation of gene expression in M. tuberculosis. Results An updated transcriptional regulatory network of M.tuberculosis (Mtb-TRN) consisting of 178 regulators and 3432 target genes was constructed. The temporal transcriptome data generated in response to vitamin C was overlaid on the Mtb-TRN (vitamin C Mtb-TRN) to derive insights into the transcriptional regulatory features in vitamin C-adapted bacteria. Statistical analysis using Fisher’s exact test predicted that 56 regulators play a central role in modulating genes which are involved in growth, respiration, metabolism and repair functions. Rv0348, DevR, MprA and RegX3 participate in a core temporal regulatory response during 0.25 h to 8 h of vitamin C treatment. Temporal network analysis further revealed Rv0348 to be the most prominent hub regulator with maximum interactions in the vitamin C Mtb-TRN. Experimental analysis revealed that Rv0348 and DevR proteins interact with each other, and this interaction results in an enhanced binding of DevR to its target promoter. These findings, together with the enhanced expression of devR and Rv0348 transcriptional regulators, indicate a second-level regulation of target genes through transcription factor- transcription factor interactions. Conclusions Temporal regulatory analysis of the vitamin C Mtb-TRN revealed that there is involvement of multiple regulators during bacterial adaptation to dormancy. Our findings suggest that Rv0348 is a prominent hub regulator in the vitamin C model and large-scale modulation of gene expression is achieved through interactions of Rv0348 with other transcriptional regulators.
Collapse
Affiliation(s)
- Malobi Nandi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.,Amity Institute of Biotechnology, Amity University, Manesar, Haryana, 122413, India
| | - Kriti Sikri
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Neha Chaudhary
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.,Present address: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Ravi Datta Sharma
- Amity Institute of Biotechnology, Amity University, Manesar, Haryana, 122413, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India. .,Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India.
| |
Collapse
|
18
|
Sevilla E, Bes MT, González A, Peleato ML, Fillat MF. Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. Antioxid Redox Signal 2019; 30:1651-1696. [PMID: 30073850 DOI: 10.1089/ars.2017.7442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE The successful adaptation of microorganisms to ever-changing environments depends, to a great extent, on their ability to maintain redox homeostasis. To effectively maintain the redox balance, cells have developed a variety of strategies mainly coordinated by a battery of transcriptional regulators through diverse mechanisms. Recent Advances: This comprehensive review focuses on the main mechanisms used by major redox-responsive regulators in prokaryotes and their relationship with the different redox signals received by the cell. An overview of the corresponding regulons is also provided. CRITICAL ISSUES Some regulators are difficult to classify since they may contain several sensing domains and respond to more than one signal. We propose a classification of redox-sensing regulators into three major groups. The first group contains one-component or direct regulators, whose sensing and regulatory domains are in the same protein. The second group comprises the classical two-component systems involving a sensor kinase that transduces the redox signal to its DNA-binding partner. The third group encompasses a heterogeneous group of flavin-based photosensors whose mechanisms are not always fully understood and are often involved in more complex regulatory networks. FUTURE DIRECTIONS Redox-responsive transcriptional regulation is an intricate process as identical signals may be sensed and transduced by different transcription factors, which often interplay with other DNA-binding proteins with or without regulatory activity. Although there is much information about some key regulators, many others remain to be fully characterized due to the instability of their clusters under oxygen. Understanding the mechanisms and the regulatory networks operated by these regulators is essential for the development of future applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Emma Sevilla
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María Teresa Bes
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Andrés González
- 2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain.,4 Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - María Luisa Peleato
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María F Fillat
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
19
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out multiple functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters with small/redox-active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial reprogramming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances: Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high-resolution structural data. Although this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
20
|
Barth C, Weiss MC, Roettger M, Martin WF, Unden G. Origin and phylogenetic relationships of [4Fe-4S]-containing O 2 sensors of bacteria. Environ Microbiol 2018; 20:4567-4586. [PMID: 30225854 DOI: 10.1111/1462-2920.14411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/10/2018] [Indexed: 11/28/2022]
Abstract
The advent of environmental O2 about 2.5 billion years ago forced microbes to metabolically adapt and to develop mechanisms for O2 sensing. Sensing of O2 by [4Fe-4S]2+ to [2Fe-2S]2+ cluster conversion represents an ancient mechanism that is used by FNREc (Escherichia coli), FNRBs (Bacillus subtilis), NreBSa (Staphylococcus aureus) and WhiB3Mt (Mycobacterium tuberculosis). The phylogenetic relationship of these sensors was investigated. FNREc homologues are restricted to the proteobacteria and a few representatives from other phyla. Homologues of FNRBs and NreBSa are located within the bacilli, of WhiB3 within the actinobacteria. Archaea contain no homologues. The data reveal no similarity between the FNREc , FNRBs , NreBSa and WhiB3 sensor families on the sequence and structural levels. These O2 sensor families arose independently in phyla that were already present at the time O2 appeared, their members were subsequently distributed by lateral gene transfer. The chemistry of [4Fe-4S] and [2Fe-2S] cluster formation and interconversion appears to be shared by the sensor protein families. The type of signal output is, however, family specific. The homologues of FNREc and NreBSa vary with regard to the number of Cys residues that coordinate the cluster. It is suggested that the variants derive from lateral gene transfer and gained other functions.
