1
|
Li Y, Guo Y, Niu F, Gao H, Wang Q, Xu M. Regulation of oxidative stress response and antioxidant modification in Corynebacterium glutamicum. World J Microbiol Biotechnol 2024; 40:267. [PMID: 39004689 DOI: 10.1007/s11274-024-04066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
As an efficient and safe industrial bacterium, Corynebacterium glutamicum has extensive application in amino acid production. However, it often faces oxidative stress induced by reactive oxygen species (ROS), leading to diminished production efficiency. To enhance the robustness of C. glutamicum, numerous studies have focused on elucidating its regulatory mechanisms under various stress conditions such as heat, acid, and sulfur stress. However, a comprehensive review of its defense mechanisms against oxidative stress is needed. This review offers an in-depth overview of the mechanisms C. glutamicum employs to manage oxidative stress. It covers both enzymatic and non-enzymatic systems, including antioxidant enzymes, regulatory protein families, sigma factors involved in transcription, and physiological redox reduction pathways. This review provides insights for advancing research on the antioxidant mechanisms of C. glutamicum and sheds light on its potential applications in industrial production.
Collapse
Affiliation(s)
- Yueshu Li
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yuanyi Guo
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Fangyuan Niu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hui Gao
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Qing Wang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Dodd EL, Le Brun NE. Probing the mechanism of the dedicated NO sensor [4Fe-4S] NsrR: the effect of cluster ligand environment. J Inorg Biochem 2024; 252:112457. [PMID: 38176366 DOI: 10.1016/j.jinorgbio.2023.112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
NsrR from Streptomyces coelicolor is a bacterial nitric oxide (NO) sensor/nitrosative stress regulator as its primary function, and has been shown to have differential response at low, mid, and high levels of NO. These must correspond to discrete structural changes at the protein-bound [4Fe-4S] cluster in response to stepwise nitrosylation of the cluster. We have investigated the effect of the monohapto carboxylate ligand in the site differentiated [4Fe-4S] cluster cofactor of the protein NsrR on modulating its reactivity to NO with a focus on indentifying mechanistic intermediates. We have prepared a synthetic model [4Fe-4S] cluster complex with tripodal ligand and one single site differentiated site occupied by either thiolate or carboxylate ligand. We report here the mechanistic details of sequential steps of nitrosylation as observed by ESI MS and IR spectroscopy. Parallel non-denaturing mass spectrometry analyses were performed using site-differentiated variants of NsrR with the native aspartic acid, cysteine, or alanine in the position of the forth ligand to the cluster. A mono-nitrosylated synthetic [4Fe-4S] cluster was observed for the first time in a biologically-relevant thiolate-based coordination environment. Combined synthetic and protein data give unprecedented clarity in the modulation of nitrosylation of a [4Fe-4S] cluster.
Collapse
Affiliation(s)
- Erin L Dodd
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
3
|
Obe T, Kiess AS, Nannapaneni R. Antimicrobial Tolerance in Salmonella: Contributions to Survival and Persistence in Processing Environments. Animals (Basel) 2024; 14:578. [PMID: 38396546 PMCID: PMC10886206 DOI: 10.3390/ani14040578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Salmonella remains a top bacterial pathogen implicated in several food-borne outbreaks, despite the use of antimicrobials and sanitizers during production and processing. While these chemicals have been effective, Salmonella has shown the ability to survive and persist in poultry processing environments. This can be credited to its microbial ability to adapt and develop/acquire tolerance and/or resistance to different antimicrobial agents including oxidizers, acids (organic and inorganic), phenols, and surfactants. Moreover, there are several factors in processing environments that can limit the efficacy of these antimicrobials, thus allowing survival and persistence. This mini-review examines the antimicrobial activity of common disinfectants/sanitizers used in poultry processing environments and the ability of Salmonella to respond with innate or acquired tolerance and survive exposure to persists in such environments. Instead of relying on a single antimicrobial agent, the right combination of different disinfectants needs to be developed to target multiple pathways within Salmonella.
Collapse
Affiliation(s)
- Tomi Obe
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Aaron S. Kiess
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ramakrishna Nannapaneni
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi, MS 39762, USA;
| |
Collapse
|
4
|
Peters MK, Astafyeva Y, Han Y, Macdonald JFH, Indenbirken D, Nakel J, Virdi S, Westhoff G, Streit WR, Krohn I. Novel marine metalloprotease-new approaches for inhibition of biofilm formation of Stenotrophomonas maltophilia. Appl Microbiol Biotechnol 2023; 107:7119-7134. [PMID: 37755512 PMCID: PMC10638167 DOI: 10.1007/s00253-023-12781-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
Many marine organisms produce bioactive molecules with unique characteristics to survive in their ecological niches. These enzymes can be applied in biotechnological processes and in the medical sector to replace aggressive chemicals that are harmful to the environment. Especially in the human health sector, there is a need for new approaches to fight against pathogens like Stenotrophomonas maltophilia which forms thick biofilms on artificial joints or catheters and causes serious diseases. Our approach was to use enrichment cultures of five marine resources that underwent sequence-based screenings in combination with deep omics analyses in order to identify enzymes with antibiofilm characteristics. Especially the supernatant of the enrichment culture of a stony coral caused a 40% reduction of S. maltophilia biofilm formation. In the presence of the supernatant, our transcriptome dataset showed a clear stress response (upregulation of transcripts for metal resistance, antitoxins, transporter, and iron acquisition) to the treatment. Further investigation of the enrichment culture metagenome and proteome indicated a series of potential antimicrobial enzymes. We found an impressive group of metalloproteases in the proteome of the supernatant that is responsible for the detected anti-biofilm effect against S. maltophilia. KEY POINTS: • Omics-based discovery of novel marine-derived antimicrobials for human health management by inhibition of S. maltophilia • Up to 40% reduction of S. maltophilia biofilm formation by the use of marine-derived samples • Metalloprotease candidates prevent biofilm formation of S. maltophilia K279a by up to 20.
Collapse
Affiliation(s)
- Marie Kristin Peters
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Yekaterina Astafyeva
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Yuchen Han
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Jascha F H Macdonald
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Daniela Indenbirken
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology, Martinistraße 52, 20251, Hamburg, Germany
| | - Jacqueline Nakel
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology, Martinistraße 52, 20251, Hamburg, Germany
| | - Sanamjeet Virdi
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology, Martinistraße 52, 20251, Hamburg, Germany
| | - Guido Westhoff
- Tierpark Hagenbeck, Gemeinnützige Gesellschaft mbH, Lokstedter Grenzstraße 2, 22527, Hamburg, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Ines Krohn
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.
| |
Collapse
|
5
|
Chacón L, Kuropka B, González-Tortuero E, Schreiber F, Rojas-Jiménez K, Rodríguez-Rojas A. Mechanisms of low susceptibility to the disinfectant benzalkonium chloride in a multidrug-resistant environmental isolate of Aeromonas hydrophila. Front Microbiol 2023; 14:1180128. [PMID: 37333642 PMCID: PMC10272739 DOI: 10.3389/fmicb.2023.1180128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/04/2023] [Indexed: 06/20/2023] Open
Abstract
Excessive discharge of quaternary ammonium disinfectants such as benzalkonium chloride (BAC) into aquatic systems can trigger several physiological responses in environmental microorganisms. In this study, we isolated a less-susceptible strain of Aeromonas hydrophila to BAC, designated as INISA09, from a wastewater treatment plant in Costa Rica. We characterized its phenotypic response upon exposure to three different concentrations of BAC and characterized mechanisms related to its resistance using genomic and proteomic approaches. The genome of the strain, mapped against 52 different sequenced A. hydrophila strains, consists of approximately 4.6 Mb with 4,273 genes. We found a massive genome rearrangement and thousands of missense mutations compared to the reference strain A. hydrophila ATCC 7966. We identified 15,762 missense mutations mainly associated with transport, antimicrobial resistance, and outer membrane proteins. In addition, a quantitative proteomic analysis revealed a significant upregulation of several efflux pumps and the downregulation of porins when the strain was exposed to three BAC concentrations. Other genes related to membrane fatty acid metabolism and redox metabolic reactions also showed an altered expression. Our findings indicate that the response of A. hydrophila INISA09 to BAC primarily occurs at the envelop level, which is the primary target of BAC. Our study elucidates the mechanisms of antimicrobial susceptibility in aquatic environments against a widely used disinfectant and will help better understand how bacteria can adapt to biocide pollution. To our knowledge, this is the first study addressing the resistance to BAC in an environmental A. hydrophila isolate. We propose that this bacterial species could also serve as a new model to study antimicrobial pollution in aquatic environments.
