1
|
Dai Q, Ain Q, Seth N, Zhao H, Rooney M, Zipprich A. Aging-Associated Liver Sinusoidal Endothelial Cells Dysfunction Aggravates the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease. Aging Cell 2025; 24:e14502. [PMID: 39912563 PMCID: PMC12073894 DOI: 10.1111/acel.14502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 02/07/2025] Open
Abstract
Aging increases the susceptibility to metabolic dysfunction-associated steatotic liver disease (MASLD). Liver sinusoidal endothelial cells (LSECs) help in maintaining hepatic homeostasis, but the contribution of age-associated LSECs dysfunction to MASLD is not clear. The aim of this study was to investigate the effect of aging-associated LSECs dysfunction on MASLD. Free fatty acid-treated AML12 cells were co-cultured with young and etoposide-induced senescent TSEC cells to evaluate the senescence-associated endothelial effects on the lipid accumulation in hepatocytes. In addition, young and aged rats were subjected to methionine-choline-deficient diet-induced metabolic dysfunction-associated steatohepatitis (MASH). Hepatic hemodynamics and endothelial dysfunction were evaluated by in situ liver perfusion. Liver tissue samples from young and aged healthy controls and MASH patients were also analyzed. Steatotic AML12 cells co-cultured with young TSEC cells showed less lipid accumulation, and such effect was abolished by eNOS inhibitor or with senescent TSEC cells. However, co-culture with resveratrol-treated senescent TSEC cells could partially resume the NO-mediated protective effects of endothelial cells. Furthermore, aged MASH rats showed more severe liver injury, steatosis, fibrosis, and endothelial and microcirculatory dysfunction. In addition, aged MASH patients showed more pronounced liver injury and fibrosis with lower hepatic eNOS, p-eNOS, and SIRT1 protein levels than in young patients. Senescence compromises the protective effects of LSECs against hepatocyte steatosis. In addition, aging aggravates not only liver steatosis and fibrosis but also intensifies LSECs dysfunction in MASH rats. Accordingly aged MASH patients also showed endothelial dysfunction with more severe liver injury and fibrosis.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases)Jena University HospitalJenaGermany
- Department of Hepatopancreatobiliary SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Quratul Ain
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases)Jena University HospitalJenaGermany
| | - Navodita Seth
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases)Jena University HospitalJenaGermany
| | - Hongchuan Zhao
- Department of Hepatopancreatobiliary SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Michael Rooney
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases)Jena University HospitalJenaGermany
| | - Alexander Zipprich
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases)Jena University HospitalJenaGermany
| |
Collapse
|
2
|
Yang M, Liu J, Liu X, Li Q, Liu J, Wang B. The Protective Effect of Bilirubin on MAFLD May Be Mediated by Improving Insulin Re-Sistance and Alleviating Chronic Inflammation. J Inflamm Res 2025; 18:5555-5572. [PMID: 40297544 PMCID: PMC12036688 DOI: 10.2147/jir.s520257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
Background Bilirubin, as a potent endogenous antioxidant, has demonstrated protective effects in various metabolic and inflammatory diseases. However, the precise role and underlying mechanisms of bilirubin in metabolic-associated fatty liver disease (MAFLD) remain unclear. Methods This study involved 3000 participants, categorized into non-MAFLD and MAFLD groups. Using weighted multiple linear regression and mediation effect analysis, this study examined the protective impact of total bilirubin (TBIL), direct bilirubin (DBIL), and indirect bilirubin (IBIL) on MAFLD risk. Additionally, potential mediators-inflammation and insulin resistance (IR) through which bilirubin exerts its protective effects were explored. Results TBIL and DBIL levels in the MAFLD group were significantly lower than those in the non-MAFLD group. Multiple linear regression analysis, adjusted for confounding variables, revealed that compared to the lowest tertile group (TBIL < 14.6), the odds ratios (ORs) for the middle tertile (TBIL 14.6-19.2) and the highest tertile (TBIL ≥ 19.3) groups were 0.735 and 0.615. Similarly, compared to the lowest tertile group (DBIL < 3.4), the ORs for the middle tertile (DBIL 3.4-4.4) and the highest tertile (DBIL ≥ 4.5) groups were 0.613 and 0.367. Mediation analysis revealed significant indirect effects of SIRI, PIV, TyG, TyGBMI, METS-IR, and AIP on the relationship between TBIL, DBIL, and MAFLD risk. Specifically, SIRI mediated 4.07% and 1.55% of the TBIL-MAFLD and DBIL-MAFLD associations, respectively; PIV mediated 9.56% and 4.22%; TyG mediated 69.27% and 81.91%; TyGBMI mediated 100% and 78.34%; METS-IR mediated 100% and 81.41%; and AIP mediated 100% for both TBIL-MAFLD and DBIL-MAFLD associations. Conclusion Our findings suggest that increased serum levels of TBIL and DBIL are significantly inversely correlated with MAFLD risk, with both serving as independent protective factors against MAFLD occurrence. Further mediation analysis indicates that this protective effect is likely mediated by improvements in IR and the alleviation of systemic chronic inflammation.