Collapse
Affiliation(s)
- C Barth
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - M C Weiss
- Institute for Molecular Evolution, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - M Roettger
- Institute for Molecular Evolution, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - W F Martin
- Institute for Molecular Evolution, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - G Unden
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
21
|
Pacl HT, Reddy VP, Saini V, Chinta KC, Steyn AJC. Host-pathogen redox dynamics modulate Mycobacterium tuberculosis pathogenesis. Pathog Dis 2018; 76:4972762. [PMID: 29873719 PMCID: PMC5989597 DOI: 10.1093/femspd/fty036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/13/2018] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, encounters variable and hostile environments within the host. A major component of these hostile conditions is reductive and oxidative stresses induced by factors modified by the host immune response, such as oxygen tension, NO or CO gases, reactive oxygen and nitrogen intermediates, the availability of different carbon sources and changes in pH. It is therefore essential for Mtb to continuously monitor and appropriately respond to the microenvironment. To this end, Mtb has developed various redox-sensitive systems capable of monitoring its intracellular redox environment and coordinating a response essential for virulence. Various aspects of Mtb physiology are regulated by these systems, including drug susceptibility, secretion systems, energy metabolism and dormancy. While great progress has been made in understanding the mechanisms and pathways that govern the response of Mtb to the host's redox environment, many questions in this area remain unanswered. The answers to these questions are promising avenues for addressing the tuberculosis crisis.
Collapse
Affiliation(s)
- Hayden T Pacl
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Krishna C Chinta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
- Africa Health Research Institute, K-RITH Tower Building, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
22
|
Reyes AM, Pedre B, De Armas MI, Tossounian MA, Radi R, Messens J, Trujillo M. Chemistry and Redox Biology of Mycothiol. Antioxid Redox Signal 2018; 28:487-504. [PMID: 28372502 DOI: 10.1089/ars.2017.7074] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SIGNIFICANCE Mycothiol (MSH, AcCys-GlcN-Ins) is the main low-molecular weight (LMW) thiol of most Actinomycetes, including the human pathogen Mycobacterium tuberculosis that affects millions of people worldwide. Strains with decreased MSH content show increased susceptibilities to hydroperoxides and electrophilic compounds. In M. tuberculosis, MSH modulates the response to several antituberculosis drugs. Enzymatic routes involving MSH could provide clues for specific drug design. Recent Advances: Physicochemical data argue against a rapid, nonenzymatic reaction of MSH with oxidants, disulfides, or electrophiles. Moreover, exposure of the bacteria to high concentrations of two-electron oxidants resulted in protein mycothiolation. The recently described glutaredoxin-like protein mycoredoxin-1 (Mrx-1) provides a route for catalytic reduction of mycothiolated proteins, protecting critical cysteines from irreversible oxidation. The description of MSH/Mrx-1-dependent activities of peroxidases helped to explain the higher susceptibility to oxidants observed in Actinomycetes lacking MSH. Moreover, the first mycothiol-S-transferase, member of the DinB superfamily of proteins, was described. In Corynebacterium, both the MSH/Mrx-1 and the thioredoxin pathways reduce methionine sulfoxide reductase A. A novel tool for in vivo imaging of the MSH/mycothiol disulfide (MSSM) status allows following changes in the mycothiol redox state during macrophage infection and its relationship with antibiotic sensitivity. CRITICAL ISSUES Redundancy of MSH with other LMW thiols is starting to be unraveled and could help to rationalize the differences in the reported importance of MSH synthesis observed in vitro versus in animal infection models. FUTURE DIRECTIONS Future work should be directed to establish the structural bases of the specificity of MSH-dependent enzymes, thus facilitating drug developments. Antioxid. Redox Signal. 28, 487-504.