Collapse
Affiliation(s)
- Luz Chacón
- Evolutionary Biology, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Health Research Institute, University of Costa Rica, San José, Costa Rica
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Enrique González-Tortuero
- School of Science, Engineering, and Environment (SEE), University of Salford, Manchester, United Kingdom
| | - Frank Schreiber
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | | | - Alexandro Rodríguez-Rojas
- Evolutionary Biology, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Small Animal Internal Medicine, Clinic for Small Animals, University of Veterinary Medicine (Vetmeduni), Vienna, Austria
| |
Collapse
|
6
|
Mao LC, Li SH, Peng XX, Li H. Global transcriptional regulator FNR regulates the pyruvate cycle and proton motive force to play a role in aminoglycosides resistance of Edwardsiella tarda. Front Microbiol 2022; 13:1003586. [PMID: 36160231 PMCID: PMC9490114 DOI: 10.3389/fmicb.2022.1003586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial metabolism is related to resistance and susceptibility to antibiotics. Fumarate and nitrate reduction regulatory protein (FNR) is a global transcriptional regulator that regulates metabolism. However, the role of FNR in antibiotic resistance is elusive. Here, fnr deletion mutant was constructed and used to test the role in Edwardsiella tarda EIB202 (EIB202). Δfnr exhibited elevated sensitivity to aminoglycosides. The mutant had a globally enhanced metabolome, with activated alanine, aspartate, and glutamate metabolism and increased abundance of glutamic acid as the most impacted pathway and crucial biomarker, respectively. Glutamate provides a source for the pyruvate cycle (the P cycle) and thereby relationship between exogenous glutamate-activated P cycle and gentamicin-mediated killing was investigated. The activated P cycle elevated proton motive force (PMF). Consistently, exogenous glutamate potentiated gentamicin-mediated killing to EIB202 as the similarity as the loss of FNR did. These findings reveal a previously unknown regulation by which FNR downregulates glutamate and in turn inactivates the P cycle, which inhibits PMF and thereby exhibits the resistance to aminoglycosides.
Collapse
Affiliation(s)
- Li-Chun Mao
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Shao-Hua Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xuan-Xian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Hui Li,
| |
Collapse
|
7
|
Soulier N, Walters K, Laremore TN, Shen G, Golbeck JH, Bryant DA. Acclimation of the photosynthetic apparatus to low light in a thermophilic Synechococcus sp. strain. PHOTOSYNTHESIS RESEARCH 2022; 153:21-42. [PMID: 35441927 DOI: 10.1007/s11120-022-00918-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Depending upon their growth responses to high and low irradiance, respectively, thermophilic Synechococcus sp. isolates from microbial mats associated with the effluent channels of Mushroom Spring, an alkaline siliceous hot spring in Yellowstone National Park, can be described as either high-light (HL) or low-light (LL) ecotypes. Strains isolated from the bottom of the photic zone grow more rapidly at low irradiance compared to strains isolated from the uppermost layer of the mat, which conversely grow better at high irradiance. The LL-ecotypes develop far-red absorbance and fluorescence emission features after growth in LL. These isolates have a unique gene cluster that encodes a putative cyanobacteriochrome denoted LcyA, a putative sensor histidine kinase; an allophycocyanin (FRL-AP; ApcD4-ApcB3) that absorbs far-red light; and a putative chlorophyll a-binding protein, denoted IsiX, which is homologous to IsiA. The emergence of FRL absorbance in LL-adapted cells of Synechococcus sp. strain A1463 was analyzed in cultures responding to differences in light intensity. The far-red absorbance phenotype arises from expression of a novel antenna complex containing the FRL-AP, ApcD4-ApcB3, which is produced when cells were grown at very low irradiance. Additionally, the two GAF domains of LcyA were shown to bind phycocyanobilin and a [4Fe-4S] cluster, respectively. These ligands potentially enable this photoreceptor to respond to a variety of environmental factors including irradiance, redox potential, and/or oxygen concentration. The products of the gene clusters specific to LL-ecotypes likely facilitate growth in low-light environments through a process called Low-Light Photoacclimation.
Collapse
Affiliation(s)
- Nathan Soulier
- Department of Biochemistry and Molecular Biology, S-002 Frear Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Karim Walters
- Department of Biochemistry and Molecular Biology, S-002 Frear Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tatiana N Laremore
- Proteomics and Mass Spectrometry Core Facility, Huck Institute for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, S-002 Frear Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, S-002 Frear Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, S-002 Frear Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
8
|
Plasmids Bring Additional Capabilities to Caulobacter Isolates. Curr Microbiol 2022; 79:45. [PMID: 34982248 PMCID: PMC8812328 DOI: 10.1007/s00284-021-02742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023]
Abstract
Caulobacter is a well-studied bacterial genus, but little is known about the plasmids that are found in some wild Caulobacter isolates. We used bioinformatic approaches to identify nine plasmids from seven different Caulobacter strains and grouped them based on their size and the similarity of their repABC, parAB, and mobAB genes. Protein pathway analysis of the genes on the K31p1 and K31p2 plasmids showed many metabolic pathways that would enhance the metabolic versatility of the host strain. In contrast, the CB4 plasmid contained 21 heavy metal resistance genes with the majority coding for proteins that enhance copper resistance. Growth assays of C. henricii CB4 demonstrated increased copper resistance and quantitative PCR showed an increase in the expression of eight heavy metal genes when induced with copper.
Collapse
|
9
|
Sun D, Zhou X, Liu C, Zhu J, Ru Y, Liu W, Liu J. Fnr Negatively Regulates Prodigiosin Synthesis in Serratia sp. ATCC 39006 During Aerobic Fermentation. Front Microbiol 2021; 12:734854. [PMID: 34603264 PMCID: PMC8485047 DOI: 10.3389/fmicb.2021.734854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022] Open
Abstract
The well-known Crp/Fnr family regulator Fnr has long been recognized as an oxygen sensor to regulate multiple biological processes, including the switch between aerobic/anaerobic metabolism, nitrogen fixation, bioluminescence, infection, and virulence. In most cases, Fnr was found to be active under anaerobic conditions. However, its role in aerobic antibiotic metabolism has not yet been revealed. In this research, we report that in the model organism, Serratia sp. ATCC 39006, Fnr (Ser39006_013370) negatively regulates prodigiosin production by binding to the spacer between the −10 and −35 region in the promoter of prodigiosin biosynthetic gene cluster under aerobic conditions. Fnr was also shown to modulate the anti-bacterial activity and motility by regulating pathway-specific regulatory genes, indicating that Fnr acts as a global regulator in Serratia sp. ATCC 39006. For the first time, we describe that Fnr regulates antibiotic synthesis in the presence of oxygen, which expands the known physiological functions of Fnr and benefits the further investigation of this important transcriptional regulator.
Collapse
Affiliation(s)
- Di Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xuge Zhou
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Cong Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yunrui Ru
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
10
|
Oxidative Stress Response in Pseudomonas aeruginosa. Pathogens 2021; 10:pathogens10091187. [PMID: 34578219 PMCID: PMC8466533 DOI: 10.3390/pathogens10091187] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative environmental and human opportunistic pathogen highly adapted to many different environmental conditions. It can cause a wide range of serious infections, including wounds, lungs, the urinary tract, and systemic infections. The high versatility and pathogenicity of this bacterium is attributed to its genomic complexity, the expression of several virulence factors, and its intrinsic resistance to various antimicrobials. However, to thrive and establish infection, P. aeruginosa must overcome several barriers. One of these barriers is the presence of oxidizing agents (e.g., hydrogen peroxide, superoxide, and hypochlorous acid) produced by the host immune system or that are commonly used as disinfectants in a variety of different environments including hospitals. These agents damage several cellular molecules and can cause cell death. Therefore, bacteria adapt to these harsh conditions by altering gene expression and eliciting several stress responses to survive under oxidative stress. Here, we used PubMed to evaluate the current knowledge on the oxidative stress responses adopted by P. aeruginosa. We will describe the genes that are often differently expressed under oxidative stress conditions, the pathways and proteins employed to sense and respond to oxidative stress, and how these changes in gene expression influence pathogenicity and the virulence of P. aeruginosa. Understanding these responses and changes in gene expression is critical to controlling bacterial pathogenicity and developing new therapeutic agents.
Collapse
|
11
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Varatnitskaya M, Degrossoli A, Leichert LI. Redox regulation in host-pathogen interactions: thiol switches and beyond. Biol Chem 2020; 402:299-316. [PMID: 33021957 DOI: 10.1515/hsz-2020-0264] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
Our organism is exposed to pathogens on a daily basis. Owing to this age-old interaction, both pathogen and host evolved strategies to cope with these encounters. Here, we focus on the consequences of the direct encounter of cells of the innate immune system with bacteria. First, we will discuss the bacterial strategies to counteract powerful reactive species. Our emphasis lies on the effects of hypochlorous acid (HOCl), arguably the most powerful oxidant produced inside the phagolysosome of professional phagocytes. We will highlight individual examples of proteins in gram-negative bacteria activated by HOCl via thiol-disulfide switches, methionine sulfoxidation, and N-chlorination of basic amino acid side chains. Second, we will discuss the effects of HOCl on proteins of the host. Recent studies have shown that both host and bacteria address failing protein homeostasis by activation of chaperone-like holdases through N-chlorination. After discussing the role of individual proteins in the HOCl-defense, we will turn our attention to the examination of effects on host and pathogen on a systemic level. Recent studies using genetically encoded redox probes and redox proteomics highlight differences in redox homeostasis in host and pathogen and give first hints at potential cellular HOCl signaling beyond thiol-disulfide switch mechanisms.
Collapse
Affiliation(s)
- Marharyta Varatnitskaya
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Adriana Degrossoli
- Faculty of Health Science - Health Science Department, Federal University of Lavras, Lavras, Brazil
| | - Lars I Leichert
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
13
|
Searching for putative virulence factors in the genomes of Shewanella indica and Shewanella algae. Arch Microbiol 2020; 203:683-692. [PMID: 33040180 DOI: 10.1007/s00203-020-02060-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/12/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
Bacterial pathogens are a major threat to both humans and animals worldwide. It is crucial to understand the mechanisms of various disease processes at the molecular level. Shewanella species are widespread in the environment and some are considered as emerging opportunistic human and marine mammal pathogens. In this study, putative virulence factors on the genome of Shewanella indica BW, a bacterium isolated from the Bryde's whale (Balaenoptera edeni), were determined. Additionally, for comparative purposes, putative virulence factors from two other S. indica and ten S. algae strains were also determined using the Pathosystems Resource Integration Center (PATRIC) pipeline. We confirmed the presence of previously reported virulence factors and we are proposing several new candidate virulence factors. Interestingly, the putative virulence factors were very similar between the two species with the exception of microbial collagenase which was present in all S. algae genomes, but absent in all S. indica genomes.