Collapse
Affiliation(s)
- Mengying Yang
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Jing Liu
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Xiaoman Liu
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Qianqian Li
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Jun Liu
- Physical Examination Center, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Baogui Wang
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| |
Collapse
|
3
|
Tian J, Fan J, Zhang T. Mitochondria as a target for exercise-mitigated type 2 diabetes. J Mol Histol 2023; 54:543-557. [PMID: 37874501 DOI: 10.1007/s10735-023-10158-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is one of most common metabolic diseases and continues to be a leading cause of death worldwide. Although great efforts have been made to elucidate the pathogenesis of diabetes, the underlying mechanism still remains unclear. Notably, overwhelming evidence has demonstrated that mitochondria are tightly correlated with the development of T2DM, and the defects of mitochondrial function in peripheral insulin-responsive tissues, such as skeletal muscle, liver and adipose tissue, are crucial drivers of T2DM. Furthermore, exercise training is considered as an effective stimulus for improving insulin sensitivity and hence is regarded as the best strategy to prevent and treat T2DM. Although the precise mechanisms by which exercise alleviates T2DM are not fully understood, mitochondria may be critical for the beneficial effects of exercise.
Collapse
Affiliation(s)
- Jingjing Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Jingcheng Fan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Tan Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China.
| |
Collapse
|
4
|
Vajdi M, Sefidmooye Azar P, Mahmoodpoor A, Dashti F, Sanaie S, Kiani Chalmardi F, Karimi A. A comprehensive insight into the molecular and cellular mechanisms of action of resveratrol on complications of sepsis a systematic review. Phytother Res 2023; 37:3780-3808. [PMID: 37405908 DOI: 10.1002/ptr.7917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/08/2023] [Accepted: 05/27/2023] [Indexed: 07/07/2023]
Abstract
Sepsis and septic shock are still one of the most important medical challenges. Sepsis is an extreme and uncontrolled response of the innate immune system to invading pathogenesis. Resveratrol (3,5,4'-trihydroxytrans-stilbene), is a phenolic and non-flavonoid compound naturally produced by some plants and fruits. The object of the current study is to systematically review the impacts of resveratrol and its mechanisms of function in the management of sepsis and its related complications. The guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements were applied to perform the study (PROSPERO: CRD42021289357). We searched Embase, Web of Science, Google Scholar, Science Direct, PubMed, ProQuest, and Scopus databases up to January 2023 by using the relevant keywords. Study criteria were met by 72 out of 1415 articles screened. The results of this systematic review depict that resveratrol can reduces the complications of sepsis by affecting inflammatory pathways, oxidative stress, and modulating immune responses. Future human randomized clinical trials are necessary due to the promising therapeutic effects of resveratrol on sepsis complications and the lack of clinical trials in this regard.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouria Sefidmooye Azar
- Department of Nutrition and Hospitality Management, School of Applied Sciences, The University of Mississippi, Oxford, Mississippi, USA
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Dashti
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Veeraraghavan VP, Mony U, Renu K, Mohan SK, Ammar RB, AlZahrani AM, Ahmed EA, Rajendran P. Effects of Polyphenols on ncRNAs in cancer - An update. Clin Exp Pharmacol Physiol 2022; 49:613-623. [PMID: 35275419 DOI: 10.1111/1440-1681.13641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/24/2022] [Accepted: 03/02/2022] [Indexed: 11/27/2022]
Abstract
In recent years, oncotherapy has received considerable attention concerning plant polyphenols. Increasing evidence suggests that due to the efficiency of polyphenols, they may have antitumor effects in various cancers. However, their regulatory structures remain elusive. Long non-coding RNAs (LncRNAs) have been identified in the regulation of various forms of tumorigenesis and tumor development. Long non-coding RNAs (LncRNAs) have recently emerged as regulatory eukaryotic transcripts and therapeutic targets with important and diverse functions in health and diseases. LncRNAs may be associated with the initiation, development, and progression of cancer. This review summarizes the research on the modulatory effects of LncRNAs and their roles in mediating cellular processes. The mechanisms of action of polyphenols underlying their therapeutic effects on cancers are also discussed. Based on our review, polyphenols might facilitate a significant epigenetic modification as part of their tissue-/cell-related biological effects. This finding may be attributed to their interaction with cellular signaling pathways involved in chronic diseases. Certain LncRNAs might be the target of specific polyphenols, and some critical signaling processes involved in the intervention of cancers might mediate the therapeutic roles of polyphenols. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Surapaneni Krishna Mohan
- Departments of Biochemistry, Molecular Virology, Research, Clinical Skills& Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, India
| | - Rebai Ben Ammar
- College of Science, Department of Biological Sciences, King Faisal University, Al Ahsa, Saudi Arabia.,Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Technopole of Borj-Cedria PBOX 901, 2050, Hammam-Lif, Tunisia
| | - Abdullah M AlZahrani
- College of Science, Department of Biological Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Emad A Ahmed
- College of Science, Department of Biological Sciences, King Faisal University, Al Ahsa, Saudi Arabia.,Molecular Physiology Laboratory, Zoology department, Faculty of Science, Assiut University, Egypt
| | - Peramaiyan Rajendran
- College of Science, Department of Biological Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
6
|
Xu J, Shen J, Yuan R, Jia B, Zhang Y, Wang S, Zhang Y, Liu M, Wang T. Mitochondrial Targeting Therapeutics: Promising Role of Natural Products in Non-alcoholic Fatty Liver Disease. Front Pharmacol 2022; 12:796207. [PMID: 35002729 PMCID: PMC8733608 DOI: 10.3389/fphar.2021.796207] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases worldwide, and its prevalence is still growing rapidly. However, the efficient therapies for this liver disease are still limited. Mitochondrial dysfunction has been proven to be closely associated with NAFLD. The mitochondrial injury caused reactive oxygen species (ROS) production, and oxidative stress can aggravate the hepatic lipid accumulation, inflammation, and fibrosis. which contribute to the pathogenesis and progression of NAFLD. Therefore, pharmacological therapies that target mitochondria could be a promising way for the NAFLD intervention. Recently, natural products targeting mitochondria have been extensively studied and have shown promising pharmacological activity. In this review, the recent research progress on therapeutic effects of natural-product-derived compounds that target mitochondria and combat NAFLD was summarized, aiming to provide new potential therapeutic lead compounds and reference for the innovative drug development and clinical treatment of NAFLD.