Collapse
Affiliation(s)
- Aníbal M Reyes
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Brandán Pedre
- 3 Center for Structural Biology , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussels, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussels, Belgium
| | - María Inés De Armas
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Maria-Armineh Tossounian
- 3 Center for Structural Biology , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussels, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussels, Belgium
| | - Rafael Radi
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Joris Messens
- 3 Center for Structural Biology , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussels, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussels, Belgium
| | - Madia Trujillo
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
23
|
Zondervan NA, van Dam JCJ, Schaap PJ, Martins Dos Santos VAP, Suarez-Diez M. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. Int J Mol Sci 2018; 19:E347. [PMID: 29364195 PMCID: PMC5855569 DOI: 10.3390/ijms19020347] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
24
|
Wachnowsky C, Fidai I, Cowan JA. Iron-sulfur cluster biosynthesis and trafficking - impact on human disease conditions. Metallomics 2018; 10:9-29. [PMID: 29019354 PMCID: PMC5783746 DOI: 10.1039/c7mt00180k] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Iron-sulfur clusters (Fe-S) are one of the most ancient, ubiquitous and versatile classes of metal cofactors found in nature. Proteins that contain Fe-S clusters constitute one of the largest families of proteins, with varied functions that include electron transport, regulation of gene expression, substrate binding and activation, radical generation, and, more recently discovered, DNA repair. Research during the past two decades has shown that mitochondria are central to the biogenesis of Fe-S clusters in eukaryotic cells via a conserved cluster assembly machinery (ISC assembly machinery) that also controls the synthesis of Fe-S clusters of cytosolic and nuclear proteins. Several key steps for synthesis and trafficking have been determined for mitochondrial Fe-S clusters, as well as the cytosol (CIA - cytosolic iron-sulfur protein assembly), but detailed mechanisms of cluster biosynthesis, transport, and exchange are not well established. Genetic mutations and the instability of certain steps in the biosynthesis and maturation of mitochondrial, cytosolic and nuclear Fe-S cluster proteins affects overall cellular iron homeostasis and can lead to severe metabolic, systemic, neurological and hematological diseases, often resulting in fatality. In this review we briefly summarize the current molecular understanding of both mitochondrial ISC and CIA assembly machineries, and present a comprehensive overview of various associated inborn human disease states.
Collapse
Affiliation(s)
- C Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
25
|
Fe-S Clusters Emerging as Targets of Therapeutic Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3647657. [PMID: 29445445 PMCID: PMC5763138 DOI: 10.1155/2017/3647657] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 01/11/2023]
Abstract
Fe-S centers exhibit strong electronic plasticity, which is of importance for insuring fine redox tuning of protein biological properties. In accordance, Fe-S clusters are also highly sensitive to oxidation and can be very easily altered in vivo by different drugs, either directly or indirectly due to catabolic by-products, such as nitric oxide species (NOS) or reactive oxygen species (ROS). In case of metal ions, Fe-S cluster alteration might be the result of metal liganding to the coordinating sulfur atoms, as suggested for copper. Several drugs presented through this review are either capable of direct interaction with Fe-S clusters or of secondary Fe-S clusters alteration following ROS or NOS production. Reactions leading to Fe-S cluster disruption are also reported. Due to the recent interest and progress in Fe-S biology, it is very likely that an increasing number of drugs already used in clinics will emerge as molecules interfering with Fe-S centers in the near future. Targeting Fe-S centers could also become a promising strategy for drug development.