Collapse
|
14
|
Impact of Na +-Translocating NADH:Quinone Oxidoreductase on Iron Uptake and nqrM Expression in Vibrio cholerae. J Bacteriol 2020; 202:JB.00681-19. [PMID: 31712283 DOI: 10.1128/jb.00681-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/28/2022] Open
Abstract
The Na+ ion-translocating NADH:quinone oxidoreductase (NQR) from Vibrio cholerae is a membrane-bound respiratory enzyme which harbors flavins and Fe-S clusters as redox centers. The NQR is the main producer of the sodium motive force (SMF) and drives energy-dissipating processes such as flagellar rotation, substrate uptake, ATP synthesis, and cation-proton antiport. The NQR requires for its maturation, in addition to the six structural genes nqrABCDEF, a flavin attachment gene, apbE, and the nqrM gene, presumably encoding a Fe delivery protein. We here describe growth studies and quantitative real-time PCR for the V. cholerae O395N1 wild-type (wt) strain and its mutant Δnqr and ΔubiC strains, impaired in respiration. In a comparative proteome analysis, FeoB, the membrane subunit of the uptake system for Fe2+ (Feo), was increased in V. cholerae Δnqr In this study, the upregulation was confirmed on the mRNA level and resulted in improved growth rates of V. cholerae Δnqr with Fe2+ as an iron source. We studied the expression of feoB on other respiratory enzyme deletion mutants such as the ΔubiC mutant to determine whether iron transport is specific to the absence of NQR resulting from impaired respiration. We show that the nqr operon comprises, in addition to the structural nqrABCDEF genes, the downstream apbE and nqrM genes on the same operon and demonstrate induction of the nqr operon by iron in V. cholerae wt. In contrast, expression of the nqrM gene in V. cholerae Δnqr is repressed by iron. The lack of functional NQR has a strong impact on iron homeostasis in V. cholerae and demonstrates that central respiratory metabolism is interwoven with iron uptake and regulation.IMPORTANCE Investigating strategies of iron acquisition, storage, and delivery in Vibrio cholerae is a prerequisite to understand how this pathogen thrives in hostile, iron-limited environments such as the human host. In addition to highlighting the maturation of the respiratory complex NQR, this study points out the influence of NQR on iron metabolism, thereby making it a potential drug target for antibiotics.
Collapse
|
15
|
Amitouche F, Saad F, Tazibt S, Bouarab S, Vega A. Structural and Electronic Rearrangements in Fe 2S 2, Fe 3S 4, and Fe 4S 4 Atomic Clusters under the Attack of NO, CO, and O 2. J Phys Chem A 2019; 123:10919-10929. [PMID: 31794213 DOI: 10.1021/acs.jpca.9b08201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report results, based on density functional theory-generalized gradient approximation calculations, that shed light on how NO, CO, and O2 interact with Fe2S2, Fe3S4, and Fe4S4 clusters and how they modify their structural and electronic properties. The interest in these small iron sulfide clusters comes from the fact that they are at the protein cores and that elucidating fundamental aspects of their interaction with those light molecules which are known to modify their functionality may help in understanding complex behaviors in biological systems. CO and NO are found to bind molecularly, leading to moderate relaxations in the clusters, but nevertheless to changes in the spin-polarized electronic structure and related properties. In contrast, dissociative chemisorption of O2 is much more stable than molecular adsorption, giving rise to significant structural distortions, particularly in Fe4S4 that splits into two Fe2S2 subclusters. As a consequence, oxygen tends to strongly reduce the spin polarization in Fe and to weaken the Fe-Fe interaction inducing antiparallel couplings that, in the case of Fe4S4, clearly arise from indirect Fe-Fe exchange coupling mediated by O. The three molecules (particularly CO) enhance the stability of the iron-sulfur clusters. This increase is noticeably more pronounced for Fe2S2 than for the other iron-sulfur clusters of different compositions, a result that correlates with the fact that in recent experiments of CO reaction with FemSm (m = 1-4), the Fe2S2CO product results as a prominent one.
Collapse
Affiliation(s)
| | | | | | | | - Andrés Vega
- Departamento de Física Teórica, Atómica y Óptica , Universidad de Valladolid , Paseo Belèn 7 , E-47011 Valladolid , Spain
| |
Collapse
|
16
|
Li J, Xu L, Su F, Yu B, Yuan X. Association between iscR-based phylogeny, serovars and potential virulence markers of Haemophilus parasuis. PeerJ 2019; 7:e6950. [PMID: 31143554 PMCID: PMC6524630 DOI: 10.7717/peerj.6950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/09/2019] [Indexed: 12/03/2022] Open
Abstract
Haemophilus parasuis is an economically important bacterial pathogen of swine. Extensive genetic and phenotypic heterogeneity among H. parasuis strains have been observed, which hinders the deciphering of the population structure and its association with clinical virulence. In this study, two highly divergent clades were defined according to iron-sulphur cluster regulator (iscR)-based phylogeny analysis of 148 isolates. Clear separation of serovars and potential virulence markers (PVMs) were observed between the two clades, which are indicative of independent evolution of the two lineages. Previously suggested virulence factors showed no correlation with clinical virulence, and were probably clade or serovar specific genes emerged during different stage of evolution. PVMs profiles varied widely among isolates in the same serovar. Higher strain diversity in respect of PVMs was found for isolates from multi-strain infected farms than those from single strain infected ones, which indicates that multi-strain infection in one farm may increase the frequency of gene transfer in H. parasuis. Systemic isolates were more frequently found in serovar 13 and serovar 12, while no correlation between clinical virulence and iscR-based phylogeny was observed. It shows that iscR is a reliable marker for studying population structure of H. parasuis, while other factors should be included to avoid the interference of gene exchange of iscR between isolates. The two lineages of H. parasuis may have undergone independent evolution, but show no difference in clinical virulence. Wide distribution of systemic isolates across the entire population poses new challenge for development of vaccine with better cross-protection. Our study provides new information for better deciphering the population structure of H. parasuis, which helps understanding the extreme diversity within this pathogenic bacterium.
Collapse
Affiliation(s)
- Junxing Li
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Lihua Xu
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Fei Su
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Bin Yu
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Xiufang Yuan
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Pernil R, Schleiff E. Metalloproteins in the Biology of Heterocysts. Life (Basel) 2019; 9:E32. [PMID: 30987221 PMCID: PMC6616624 DOI: 10.3390/life9020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria are photoautotrophic microorganisms present in almost all ecologically niches on Earth. They exist as single-cell or filamentous forms and the latter often contain specialized cells for N₂ fixation known as heterocysts. Heterocysts arise from photosynthetic active vegetative cells by multiple morphological and physiological rearrangements including the absence of O₂ evolution and CO₂ fixation. The key function of this cell type is carried out by the metalloprotein complex known as nitrogenase. Additionally, many other important processes in heterocysts also depend on metalloproteins. This leads to a high metal demand exceeding the one of other bacteria in content and concentration during heterocyst development and in mature heterocysts. This review provides an overview on the current knowledge of the transition metals and metalloproteins required by heterocysts in heterocyst-forming cyanobacteria. It discusses the molecular, physiological, and physicochemical properties of metalloproteins involved in N₂ fixation, H₂ metabolism, electron transport chains, oxidative stress management, storage, energy metabolism, and metabolic networks in the diazotrophic filament. This provides a detailed and comprehensive picture on the heterocyst demands for Fe, Cu, Mo, Ni, Mn, V, and Zn as cofactors for metalloproteins and highlights the importance of such metalloproteins for the biology of cyanobacterial heterocysts.
Collapse
Affiliation(s)
- Rafael Pernil
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straβe 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out multiple functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters with small/redox-active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial reprogramming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances: Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high-resolution structural data. Although this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
19
|
Pseudomonas aeruginosa nfuA: Gene regulation and its physiological roles in sustaining growth under stress and anaerobic conditions and maintaining bacterial virulence. PLoS One 2018; 13:e0202151. [PMID: 30092083 PMCID: PMC6084964 DOI: 10.1371/journal.pone.0202151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/27/2018] [Indexed: 11/19/2022] Open
Abstract
The role of the nfuA gene encoding an iron-sulfur ([Fe-S]) cluster-delivery protein in the pathogenic bacterium Pseudomonas aeruginosa was investigated. The analysis of nfuA expression under various stress conditions showed that superoxide generators, a thiol-depleting agent and CuCl2 highly induced nfuA expression. The expression of nfuA was regulated by a global [2Fe-2S] cluster containing the transcription regulator IscR. Increased expression of nfuA in the ΔiscR mutant under uninduced conditions suggests that IscR acts as a transcriptional repressor. In vitro experiments revealed that IscR directly bound to a sequence homologous to the Escherichia coli Type-I IscR-binding motifs on a putative nfuA promoter that overlapped the -35 element. Binding of IscR prevented RNA polymerase from binding to the nfuA promoter, leading to repression of the nfuA transcription. Physiologically, deletion of nfuA reduced the bacterial ability to cope with oxidative stress, iron deprivation conditions and attenuated virulence in the Caenorhabditis elegans infection model. Site-directed mutagenesis analysis revealed that the conserved CXXC motif of the Nfu-type scaffold protein domain at the N-terminus was required for the NfuA functions in conferring the stress resistance phenotype. Furthermore, anaerobic growth of the ΔnfuA mutant in the presence of nitrate was drastically retarded. This phenotype was associated with a reduction in the [Fe-S] cluster containing nitrate reductase enzyme activity. However, NfuA was not required for the maturation of [Fe-S]-containing proteins such as aconitase, succinate dehydrogenase, SoxR and IscR. Taken together, our results indicate that NfuA functions in [Fe-S] cluster delivery to selected target proteins that link to many physiological processes such as anaerobic growth, bacterial virulence and stress responses in P. aeruginosa.