Collapse
|
26
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out a wide range of functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters towards small/redox active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial re-programming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances. Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high resolution structural data. Though this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry , University of East Anglia , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| | - Nick E Le Brun
- University of East Anglia, School of Chemistry , University plain , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| |
Collapse
|
27
|
Pal R, Hameed S, Kumar P, Singh S, Fatima Z. Comparative lipidomics of drug sensitive and resistant Mycobacterium tuberculosis reveals altered lipid imprints. 3 Biotech 2017; 7:325. [PMID: 28955622 PMCID: PMC5602786 DOI: 10.1007/s13205-017-0972-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
Lipids are most adaptable molecules that acclimatize to the development of multidrug resistance (MDR). The precise molecular mechanism of this acclimatization achieved in Mycobacterium tuberculosis (MTB) remains elusive. Although lipids of MTB have been characterized to some details, a comparable resource does not exist between drug sensitive (DS) and resistant (DR) strains of MTB. Here, by employing high-throughput mass spectrometry-based lipidomic approach, we attempted to analyze the differential lipidome profile of DS and DR MTB clinical isolates. We analyzed three major classes of lipids viz fatty acyls, glycerophospholipids and glycerolipids and their respective subclasses. Notably, we observed differential fatty acyls and glycerophospholipids as evident from increased mycolic acids phosphatidylinositol mannosides, phosphatidylinositol, cardiolipin and triacylglycerides abundance, respectively, which are crucial for MTB virulence and pathogenicity. Considering the fact that 30% of the MTB genome codes for lipid, this comprehensive lipidomic approach unravels extensive lipid alterations in DS and DR that will serve as a resource for identifying biomarkers aimed at disrupting the functions of MTB lipids responsible for MDR acquisition in MTB.
Collapse
Affiliation(s)
- Rahul Pal
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, 122413 India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, 122413 India
| | - Parveen Kumar
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Sarman Singh
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, 122413 India
| |
Collapse
|
28
|
Kugadas A, Lamont EA, Bannantine JP, Shoyama FM, Brenner E, Janagama HK, Sreevatsan S. A Mycobacterium avium subsp. paratuberculosis Predicted Serine Protease Is Associated with Acid Stress and Intraphagosomal Survival. Front Cell Infect Microbiol 2016; 6:85. [PMID: 27597934 PMCID: PMC4992679 DOI: 10.3389/fcimb.2016.00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/05/2016] [Indexed: 11/22/2022] Open
Abstract
The ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although, studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP), the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophages and MAC-T cells that coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc(2) 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increased bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5) conditions, compared to the parent strain. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted.
Collapse
Affiliation(s)
- Abirami Kugadas
- Division of Infectious Diseases, Brigham and Women's Hospital, University of MinnesotaBoston, MA, USA
| | - Elise A. Lamont
- Department of Veterinary and Biomedical Science, University of MinnesotaSaint Paul, MN, USA
| | - John P. Bannantine
- United States Department of Agriculture, National Animal Disease Center, Agricultural Research ServiceAmes, IA, USA
| | - Fernanda M. Shoyama
- Department of Veterinary Population Medicine, University of MinnesotaSaint Paul, MN, USA
| | - Evan Brenner
- Department of Veterinary Population Medicine, University of MinnesotaSaint Paul, MN, USA
| | | | - Srinand Sreevatsan
- Department of Veterinary and Biomedical Science, University of MinnesotaSaint Paul, MN, USA
- Department of Veterinary Population Medicine, University of MinnesotaSaint Paul, MN, USA
| |
Collapse
|
29
|
Chen Z, Hu Y, Cumming BM, Lu P, Feng L, Deng J, Steyn AJC, Chen S. Mycobacterial WhiB6 Differentially Regulates ESX-1 and the Dos Regulon to Modulate Granuloma Formation and Virulence in Zebrafish. Cell Rep 2016; 16:2512-24. [PMID: 27545883 DOI: 10.1016/j.celrep.2016.07.080] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/06/2016] [Accepted: 07/27/2016] [Indexed: 01/21/2023] Open
Abstract
During the course of infection, Mycobacterium tuberculosis (Mtb) is exposed to diverse redox stresses that trigger metabolic and physiological changes. How these stressors are sensed and relayed to the Mtb transcriptional apparatus remains unclear. Here, we provide evidence that WhiB6 differentially regulates the ESX-1 and DosR regulons through its Fe-S cluster. When challenged with NO, WhiB6 continually activates expression of the DosR regulons but regulates ESX-1 expression through initial activation followed by gradual inhibition. Comparative transcriptomic analysis of the holo- and reduced apo-WhiB6 complemented strains confirms these results and also reveals that WhiB6 controls aerobic and anaerobic metabolism, cell division, and virulence. Using the Mycobacterium marinum zebrafish infection model, we find that holo- and apo-WhiB6 modulate levels of mycobacterial infection, granuloma formation, and dissemination. These findings provide fresh insight into the role of WhiB6 in mycobacterial infection, dissemination, and disease development.
Collapse
Affiliation(s)
- Zhenkang Chen
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 10086, China
| | - Yangbo Hu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Bridgette M Cumming
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban 4001, South Africa
| | - Pei Lu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lipeng Feng
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiaoyu Deng
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Adrie J C Steyn
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban 4001, South Africa; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
30
|
Chinta KC, Saini V, Glasgow JN, Mazorodze JH, Rahman MA, Reddy D, Lancaster JR, Steyn AJC. The emerging role of gasotransmitters in the pathogenesis of tuberculosis. Nitric Oxide 2016; 59:28-41. [PMID: 27387335 DOI: 10.1016/j.niox.2016.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/30/2016] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a facultative intracellular pathogen and the second largest contributor to global mortality caused by an infectious agent after HIV. In infected host cells, Mtb is faced with a harsh intracellular environment including hypoxia and the release of nitric oxide (NO) and carbon monoxide (CO) by immune cells. Hypoxia, NO and CO induce a state of in vitro dormancy where Mtb senses these gases via the DosS and DosT heme sensor kinase proteins, which in turn induce a set of ∼47 genes, known as the Mtb Dos dormancy regulon. On the contrary, both iNOS and HO-1, which produce NO and CO, respectively, have been shown to be important against mycobacterial disease progression. In this review, we discuss the impact of O2, NO and CO on Mtb physiology and in host responses to Mtb infection as well as the potential role of another major endogenous gas, hydrogen sulfide (H2S), in Mtb pathogenesis.
Collapse
Affiliation(s)
- Krishna C Chinta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James H Mazorodze
- KwaZulu-Natal Research Institute for TB and HIV (KRITH), Durban, South Africa
| | - Md Aejazur Rahman
- KwaZulu-Natal Research Institute for TB and HIV (KRITH), Durban, South Africa
| | - Darshan Reddy
- Department of Cardiothoracic Surgery, Nelson R Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Jack R Lancaster
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA; KwaZulu-Natal Research Institute for TB and HIV (KRITH), Durban, South Africa; UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
31
|
Nitrogen oxide cycle regulates nitric oxide levels and bacterial cell signaling. Sci Rep 2016; 6:22038. [PMID: 26912114 PMCID: PMC4766573 DOI: 10.1038/srep22038] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/04/2016] [Indexed: 12/28/2022] Open
Abstract
Nitric oxide (NO) signaling controls various metabolic pathways in bacteria and higher eukaryotes. Cellular enzymes synthesize and detoxify NO; however, a mechanism that controls its cellular homeostasis has not been identified. Here, we found a nitrogen oxide cycle involving nitrate reductase (Nar) and the NO dioxygenase flavohemoglobin (Fhb), that facilitate inter-conversion of nitrate, nitrite, and NO in the actinobacterium Streptomyces coelicolor. This cycle regulates cellular NO levels, bacterial antibiotic production, and morphological differentiation. NO down-regulates Nar and up-regulates Fhb gene expression via the NO-dependent transcriptional factors DevSR and NsrR, respectively, which are involved in the auto-regulation mechanism of intracellular NO levels. Nitrite generated by the NO cycles induces gene expression in neighboring cells, indicating an additional role of the cycle as a producer of a transmittable inter-cellular communication molecule.
Collapse
|
32
|
Abstract
Iron-sulfur clusters act as important cofactors for a number of transcriptional regulators in bacteria, including many mammalian pathogens. The sensitivity of iron-sulfur clusters to iron availability, oxygen tension, and reactive oxygen and nitrogen species enables bacteria to use such regulators to adapt their gene expression profiles rapidly in response to changing environmental conditions. In this review, we discuss how the [4Fe-4S] or [2Fe-2S] cluster-containing regulators FNR, Wbl, aconitase, IscR, NsrR, SoxR, and AirSR contribute to bacterial pathogenesis through control of both metabolism and classical virulence factors. In addition, we briefly review mammalian iron homeostasis as well as oxidative/nitrosative stress to provide context for understanding the function of bacterial iron-sulfur cluster sensors in different niches within the host.