Collapse
|
20
|
The unique fold and lability of the [2Fe-2S] clusters of NEET proteins mediate their key functions in health and disease. J Biol Inorg Chem 2018; 23:599-612. [PMID: 29435647 PMCID: PMC6006223 DOI: 10.1007/s00775-018-1538-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/26/2018] [Indexed: 02/08/2023]
Abstract
NEET proteins comprise a new class of [2Fe-2S] cluster proteins. In human, three genes encode for NEET proteins: cisd1 encodes mitoNEET (mNT), cisd2 encodes the Nutrient-deprivation autophagy factor-1 (NAF-1) and cisd3 encodes MiNT (Miner2). These recently discovered proteins play key roles in many processes related to normal metabolism and disease. Indeed, NEET proteins are involved in iron, Fe-S, and reactive oxygen homeostasis in cells and play an important role in regulating apoptosis and autophagy. mNT and NAF-1 are homodimeric and reside on the outer mitochondrial membrane. NAF-1 also resides in the membranes of the ER associated mitochondrial membranes (MAM) and the ER. MiNT is a monomer with distinct asymmetry in the molecular surfaces surrounding the clusters. Unlike its paralogs mNT and NAF-1, it resides within the mitochondria. NAF-1 and mNT share similar backbone folds to the plant homodimeric NEET protein (At-NEET), while MiNT's backbone fold resembles a bacterial MiNT protein. Despite the variation of amino acid composition among these proteins, all NEET proteins retained their unique CDGSH domain harboring their unique 3Cys:1His [2Fe-2S] cluster coordination through evolution. The coordinating exposed His was shown to convey the lability to the NEET proteins' [2Fe-2S] clusters. In this minireview, we discuss the NEET fold and its structural elements. Special attention is given to the unique lability of the NEETs' [2Fe-2S] cluster and the implication of the latter to the NEET proteins' cellular and systemic function in health and disease.
Collapse
|
21
|
Cherak SJ, Turner RJ. Assembly pathway of a bacterial complex iron sulfur molybdoenzyme. Biomol Concepts 2018; 8:155-167. [PMID: 28688222 DOI: 10.1515/bmc-2017-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/10/2017] [Indexed: 11/15/2022] Open
Abstract
Protein folding and assembly into macromolecule complexes within the living cell are complex processes requiring intimate coordination. The biogenesis of complex iron sulfur molybdoenzymes (CISM) requires use of a system specific chaperone - a redox enzyme maturation protein (REMP) - to help mediate final folding and assembly. The CISM dimethyl sulfoxide (DMSO) reductase is a bacterial oxidoreductase that utilizes DMSO as a final electron acceptor for anaerobic respiration. The REMP DmsD strongly interacts with DMSO reductase to facilitate folding, cofactor-insertion, subunit assembly and targeting of the multi-subunit enzyme prior to membrane translocation and final assembly and maturation into a bioenergetic catalytic unit. In this article, we discuss the biogenesis of DMSO reductase as an example of the participant network for bacterial CISM maturation pathways.
Collapse
|
22
|
McMillan LJ, Hwang S, Farah RE, Koh J, Chen S, Maupin-Furlow JA. Multiplex quantitative SILAC for analysis of archaeal proteomes: a case study of oxidative stress responses. Environ Microbiol 2017; 20:385-401. [PMID: 29194950 DOI: 10.1111/1462-2920.14014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 01/08/2023]
Abstract
Stable isotope labelling of amino acids in cell culture (SILAC) is a quantitative proteomic method that can illuminate new pathways used by cells to adapt to different lifestyles and niches. Archaea, while thriving in extreme environments and accounting for ∼20%-40% of the Earth's biomass, have not been analyzed with the full potential of SILAC. Here, we report SILAC for quantitative comparison of archaeal proteomes, using Haloferax volcanii as a model. A double auxotroph was generated that allowed for complete incorporation of 13 C/15 N-lysine and 13 C-arginine such that each peptide derived from trypsin digestion was labelled. This strain was found amenable to multiplex SILAC by case study of responses to oxidative stress by hypochlorite. A total of 2565 proteins was identified by LC-MS/MS analysis (q-value ≤ 0.01) that accounted for 64% of the theoretical proteome. Of these, 176 proteins were altered at least 1.5-fold (p-value < 0.05) in abundance during hypochlorite stress. Many of the differential proteins were of unknown function. Those of known function included transcription factor homologs related to oxidative stress by 3D-homology modelling and orthologous group comparisons. Thus, SILAC is found to be an ideal method for quantitative proteomics of archaea that holds promise to unravel gene function.
Collapse
Affiliation(s)
- Lana J McMillan
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.,Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Sungmin Hwang
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Rawan E Farah
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Sixue Chen
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA.,Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA.,Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.,Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
23
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out a wide range of functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters towards small/redox active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial re-programming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances. Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high resolution structural data. Though this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry , University of East Anglia , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| | - Nick E Le Brun
- University of East Anglia, School of Chemistry , University plain , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| |
Collapse
|
24
|
Guccione EJ, Kendall JJ, Hitchcock A, Garg N, White MA, Mulholland F, Poole RK, Kelly DJ. Transcriptome and proteome dynamics in chemostat culture reveal how Campylobacter jejuni modulates metabolism, stress responses and virulence factors upon changes in oxygen availability. Environ Microbiol 2017; 19:4326-4348. [PMID: 28892295 PMCID: PMC5656828 DOI: 10.1111/1462-2920.13930] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
Abstract
Campylobacter jejuni, the most frequent cause of food‐borne bacterial gastroenteritis worldwide, is a microaerophile that has to survive high environmental oxygen tensions, adapt to oxygen limitation in the intestine and resist host oxidative attack. Here, oxygen‐dependent changes in C. jejuni physiology were studied at constant growth rate using carbon (serine)‐limited continuous chemostat cultures. We show that a perceived aerobiosis scale can be calibrated by the acetate excretion flux, which becomes zero when metabolism is fully aerobic (100% aerobiosis). Transcriptome changes in a downshift experiment from 150% to 40% aerobiosis revealed many novel oxygen‐regulated genes and highlighted re‐modelling of the electron transport chains. A label‐free proteomic analysis showed that at 40% aerobiosis, many proteins involved in host colonisation (e.g., PorA, CadF, FlpA, CjkT) became more abundant. PorA abundance increased steeply below 100% aerobiosis. In contrast, several citric‐acid cycle enzymes, the peptide transporter CstA, PEB1 aspartate/glutamate transporter, LutABC lactate dehydrogenase and PutA proline dehydrogenase became more abundant with increasing aerobiosis. We also observed a co‐ordinated response of oxidative stress protection enzymes and Fe‐S cluster biogenesis proteins above 100% aerobiosis. Our approaches reveal key virulence factors that respond to restricted oxygen availability and specific transporters and catabolic pathways activated with increasing aerobiosis.
Collapse
Affiliation(s)
- Edward J Guccione
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - John J Kendall
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Nitanshu Garg
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Michael A White
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Francis Mulholland
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich NR4 7UA, UK
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
25
|
Tanwer P, Bauer S, Heinrichs E, Panda G, Saluja D, Rudel T, Beier D. Post-transcriptional regulation of target genes by the sRNA FnrS in Neisseria gonorrhoeae. MICROBIOLOGY-SGM 2017; 163:1081-1092. [PMID: 28691898 DOI: 10.1099/mic.0.000484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Small non-coding RNAs (sRNAs) are well-established post-transcriptional regulators of gene expression in bacteria that respond to a variety of environmental stimuli. They usually act by base-pairing with their target mRNAs, which is commonly facilitated by the RNA chaperone Hfq. In this study we initiated the analysis of the sRNA FnrS of Neisseria gonorrhoeae, which is induced under anaerobic conditions. We identified four putative FnrS target genes using bioinformatics approaches and validated these target genes using translational reporter gene fusions in both Escherichia coli and N. gonorrhoeae, thereby demonstrating their downregulation by direct base-pairing between the respective mRNA and FnrS. We demonstrate deregulation of target mRNAs upon deletion of fnrS and provide evidence that the isc gene cluster required for iron-sulfur cluster biosynthesis, which harbours iscS, which is a direct target of FnrS, is coordinately downregulated by the sRNA. By mutational analysis we show that, surprisingly, three distinct regions of FnrS are employed for interaction with different target genes.