Collapse
Affiliation(s)
- Halie K Miller
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
33
|
Green J, Rolfe MD, Smith LJ. Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide. Virulence 2014; 5:794-809. [PMID: 25603427 PMCID: PMC4601167 DOI: 10.4161/viru.27794] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Molecular oxygen (O2) and nitric oxide (NO) are diatomic gases that play major roles in infection. The host innate immune system generates reactive oxygen species and NO as bacteriocidal agents and both require O2 for their production. Furthermore, the ability to adapt to changes in O2 availability is crucial for many bacterial pathogens, as many niches within a host are hypoxic. Pathogenic bacteria have evolved transcriptional regulatory systems that perceive these gases and respond by reprogramming gene expression. Direct sensors possess iron-containing co-factors (iron–sulfur clusters, mononuclear iron, heme) or reactive cysteine thiols that react with O2 and/or NO. Indirect sensors perceive the physiological effects of O2 starvation. Thus, O2 and NO act as environmental cues that trigger the coordinated expression of virulence genes and metabolic adaptations necessary for survival within a host. Here, the mechanisms of signal perception by key O2- and NO-responsive bacterial transcription factors and the effects on virulence gene expression are reviewed, followed by consideration of these aspects of gene regulation in two major pathogens, Staphylococcus aureus and Mycobacterium tuberculosis.
Collapse
Key Words
- AIP, autoinducer peptide
- Arc, Aerobic respiratory control
- FNR
- FNR, fumarate nitrate reduction regulator
- GAF, cGMP-specific phosphodiesterase-adenylyl cyclase-FhlA domain
- Isc, iron–sulfur cluster biosynthesis machinery
- Mycobacterium tuberculosis
- NOX, NADPH oxidase
- PAS, Per-Amt-Sim domain
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- Staphylococcus aureus
- TB, tuberculosis
- WhiB-like proteins
- iNOS, inducible nitric oxide synthase
- iron–sulfur cluster
- nitric oxide sensors
- oxygen sensors
Collapse
Affiliation(s)
- Jeffrey Green
- a Krebs Institute; Molecular Biology & Biotechnology; University of Sheffield ; Western Bank , Sheffield , UK
| | | | | |
Collapse
|
34
|
Chandra G, Chater KF. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. FEMS Microbiol Rev 2014; 38:345-79. [PMID: 24164321 PMCID: PMC4255298 DOI: 10.1111/1574-6976.12047] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/06/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022] Open
Abstract
To illuminate the evolution and mechanisms of actinobacterial complexity, we evaluate the distribution and origins of known Streptomyces developmental genes and the developmental significance of actinobacteria-specific genes. As an aid, we developed the Actinoblast database of reciprocal blastp best hits between the Streptomyces coelicolor genome and more than 100 other actinobacterial genomes (http://streptomyces.org.uk/actinoblast/). We suggest that the emergence of morphological complexity was underpinned by special features of early actinobacteria, such as polar growth and the coupled participation of regulatory Wbl proteins and the redox-protecting thiol mycothiol in transducing a transient nitric oxide signal generated during physiologically stressful growth transitions. It seems that some cell growth and division proteins of early actinobacteria have acquired greater importance for sporulation of complex actinobacteria than for mycelial growth, in which septa are infrequent and not associated with complete cell separation. The acquisition of extracellular proteins with structural roles, a highly regulated extracellular protease cascade, and additional regulatory genes allowed early actinobacterial stationary phase processes to be redeployed in the emergence of aerial hyphae from mycelial mats and in the formation of spore chains. These extracellular proteins may have contributed to speciation. Simpler members of morphologically diverse clades have lost some developmental genes.