Collapse
Affiliation(s)
- Pooja Tanwer
- Chair of Microbiology, University of Würzburg, Biocenter, Germany.,Dr B R Ambedkar Center for Biomedical Research, University of Delhi, India
| | - Susanne Bauer
- Chair of Microbiology, University of Würzburg, Biocenter, Germany
| | | | - Gurudutta Panda
- Institute of Network Biology (INET), Helmholtz Zentrum München, Germany
| | - Daman Saluja
- Dr B R Ambedkar Center for Biomedical Research, University of Delhi, India
| | - Thomas Rudel
- Chair of Microbiology, University of Würzburg, Biocenter, Germany
| | - Dagmar Beier
- Chair of Microbiology, University of Würzburg, Biocenter, Germany
| |
Collapse
|
26
|
Sporer AJ, Kahl LJ, Price-Whelan A, Dietrich LE. Redox-Based Regulation of Bacterial Development and Behavior. Annu Rev Biochem 2017; 86:777-797. [DOI: 10.1146/annurev-biochem-061516-044453] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Abigail J. Sporer
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Lisa J. Kahl
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
27
|
Cho HJ, Kwon YS, Kim DR, Cho G, Hong SW, Bae DW, Kwak YS. wblE2 transcription factor in Streptomyces griseus S4-7 plays an important role in plant protection. Microbiologyopen 2017; 6. [PMID: 28523731 PMCID: PMC5635160 DOI: 10.1002/mbo3.494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/28/2017] [Accepted: 04/05/2017] [Indexed: 12/15/2022] Open
Abstract
Streptomyces griseus S4‐7 was originally isolated from the strawberry rhizosphere as a microbial agent responsible for Fusarium wilt suppressive soils. S. griseus S4‐7 shows specific and pronounced antifungal activity against Fusarium oxysporum f. sp. fragariae. In the Streptomyces genus, the whi transcription factors are regulators of sporulation, cell differentiation, septation, and secondary metabolites production. wblE2 function as a regulator has emerged as a new group in whi transcription factors. In this study, we reveal the involvement of the wblE2 transcription factor in the plant‐protection by S. griseus S4‐7. We generated ΔwblE, ΔwblE2, ΔwhiH, and ΔwhmD gene knock‐out mutants, which showed less antifungal activity both in vitro and in planta. Among the mutants, wblE2 mutant failed to protect the strawberry against the Fusarium wilt pathogen. Transcriptome analyses revealed major differences in the regulation of phenylalanine metabolism, polyketide and siderophore biosynthesis between the S4‐7 and the wblE2 mutant. The results contribute to our understanding of the role of streptomycetes wblE2 genes in a natural disease suppressing system.
Collapse
Affiliation(s)
- Hyun Ji Cho
- Division of Applied Life Science (BK21 Plue) and IALS, Gyeongsang National University, Jinju, Korea
| | - Young Sang Kwon
- Environmental Chemistry Research Center, Korea Institute of Toxicology, Jinju, Korea
| | - Da-Ran Kim
- Department of Plant Medicine, Gyeongsang National University, Jinju, Korea
| | - Gyeongjun Cho
- Division of Applied Life Science (BK21 Plue) and IALS, Gyeongsang National University, Jinju, Korea
| | - Seong Won Hong
- Division of Applied Life Science (BK21 Plue) and IALS, Gyeongsang National University, Jinju, Korea
| | - Dong-Won Bae
- Center for Research Facilities, Gyeongsang National University, Jinju, Korea
| | - Youn-Sig Kwak
- Division of Applied Life Science (BK21 Plue) and IALS, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
28
|
Cadby IT, Ibrahim SA, Faulkner M, Lee DJ, Browning D, Busby SJ, Lovering AL, Stapleton MR, Green J, Cole JA. Regulation, sensory domains and roles of twoDesulfovibrio desulfuricansATCC27774 Crp family transcription factors, HcpR1 and HcpR2, in response to nitrosative stress. Mol Microbiol 2016; 102:1120-1137. [DOI: 10.1111/mmi.13540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Ian T. Cadby
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Susan A. Ibrahim
- Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | - Matthew Faulkner
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - David J. Lee
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Douglas Browning
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Stephen J. Busby
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Andrew L. Lovering
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Melanie R. Stapleton
- Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | - Jeffrey Green
- Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | - Jeffrey A. Cole
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| |
Collapse
|
29
|
A Review: Origins of the Dielectric Properties of Proteins and Potential Development as Bio-Sensors. SENSORS 2016; 16:s16081232. [PMID: 27527179 PMCID: PMC5017397 DOI: 10.3390/s16081232] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/19/2016] [Accepted: 07/29/2016] [Indexed: 12/03/2022]
Abstract
Polymers can be classified as synthetic polymers and natural polymers, and are often characterized by their most typical functions namely their high mechanical resistivity, electrical conductivity and dielectric properties. This bibliography report consists in: (i) Defining the origins of the dielectric properties of natural polymers by reviewing proteins. Despite their complex molecular chains, proteins present several points of interest, particularly, their charge content conferring their electrical and dielectric properties; (ii) Identifying factors influencing the dielectric properties of protein films. The effects of vapors and gases such as water vapor, oxygen, carbon dioxide, ammonia and ethanol on the dielectric properties are put forward; (iii) Finally, potential development of protein films as bio-sensors coated on electronic devices for detection of environmental changes particularly humidity or carbon dioxide content in relation with dielectric properties variations are discussed. As the study of the dielectric properties implies imposing an electric field to the material, it was necessary to evaluate the impact of frequency on the polymers and subsequently on their structure. Characterization techniques, on the one hand dielectric spectroscopy devoted for the determination of the glass transition temperature among others, and on the other hand other techniques such as infra-red spectroscopy for structure characterization as a function of moisture content for instance are also introduced.
Collapse
|
30
|
Wareham LK, Begg R, Jesse HE, Van Beilen JWA, Ali S, Svistunenko D, McLean S, Hellingwerf KJ, Sanguinetti G, Poole RK. Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance. Antioxid Redox Signal 2016; 24:1013-28. [PMID: 26907100 PMCID: PMC4921903 DOI: 10.1089/ars.2015.6501] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Carbon monoxide is a respiratory poison and gaseous signaling molecule. Although CO-releasing molecules (CORMs) deliver CO with temporal and spatial specificity in mammals, and are proven antimicrobial agents, we do not understand the modes of CO toxicity. Our aim was to explore the impact of CO gas per se, without intervention of CORMs, on bacterial physiology and gene expression. RESULTS We used tightly controlled chemostat conditions and integrated transcriptomic datasets with statistical modeling to reveal the global effects of CO. CO is known to inhibit bacterial respiration, and we found expression of genes encoding energy-transducing pathways to be significantly affected via the global regulators, Fnr, Arc, and PdhR. Aerobically, ArcA-the response regulator-is transiently phosphorylated and pyruvate accumulates, mimicking anaerobiosis. Genes implicated in iron acquisition, and the metabolism of sulfur amino acids and arginine, are all perturbed. The global iron-related changes, confirmed by modulation of activity of the transcription factor Fur, may underlie enhanced siderophore excretion, diminished intracellular iron pools, and the sensitivity of CO-challenged bacteria to metal chelators. Although CO gas (unlike H2S and NO) offers little protection from antibiotics, a ruthenium CORM is a potent adjuvant of antibiotic activity. INNOVATION This is the first detailed exploration of global bacterial responses to CO, revealing unexpected targets with implications for employing CORMs therapeutically. CONCLUSION This work reveals the complexity of bacterial responses to CO and provides a basis for understanding the impacts of CO from CORMs, heme oxygenase activity, or environmental sources. Antioxid. Redox Signal. 24, 1013-1028.
Collapse
Affiliation(s)
- Lauren K Wareham
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Ronald Begg
- 2 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Helen E Jesse
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Johan W A Van Beilen
- 3 Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, The Netherlands
| | - Salar Ali
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Dimitri Svistunenko
- 4 Biomedical EPR Facility, School of Biological Sciences, University of Essex , Colchester, United Kingdom
| | - Samantha McLean
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Klaas J Hellingwerf
- 3 Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, The Netherlands
| | - Guido Sanguinetti
- 2 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Robert K Poole
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| |
Collapse
|
31
|
Tsujimoto R, Kamiya N, Fujita Y. Identification of acis-acting element in nitrogen fixation genes recognized by CnfR in the nonheterocystous nitrogen-fixing cyanobacteriumLeptolyngbya boryana. Mol Microbiol 2016; 101:411-24. [DOI: 10.1111/mmi.13402] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Ryoma Tsujimoto
- Graduate School of Bioagricultural Sciences; Nagoya University, Furo-cho; Chikusa-ku Nagoya 464-8601 Japan
| | - Narumi Kamiya
- School of Agricultural Sciences; Nagoya University, Furo-cho; Chikusa-ku Nagoya 464-8601 Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences; Nagoya University, Furo-cho; Chikusa-ku Nagoya 464-8601 Japan
| |
Collapse
|
32
|
Genome-Wide Chromatin Immunoprecipitation Sequencing Analysis Shows that WhiB Is a Transcription Factor That Cocontrols Its Regulon with WhiA To Initiate Developmental Cell Division in Streptomyces. mBio 2016; 7:e00523-16. [PMID: 27094333 PMCID: PMC4850268 DOI: 10.1128/mbio.00523-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
WhiB is the founding member of a family of proteins (the WhiB-like [Wbl] family) that carry a [4Fe-4S] iron-sulfur cluster and play key roles in diverse aspects of the biology of actinomycetes, including pathogenesis, antibiotic resistance, and the control of development. In Streptomyces, WhiB is essential for the process of developmentally controlled cell division that leads to sporulation. The biochemical function of Wbl proteins has been controversial; here, we set out to determine unambiguously if WhiB functions as a transcription factor using chromatin immunoprecipitation sequencing (ChIP-seq) in Streptomyces venezuelae. In the first demonstration of in vivo genome-wide Wbl binding, we showed that WhiB regulates the expression of key genes required for sporulation by binding upstream of ~240 transcription units. Strikingly, the WhiB regulon is identical to the previously characterized WhiA regulon, providing an explanation for the identical phenotypes of whiA and whiB mutants. Using ChIP-seq, we demonstrated that in vivo DNA binding by WhiA depends on WhiB and vice versa, showing that WhiA and WhiB function cooperatively to control expression of a common set of WhiAB target genes. Finally, we show that mutation of the cysteine residues that coordinate the [4Fe-4S] cluster in WhiB prevents DNA binding by both WhiB and WhiA in vivo. Despite the central importance of WhiB-like (Wbl) proteins in actinomycete biology, a conclusive demonstration of their biochemical function has been elusive, and they have been difficult to study, particularly in vitro, largely because they carry an oxygen-sensitive [4Fe-4S] cluster. Here we used genome-wide ChIP-seq to investigate the function of Streptomyces WhiB, the founding member of the Wbl family. The advantage of this approach is that the oxygen sensitivity of the [4Fe-4S] cluster becomes irrelevant once the protein has been cross-linked to DNA in vivo. Our data provide the most compelling in vivo evidence to date that WhiB, and, by extension, probably all Wbl proteins, function as transcription factors. Further, we show that WhiB does not act independently but rather coregulates its regulon of sporulation genes with a partner transcription factor, WhiA.
Collapse
|
33
|
Barupala DP, Dzul SP, Riggs-Gelasco PJ, Stemmler TL. Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors. Arch Biochem Biophys 2016; 592:60-75. [PMID: 26785297 PMCID: PMC4784227 DOI: 10.1016/j.abb.2016.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 11/25/2022]
Abstract
In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways.
Collapse
Affiliation(s)
- Dulmini P Barupala
- Departments of Biochemistry and Molecular Biology, and Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Stephen P Dzul
- Departments of Biochemistry and Molecular Biology, and Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | | | - Timothy L Stemmler
- Departments of Biochemistry and Molecular Biology, and Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
34
|
Torres M, Simon J, Rowley G, Bedmar E, Richardson D, Gates A, Delgado M. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms. Adv Microb Physiol 2016; 68:353-432. [PMID: 27134026 DOI: 10.1016/bs.ampbs.2016.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation.
Collapse
|
35
|
Bruska MK, Stiebritz MT, Reiher M. Binding of Reactive Oxygen Species at Fe-S Cubane Clusters. Chemistry 2015; 21:19081-9. [PMID: 26585994 DOI: 10.1002/chem.201503008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) play an important role in the biochemistry of the cell and occur in degenerative processes as well as in signal transduction. Iron-sulfur proteins are particularly oxygen-sensitive and their inorganic cofactors frequently undergo ROS-induced decomposition reactions. As experimental knowledge about these processes is still incomplete we present here a quantum chemical study of the relative energetics for the binding of the most relevant ROS to [Fe4S4] clusters. We find that cubane clusters with one uncoordinated Fe atom (as found, for instance, in aconitase) bind all oxygen derivatives considered, whereas activation of triplet O2 to singlet O2 is required for binding to valence-saturated iron centers in these clusters. The radicals NO and OH feature the most exothermic binding energies to Fe atoms. Direct sulfoxidation of coordinating cysteine residues is only possible by OH or H2O2 as attacking agents. The thermodynamic picture of ROS binding to iron-sulfur clusters established here can serve as a starting point for studying reactivity-modulating effects of the cluster-embedding protein environment on ROS-induced decomposition of iron-sulfur proteins.
Collapse
Affiliation(s)
- Marta K Bruska
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland)
| | - Martin T Stiebritz
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland)
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland).
| |
Collapse
|
36
|
Jiang D, Tikhomirova A, Bent SJ, Kidd SP. A discrete role for FNR in the transcriptional response to moderate changes in oxygen by Haemophilus influenzae Rd KW20. Res Microbiol 2015; 167:103-13. [PMID: 26499095 DOI: 10.1016/j.resmic.2015.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/21/2015] [Accepted: 09/29/2015] [Indexed: 11/28/2022]
Abstract
The survival by pathogenic bacteria within the specific conditions of an anatomical niche is critical for their persistence. These conditions include the combination of toxic chemicals, such as reactive oxygen (ROS) and reactive nitrogen species (RNS), with factors relevant to cell growth, such as oxygen. Haemophilus influenzae senses oxygen levels largely through the redox state of the intracellular fumarate-nitrate global regulator (FNR). H. influenzae certainly encounters oxygen levels that fluctuate, but in reality, these would rarely reach a state that results in FNR being fully reduced or oxidized. We were therefore interested in the response of H. influenzae to ROS and RNS at moderately high or low oxygen levels and the corresponding role of FNR. At these levels of oxygen, even though the growth rate of an H. influenzae fnr mutant was similar to wild type, its ROS and RNS tolerance was significantly different. Additionally, the subtle changes in oxygen did alter the whole cell transcriptional profile and this was different between the wild type and fnr mutant strains. It was the changed whole cell profile that impacted on ROS/RNS defence, but surprisingly, the FNR-regulated, anaerobic nitrite reductase (NrfA) continued to be expressed and had a role in this phenotype.
Collapse
Affiliation(s)
- Donald Jiang
- Research Centre for Infectious Disease, The University of Adelaide, Adelaide, Australia; School of Biological Science, The University of Adelaide, Adelaide, Australia; Agri-Food and Veterinary Authority of Singapore, Singapore.
| | - Alexandra Tikhomirova
- Research Centre for Infectious Disease, The University of Adelaide, Adelaide, Australia; School of Biological Science, The University of Adelaide, Adelaide, Australia.
| | - Stephen J Bent
- School of Biological Science, The University of Adelaide, Adelaide, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, Australia.
| | - Stephen P Kidd
- Research Centre for Infectious Disease, The University of Adelaide, Adelaide, Australia; School of Biological Science, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
37
|
Ibrahim SA, Crack JC, Rolfe MD, Borrero-de Acuña JM, Thomson AJ, Le Brun NE, Schobert M, Stapleton MR, Green J. Three Pseudomonas putida FNR Family Proteins with Different Sensitivities to O2. J Biol Chem 2015; 290:16812-23. [PMID: 25971977 PMCID: PMC4505428 DOI: 10.1074/jbc.m115.654079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 12/24/2022] Open
Abstract
The Escherichia coli fumarate-nitrate reduction regulator (FNR) protein is the paradigm for bacterial O2-sensing transcription factors. However, unlike E. coli, some bacterial species possess multiple FNR proteins that presumably have evolved to fulfill distinct roles. Here, three FNR proteins (ANR, PP_3233, and PP_3287) from a single bacterial species, Pseudomonas putida KT2440, have been analyzed. Under anaerobic conditions, all three proteins had spectral properties resembling those of [4Fe-4S] proteins. The reactivity of the ANR [4Fe-4S] cluster with O2 was similar to that of E. coli FNR, and during conversion to the apo-protein, via a [2Fe-2S] intermediate, cluster sulfur was retained. Like ANR, reconstituted PP_3233 and PP_3287 were converted to [2Fe-2S] forms when exposed to O2, but their [4Fe-4S] clusters reacted more slowly. Transcription from an FNR-dependent promoter with a consensus FNR-binding site in P. putida and E. coli strains expressing only one FNR protein was consistent with the in vitro responses to O2. Taken together, the experimental results suggest that the local environments of the iron-sulfur clusters in the different P. putida FNR proteins influence their reactivity with O2, such that ANR resembles E. coli FNR and is highly responsive to low concentrations of O2, whereas PP_3233 and PP_3287 have evolved to be less sensitive to O2.
Collapse
Affiliation(s)
- Susan A Ibrahim
- From the Krebs Institute, Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Jason C Crack
- the Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, United Kingdom, and
| | - Matthew D Rolfe
- From the Krebs Institute, Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | | | - Andrew J Thomson
- the Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, United Kingdom, and
| | - Nick E Le Brun
- the Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, United Kingdom, and
| | - Max Schobert
- Institut für Mikrobiologie, Technische Universität, D-38106 Braunschweig, Germany
| | - Melanie R Stapleton
- From the Krebs Institute, Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Jeffrey Green
- From the Krebs Institute, Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom,
| |
Collapse
|
38
|
Abstract
The coordination chemistry of metal nitrosyls has expanded rapidly in the past decades due to major advances of nitric oxide and its metal compounds in biology. This review article highlights advances made in the area of multinuclear metal nitrosyl complexes, including Roussin's salts and their ester derivatives from 2003 to present. The review article focuses on isolated multinuclear metal nitrosyl complexes and is organized into different sections by the number of metal centers and bridging ligands.