Collapse
|
35
|
Reprint of: Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:923-37. [PMID: 23660107 DOI: 10.1016/j.bbabio.2013.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/15/2022]
Abstract
Iron/sulfur centers are key cofactors of proteins intervening in multiple conserved cellular processes, such as gene expression, DNA repair, RNA modification, central metabolism and respiration. Mechanisms allowing Fe/S centers to be assembled, and inserted into polypeptides have attracted much attention in the last decade, both in eukaryotes and prokaryotes. Basic principles and recent advances in our understanding of the prokaryotic Fe/S biogenesis ISC and SUF systems are reviewed in the present communication. Most studies covered stem from investigations in Escherichia coli and Azotobacter vinelandii. Remarkable insights were brought about by complementary structural, spectroscopic, biochemical and genetic studies. Highlights of the recent years include scaffold mediated assembly of Fe/S cluster, A-type carriers mediated delivery of clusters and regulatory control of Fe/S homeostasis via a set of interconnected genetic regulatory circuits. Also, the importance of Fe/S biosynthesis systems in mediating soft metal toxicity was documented. A brief account of the Fe/S biosynthesis systems diversity as present in current databases is given here. Moreover, Fe/S biosynthesis factors have themselves been the object of molecular tailoring during evolution and some examples are discussed here. An effort was made to provide, based on the E. coli system, a general classification associating a given domain with a given function such as to help next search and annotation of genomes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
36
|
Lee JY, Kim HJ, Kim ES, Kim P, Kim Y, Lee HS. Regulatory interaction of the Corynebacterium glutamicum whc genes in oxidative stress responses. J Biotechnol 2013; 168:149-54. [PMID: 23608553 DOI: 10.1016/j.jbiotec.2013.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/13/2013] [Accepted: 03/22/2013] [Indexed: 11/19/2022]
Abstract
In this study, we analyzed the regulatory interaction of the Corynebacterium glutamicum whc genes that play roles in oxidative stress responses. We found that whcE and whcA transcription was minimal in the whcB-deleted mutant (ΔwhcB). However, whcB and whcA transcription increased in the ΔwhcE mutant during the log phase, whereas their transcription decreased during the stationary phase. In addition, cells carrying the P180-whcB vector, which showed retarded growth due to uncontrolled whcB overexpression, recovered when whcA was deleted from the cells. Furthermore, introducing a ΔwhcE mutation into cells carrying the P180-whcB vector also resulted in improved growth and decreased whcA transcription during the log phase, suggesting that the action of whcB on whcA is mediated by whcE. Collectively, these findings show that, although the whc genes are paralogues, they play distinctive regulatory roles during cellular responses to oxidative stress. Notably, the whcE gene played a dual role of repressing and activating the whcB gene depending on the growth phase.
Collapse
Affiliation(s)
- Joo-Young Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si 339-700, Republic of Korea
| | | | | | | | | | | |
Collapse
|
37
|
Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F. Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:455-69. [PMID: 23298813 DOI: 10.1016/j.bbabio.2012.12.010] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/17/2022]
Abstract
Iron/sulfur centers are key cofactors of proteins intervening in multiple conserved cellular processes, such as gene expression, DNA repair, RNA modification, central metabolism and respiration. Mechanisms allowing Fe/S centers to be assembled, and inserted into polypeptides have attracted much attention in the last decade, both in eukaryotes and prokaryotes. Basic principles and recent advances in our understanding of the prokaryotic Fe/S biogenesis ISC and SUF systems are reviewed in the present communication. Most studies covered stem from investigations in Escherichia coli and Azotobacter vinelandii. Remarkable insights were brought about by complementary structural, spectroscopic, biochemical and genetic studies. Highlights of the recent years include scaffold mediated assembly of Fe/S cluster, A-type carriers mediated delivery of clusters and regulatory control of Fe/S homeostasis via a set of interconnected genetic regulatory circuits. Also, the importance of Fe/S biosynthesis systems in mediating soft metal toxicity was documented. A brief account of the Fe/S biosynthesis systems diversity as present in current databases is given here. Moreover, Fe/S biosynthesis factors have themselves been the object of molecular tailoring during evolution and some examples are discussed here. An effort was made to provide, based on the E. coli system, a general classification associating a given domain with a given function such as to help next search and annotation of genomes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
Affiliation(s)
- Béatrice Roche
- Institut de Microbiologie de la Méditerranée, Marseille, France
| | | | | | | | | | | |
Collapse
|
38
|