Collapse
|
39
|
Evolutionary Aspects and Regulation of Tetrapyrrole Biosynthesis in Cyanobacteria under Aerobic and Anaerobic Environments. Life (Basel) 2015; 5:1172-203. [PMID: 25830590 PMCID: PMC4500134 DOI: 10.3390/life5021172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/10/2023] Open
Abstract
Chlorophyll a (Chl) is a light-absorbing tetrapyrrole pigment that is essential for photosynthesis. The molecule is produced from glutamate via a complex biosynthetic pathway comprised of at least 15 enzymatic steps. The first half of the Chl pathway is shared with heme biosynthesis, and the latter half, called the Mg-branch, is specific to Mg-containing Chl a. Bilin pigments, such as phycocyanobilin, are additionally produced from heme, so these light-harvesting pigments also share many common biosynthetic steps with Chl biosynthesis. Some of these common steps in the biosynthetic pathways of heme, Chl and bilins require molecular oxygen for catalysis, such as oxygen-dependent coproporphyrinogen III oxidase. Cyanobacteria thrive in diverse environments in terms of oxygen levels. To cope with Chl deficiency caused by low-oxygen conditions, cyanobacteria have developed elaborate mechanisms to maintain Chl production, even under microoxic environments. The use of enzymes specialized for low-oxygen conditions, such as oxygen-independent coproporphyrinogen III oxidase, constitutes part of a mechanism adapted to low-oxygen conditions. Another mechanism adaptive to hypoxic conditions is mediated by the transcriptional regulator ChlR that senses low oxygen and subsequently activates the transcription of genes encoding enzymes that work under low-oxygen tension. In diazotrophic cyanobacteria, this multilayered regulation also contributes in Chl biosynthesis by supporting energy production for nitrogen fixation that also requires low-oxygen conditions. We will also discuss the evolutionary implications of cyanobacterial tetrapyrrole biosynthesis and regulation, because low oxygen-type enzymes also appear to be evolutionarily older than oxygen-dependent enzymes.
Collapse
|
40
|
What a difference a cluster makes: The multifaceted roles of IscR in gene regulation and DNA recognition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1101-12. [PMID: 25641558 DOI: 10.1016/j.bbapap.2015.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 01/21/2015] [Indexed: 11/22/2022]
Abstract
Iron-sulfur clusters are essential cofactors in a myriad of metabolic pathways. Therefore, their biogenesis is tightly regulated across a variety of organisms and environmental conditions. In Gram-negative bacteria, two pathways - ISC and SUF - concur for maintaining intracellular iron-sulfur cluster balance. Recently, the mechanism of iron-sulfur cluster biosynthesis regulation by IscR, an iron-sulfur cluster-containing regulator encoded by the isc operon, was found to be conserved in some Gram-positive bacteria. Belonging to the Rrf2 family of transcriptional regulators, IscR displays a single helix-turn-helix DNA-binding domain but is able to recognize two distinct DNA sequence motifs, switching its specificity upon cluster ligation. This review provides an overview of gene regulation by iron-sulfur cluster-containing sensors, in the light of the recent structural characterization of cluster-less free and DNA-bound IscR, which provided insights into the molecular mechanism of nucleotide sequence recognition and discrimination of this unique transcription factor. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
|
41
|
Bettenbrock K, Bai H, Ederer M, Green J, Hellingwerf KJ, Holcombe M, Kunz S, Rolfe MD, Sanguinetti G, Sawodny O, Sharma P, Steinsiek S, Poole RK. Towards a systems level understanding of the oxygen response of Escherichia coli. Adv Microb Physiol 2014; 64:65-114. [PMID: 24797925 DOI: 10.1016/b978-0-12-800143-1.00002-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Escherichia coli is a facultatively anaerobic bacterium. With glucose if no external electron acceptors are available, ATP is produced by substrate level phosphorylation. The intracellular redox balance is maintained by mixed-acid fermentation, that is, the production and excretion of several organic acids. When oxygen is available, E. coli switches to aerobic respiration to achieve redox balance and optimal energy conservation by proton translocation linked to electron transfer. The switch between fermentative and aerobic respiratory growth is driven by extensive changes in gene expression and protein synthesis, resulting in global changes in metabolic fluxes and metabolite concentrations. This oxygen response is determined by the interaction of global and local genetic regulatory mechanisms, as well as by enzymatic regulation. The response is affected by basic physical constraints such as diffusion, thermodynamics and the requirement for a balance of carbon, electrons and energy (predominantly the proton motive force and the ATP pool). A comprehensive systems level understanding of the oxygen response of E. coli requires the integrated interpretation of experimental data that are pertinent to the multiple levels of organization that mediate the response. In the pan-European venture, Systems Biology of Microorganisms (SysMO) and specifically within the project Systems Understanding of Microbial Oxygen Metabolism (SUMO), regulator activities, gene expression, metabolite levels and metabolic flux datasets were obtained using a standardized and reproducible chemostat-based experimental system. These different types and qualities of data were integrated using mathematical models. The approach described here has revealed a much more detailed picture of the aerobic-anaerobic response, especially for the environmentally critical microaerobic range that is located between unlimited oxygen availability and anaerobiosis.
Collapse
Affiliation(s)
- Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Hao Bai
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Michael Ederer
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Holcombe
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Samantha Kunz
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Matthew D Rolfe
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Oliver Sawodny
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Poonam Sharma
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Sonja Steinsiek
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
42
|
‘Come into the fold’: A comparative analysis of bacterial redox enzyme maturation protein members of the NarJ subfamily. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2971-2984. [DOI: 10.1016/j.bbamem.2014.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/24/2014] [Accepted: 08/15/2014] [Indexed: 11/19/2022]
|
43
|
Mettert EL, Kiley PJ. Fe-S proteins that regulate gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1284-93. [PMID: 25450978 DOI: 10.1016/j.bbamcr.2014.11.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/24/2014] [Accepted: 11/13/2014] [Indexed: 02/06/2023]
Abstract
Iron-sulfur (Fe-S) cluster containing proteins that regulate gene expression are present in most organisms. The innate chemistry of their Fe-S cofactors makes these regulatory proteins ideal for sensing environmental signals, such as gases (e.g. O2 and NO), levels of Fe and Fe-S clusters, reactive oxygen species, and redox cycling compounds, to subsequently mediate an adaptive response. Here we review the recent findings that have provided invaluable insight into the mechanism and function of these highly significant Fe-S regulatory proteins. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Erin L Mettert
- University of Wisconsin-Madison, Department of Biomolecular Chemistry, 440 Henry Mall, Biochemical Sciences Building, Room 4204C, Madison, WI 53706, USA.
| | - Patricia J Kiley
- University of Wisconsin-Madison, Department of Biomolecular Chemistry, 440 Henry Mall, Biochemical Sciences Building, Room 4204C, Madison, WI 53706, USA.
| |
Collapse
|
44
|
The basic leucine zipper stress response regulator Yap5 senses high-iron conditions by coordination of [2Fe-2S] clusters. Mol Cell Biol 2014; 35:370-8. [PMID: 25368382 DOI: 10.1128/mcb.01033-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Iron is an essential, yet at elevated concentrations toxic trace element. To date, the mechanisms of iron sensing by eukaryotic iron-responsive transcription factors are poorly understood. The Saccharomyces cerevisiae transcription factor Yap5, a member of the Yap family of bZIP stress response regulators, administrates the adaptive response to high-iron conditions. Despite the central role of the iron-sensing process for cell viability, the molecule perceived by Yap5 and the underlying regulatory mechanisms are unknown. Here, we show that Yap5 senses high-iron conditions by two Fe/S clusters bound to its activator domain (Yap5-AD). The more stable iron-regulatory Fe/S cluster at the N-terminal cysteine-rich domain (n-CRD) of Yap5 is detected in vivo and in vitro. The second cluster coordinated by the C-terminal CRD can only be shown after chemical reconstitution, since it is bound in a labile fashion. Both clusters are of the [2Fe-2S] type as characterized by UV/visible (UV/Vis), circular dichroism, electron paramagnetic resonance (EPR), and Mössbauer spectroscopy. Fe/S cluster binding to Yap5-AD induces a conformational change that may activate transcription. The cluster-binding motif of the n-CRD domain is highly conserved in HapX-like transcription factors of pathogenic fungi and thus may represent a general sensor module common to many eukaryotic stress response regulators.
Collapse
|
45
|
Green J, Rolfe MD, Smith LJ. Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide. Virulence 2014; 5:794-809. [PMID: 25603427 PMCID: PMC4601167 DOI: 10.4161/viru.27794] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Molecular oxygen (O2) and nitric oxide (NO) are diatomic gases that play major roles in infection. The host innate immune system generates reactive oxygen species and NO as bacteriocidal agents and both require O2 for their production. Furthermore, the ability to adapt to changes in O2 availability is crucial for many bacterial pathogens, as many niches within a host are hypoxic. Pathogenic bacteria have evolved transcriptional regulatory systems that perceive these gases and respond by reprogramming gene expression. Direct sensors possess iron-containing co-factors (iron–sulfur clusters, mononuclear iron, heme) or reactive cysteine thiols that react with O2 and/or NO. Indirect sensors perceive the physiological effects of O2 starvation. Thus, O2 and NO act as environmental cues that trigger the coordinated expression of virulence genes and metabolic adaptations necessary for survival within a host. Here, the mechanisms of signal perception by key O2- and NO-responsive bacterial transcription factors and the effects on virulence gene expression are reviewed, followed by consideration of these aspects of gene regulation in two major pathogens, Staphylococcus aureus and Mycobacterium tuberculosis.
Collapse
Key Words
- AIP, autoinducer peptide
- Arc, Aerobic respiratory control
- FNR
- FNR, fumarate nitrate reduction regulator
- GAF, cGMP-specific phosphodiesterase-adenylyl cyclase-FhlA domain
- Isc, iron–sulfur cluster biosynthesis machinery
- Mycobacterium tuberculosis
- NOX, NADPH oxidase
- PAS, Per-Amt-Sim domain
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- Staphylococcus aureus
- TB, tuberculosis
- WhiB-like proteins
- iNOS, inducible nitric oxide synthase
- iron–sulfur cluster
- nitric oxide sensors
- oxygen sensors
Collapse
Affiliation(s)
- Jeffrey Green
- a Krebs Institute; Molecular Biology & Biotechnology; University of Sheffield ; Western Bank , Sheffield , UK
| | | | | |
Collapse
|
46
|
Crack JC, Green J, Thomson AJ, Brun NEL. Iron-sulfur clusters as biological sensors: the chemistry of reactions with molecular oxygen and nitric oxide. Acc Chem Res 2014; 47:3196-205. [PMID: 25262769 DOI: 10.1021/ar5002507] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Iron-sulfur cluster proteins exhibit a range of physicochemical properties that underpin their functional diversity in biology, which includes roles in electron transfer, catalysis, and gene regulation. Transcriptional regulators that utilize iron-sulfur clusters are a growing group that exploit the redox and coordination properties of the clusters to act as sensors of environmental conditions including O2, oxidative and nitrosative stress, and metabolic nutritional status. To understand the mechanism by which a cluster detects such analytes and then generates modulation of DNA-binding affinity, we have undertaken a combined strategy of in vivo and in vitro studies of a range of regulators. In vitro studies of iron-sulfur cluster proteins are particularly challenging because of the inherent reactivity and fragility of the cluster, often necessitating strict anaerobic conditions for all manipulations. Nevertheless, and as discussed in this Account, significant progress has been made over the past decade in studies of O2-sensing by the fumarate and nitrate reduction (FNR) regulator and, more recently, nitric oxide (NO)-sensing by WhiB-like (Wbl) and FNR proteins. Escherichia coli FNR binds a [4Fe-4S] cluster under anaerobic conditions leading to a DNA-binding dimeric form. Exposure to O2 converts the cluster to a [2Fe-2S] form, leading to protein monomerization and hence loss of DNA binding ability. Spectroscopic and kinetic studies have shown that the conversion proceeds via at least two steps and involves a [3Fe-4S](1+) intermediate. The second step involves the release of two bridging sulfide ions from the cluster that, unusually, are not released into solution but rather undergo oxidation to sulfane (S(0)) subsequently forming cysteine persulfides that then coordinate the [2Fe-2S] cluster. Studies of other [4Fe-4S] cluster proteins that undergo oxidative cluster conversion indicate that persulfide formation and coordination may be more common than previously recognized. This remarkable feature suggested that the original [4Fe-4S] cluster can be restored using persulfide as the source of sulfide ion. We have demonstrated that only iron and a source of electrons are required to promote efficient conversion back from the [2Fe-2S] to the [4Fe-4S] form. We propose this as a novel in vivo repair mechanism that does not require the intervention of an iron-sulfur cluster biogenesis pathway. A number of iron-sulfur regulators have evolved to function as sensors of NO. Although it has long been known that the iron-sulfur clusters of many phylogenetically unrelated proteins are vulnerable to attack by NO, our recent studies of Wbl proteins and FNR have provided new insights into the mechanism of cluster nitrosylation, which overturn the commonly accepted view that the product is solely a mononuclear iron dinitrosyl complex (known as a DNIC). The major reaction is a rapid, multiphase process involving stepwise addition of up to eight NO molecules per [4Fe-4S] cluster. The major iron nitrosyl product is EPR silent and has optical characteristics similar to Roussin's red ester, [Fe2(NO)4(RS)2] (RRE), although a species similar to Roussin's black salt, [Fe4(NO)7(S)3](-) (RBS) cannot be ruled out. A major future challenge will be to clarify the nature of these species.
Collapse
Affiliation(s)
- Jason C. Crack
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Jeffrey Green
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Andrew J. Thomson
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Nick E. Le Brun
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
47
|
Cammack R, Balk J. Iron-sulfur Clusters. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Iron-sulfur clusters are universally distributed groups occurring in iron-sulfur proteins. They have a wide range of cellular functions which reflect the chemistry of the clusters. Some clusters are involved in electron transport and energy transduction in photosynthesis and respiration. Others can bind substrates and participate in enzyme catalysis. Regulatory functions have also been documented for clusters that respond to oxygen partial pressure and iron availability. Finally, there are some for which no function has been defined; they may act as stabilizing structures, for example, in enzymes involved in nucleic acid metabolism. The clusters are constructed intracellularly and inserted into proteins, which can then be transported to intracellular targets, in some cases, across membranes. Three different types of iron-sulfur cluster assembly machinery have evolved in prokaryotes: NIF, ISC and SUF. Each system involves a scaffold protein on which the cluster is constructed (encoded by genes nifU, iscU, sufU or sufB) and a cysteine desulfurase (encoded by nifS, iscS or sufS) which provides the sulfide sulfur. In eukaryotic cells, clusters are formed in the mitochondria for the many iron-sulfur proteins in this organelle. The mitochondrial biosynthesis pathway is linked to the cytoplasmic iron-sulfur assembly system (CIA) for the maturation of cytoplasmic and nuclear iron-sulfur proteins. In plant cells, a SUF-type system is used for cluster assembly in the plastids. Many accessory proteins are involved in cluster transfer before insertion into the appropriate sites in Fe-S proteins.
Collapse
Affiliation(s)
- Richard Cammack
- King's College London, Department of Biochemistry, 150 Stamford Street London SE1 9NH UK
| | - Janneke Balk
- John Innes Centre and University of East Anglia Norwich Research Park, Colney Lane Norwich NR4 7UH UK
| |
Collapse
|
48
|
Acid stress management by Cronobacter sakazakii. Int J Food Microbiol 2014; 178:21-8. [DOI: 10.1016/j.ijfoodmicro.2014.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/09/2014] [Accepted: 03/02/2014] [Indexed: 11/24/2022]
|
49
|
Victor E, Lippard SJ. A Tetranitrosyl [4Fe–4S] Cluster Forms En Route to Roussin’s Black Anion: Nitric Oxide Reactivity of [Fe4S4(LS3)L′]2–. Inorg Chem 2014; 53:5311-20. [DOI: 10.1021/ic500586g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Eric Victor
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen J. Lippard
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
50
|
Bai H, Rolfe MD, Jia W, Coakley S, Poole RK, Green J, Holcombe M. Agent-based modeling of oxygen-responsive transcription factors in Escherichia coli. PLoS Comput Biol 2014; 10:e1003595. [PMID: 24763195 PMCID: PMC3998891 DOI: 10.1371/journal.pcbi.1003595] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 03/14/2014] [Indexed: 11/23/2022] Open
Abstract
In the presence of oxygen (O2) the model bacterium Escherichia coli is able to conserve energy by aerobic respiration. Two major terminal oxidases are involved in this process - Cyo has a relatively low affinity for O2 but is able to pump protons and hence is energetically efficient; Cyd has a high affinity for O2 but does not pump protons. When E. coli encounters environments with different O2 availabilities, the expression of the genes encoding the alternative terminal oxidases, the cydAB and cyoABCDE operons, are regulated by two O2-responsive transcription factors, ArcA (an indirect O2 sensor) and FNR (a direct O2 sensor). It has been suggested that O2-consumption by the terminal oxidases located at the cytoplasmic membrane significantly affects the activities of ArcA and FNR in the bacterial nucleoid. In this study, an agent-based modeling approach has been taken to spatially simulate the uptake and consumption of O2 by E. coli and the consequent modulation of ArcA and FNR activities based on experimental data obtained from highly controlled chemostat cultures. The molecules of O2, transcription factors and terminal oxidases are treated as individual agents and their behaviors and interactions are imitated in a simulated 3-D E. coli cell. The model implies that there are two barriers that dampen the response of FNR to O2, i.e. consumption of O2 at the membrane by the terminal oxidases and reaction of O2 with cytoplasmic FNR. Analysis of FNR variants suggested that the monomer-dimer transition is the key step in FNR-mediated repression of gene expression. The model bacterium Escherichia coli has a modular electron transport chain that allows it to successfully compete in environments with differing oxygen (O2) availabilities. It has two well-characterized terminal oxidases, Cyd and Cyo. Cyd has a very high affinity for O2, whereas Cyo has a lower affinity, but is energetically more efficient. Expression of the genes encoding Cyd and Cyo is controlled by two O2-responsive regulators, ArcBA and FNR. However, it is not clear how O2 molecules enter the E. coli cell and how the locations of the terminal oxidases and the regulators influence the system. An agent-based model is presented that simulates the interactions of O2 with the regulators and the oxidases in an E. coli cell. The model suggests that O2 consumption by the oxidases at the cytoplasmic membrane and by FNR in the cytoplasm protects FNR bound to DNA in the nucleoid from inactivation and that dimerization of FNR in response to O2 depletion is the key step in FNR-mediated repression. Thus, the focus of the agent-based model on spatial events provides information and new insight, allowing the effects of dysregulation of system components to be explored by facile addition or removal of agents.
Collapse
Affiliation(s)
- Hao Bai
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (HB); (JG)
| | - Matthew D. Rolfe
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Wenjing Jia
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Simon Coakley
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (HB); (JG)
| | - Mike Holcombe
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|