Farhana A, Saini V, Kumar A, Lancaster JR, Steyn AJ. Environmental heme-based sensor proteins: implications for understanding bacterial pathogenesis. Antioxid Redox Signal 2012; 17:1232-45. [PMID: 22494151 PMCID: PMC3430476 DOI: 10.1089/ars.2012.4613] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/11/2012] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Heme is an important prosthetic group required in a wide array of functions, including respiration, photosynthesis, metabolism, O(2) transport, xenobiotic detoxification, and peroxide production and destruction, and is an essential cofactor in proteins such as catalases, peroxidases, and members of the cytochrome P450 superfamily. Importantly, bacterial heme-based sensor proteins exploit the redox chemistry of heme to sense environmental gases and the intracellular redox state of the cell. RECENT ADVANCES The bacterial proteins FixL (Rhizobium ssp.), CooA (Rhodospirillum rubrum), EcDos (Escherichia. coli), RcoM (Burkholderia xenovorans), and particularly Mycobacterium tuberculosis (Mtb) DosS and DosT have emerged as model paradigms of environmental heme-based sensors capable of detecting multiple gases including NO, CO, and O(2). CRITICAL ISSUES How the diatomic gases NO, CO, or O(2) bind to heme iron to generate Fe-NO, Fe-CO, and Fe-O(2) bonds, respectively, and how the oxidation of heme iron by O(2) serves as a sensing mechanism that controls the activity of key proteins is complex and largely unclear. This is particularly important as many bacterial pathogens, including Mtb, encounters three overlapping host gases (NO, CO, and O(2)) during human infection. FUTURE DIRECTIONS Heme is an important prosthetic group that monitors the microbe's internal and external surroundings to alter signal transduction or enzymatic activation. Modern expression, metabolomic and biochemical technologies combined with in vivo pathogenesis studies should provide fresh insights into the mechanism of action of heme-based redox sensors.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ashwani Kumar
- Institute of Microbial Technology, Chandigarh, India
| | - Jack R. Lancaster
- Department of Anesthesiology, Physiology and Biophysics, and Environmental Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Adrie J.C. Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Centers for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa
- Department of Pathology, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
39
|
Iron sulfur cluster proteins and microbial regulation: implications for understanding tuberculosis. Curr Opin Chem Biol 2012; 16:45-53. [PMID: 22483328 DOI: 10.1016/j.cbpa.2012.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 11/22/2022]
Abstract
All pathogenic and nonpathogenic microbes are continuously exposed to environmental or endogenous reactive oxygen and nitrogen species, which can critically effect survival and disease. Iron-sulfur [Fe-S] cluster containing prosthetic groups provide the microbial cell with a unique capacity to sense and transcriptionally respond to diatomic gases (e.g. NO and O2) and redox-cycling agents. Recent advances in our understanding of the mechanisms for how the FNR and SoxR [Fe-S] cluster proteins respond to NO and O2 have provided new insights into the biochemical mechanism of action of the Mycobacterium tuberculosis (Mtb) family of WhiB [Fe-S] cluster proteins. These insights have provided the basis for establishing a unifying paradigm for the Mtb WhiB family of proteins. Mtb is the etiological agent for tuberculosis (TB), a disease that affects nearly one-third of the world's population.
Collapse
|
40
|
Abstract
The response to changes in the redox state of the cell environment is closely coupled with the ability of living organisms to sense changing conditions. Protein-based redox sensors utilize cofactors, that is, iron-sulfur clusters, flavins, or hemes, for environmental sensing. Under oxidizing conditions a cofactor-mediated post-translational modification (i.e., thiol-oxidation, carbonylation, or dityrosine formation) accompanied by a structural change in the protein occurs that results in an appropriate reaction, mostly in terms of expression of genes involved in antioxidative stress responses. In addition to these well-studied cofactors, researchers have recently discovered and described redox-active metabolites that play a role in redox sensing. Furthermore, not only proteins but also nucleic acids are able to sense redox-stressing events and to elucidate the corresponding response. With these all sensors, organisms are well equipped to sense redox-stress signals generated extracellularly as well as cytoplasmatically. To analyze the molecular mechanisms of all these redox sensors as well as to describe the paradigms involved, a number of sophisticated tools have been applied. These include development of novel protein fluorescence resonance energy transfer probes to microscopically analyze redox signaling in cells or the application of X-ray crystallography combined with spectroscopic studies to monitor dynamics of conformational changes within redox sensors. In this Forum, novel redox-sensing systems, novel avenues, and recent technical advances in the emerging field of redox sensing are presented.
Collapse
Affiliation(s)
- Darío Ortiz de Orué Lucana
- Department of Applied Genetics of Microorganisms, Faculty Biology/Chemistry, University of Osnabrueck, Osnabrueck, Germany
| |
Collapse
|