Collapse
Affiliation(s)
- Jingqi Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiayan Shen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruolan Yuan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bona Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yiwen Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sijian Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengyang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Veres B, Eros K, Antus C, Kalman N, Fonai F, Jakus PB, Boros E, Hegedus Z, Nagy I, Tretter L, Gallyas F, Sumegi B. Cyclophilin D-dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia. FEBS Open Bio 2021; 11:684-704. [PMID: 33471430 PMCID: PMC7931201 DOI: 10.1002/2211-5463.13091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 01/05/2023] Open
Abstract
Microorganisms or LPS (lipopolysaccharide), an outer membrane component of Gram-negative bacteria, can induce a systemic inflammatory response that leads to sepsis, multiple organ dysfunction, and mortality. Here, we investigated the role of cyclophilin D (CypD)-dependent mitochondrial permeability transition (mPT) in the immunosuppressive phase of LPS-induced endotoxic shock. The liver plays an important role in immunity and organ dysfunction; therefore, we used liver RNA sequencing (RNA-seq) data, Ingenuity® Pathway Analysis (IPA ® ) to investigate the complex role of mPT formation in inflammatory reprogramming and disease progression. LPS induced significant changes in the expression of 2844 genes, affecting 179 pathways related to mitochondrial dysfunction, defective oxidative phosphorylation, nitric oxide (NO) and reactive oxygen species (ROS) accumulation, nuclear factor, erythroid 2 like 2 (Nrf2), Toll-like receptors (TLRs), and tumor necrosis factor α receptor (TNFR)-mediated processes in wild-type mice. The disruption of CypD reduced LPS-induced alterations in gene expression and pathways involving TNFRs and TLRs, in addition to improving survival and attenuating oxidative liver damage and the related NO- and ROS-producing pathways. CypD deficiency diminished the suppressive effect of LPS on mitochondrial function, nuclear- and mitochondrial-encoded genes, and mitochondrial DNA (mtDNA) quantity, which could be critical in improving survival. Our data propose that CypD-dependent mPT is an amplifier in inflammatory reprogramming and promotes disease progression. The mortality in human sepsis and shock is associated with mitochondrial dysfunction. Prevention of mPT by CypD disruption reduces inflammatory reprogramming, mitochondrial dysfunction, and lethality; therefore, CypD can be a novel drug target in endotoxic shock and related inflammatory diseases.
Collapse
Affiliation(s)
- Balazs Veres
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Krisztian Eros
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
- MTA‐PTE Nuclear‐Mitochondrial Interactions Research GroupPecsHungary
- Szentagothai Janos Research CenterUniversity of PecsHungary
| | - Csenge Antus
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Nikoletta Kalman
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Fruzsina Fonai
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Peter Balazs Jakus
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Eva Boros
- Institute of BiochemistryBiological Research CentreSzegedHungary
| | - Zoltan Hegedus
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
- Institute of BiophysicsBiological Research CentreSzegedHungary
| | - Istvan Nagy
- Institute of BiochemistryBiological Research CentreSzegedHungary
- SeqOmics Biotechnology LtdMorahalomHungary
| | - Laszlo Tretter
- Department of Medical BiochemistrySemmelweis UniversityBudapestHungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
- MTA‐PTE Nuclear‐Mitochondrial Interactions Research GroupPecsHungary
- Szentagothai Janos Research CenterUniversity of PecsHungary
| | - Balazs Sumegi
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
- MTA‐PTE Nuclear‐Mitochondrial Interactions Research GroupPecsHungary
- Szentagothai Janos Research CenterUniversity of PecsHungary
| |
Collapse
|
8
|
Beeraka NM, Bovilla VR, Doreswamy SH, Puttalingaiah S, Srinivasan A, Madhunapantula SV. The Taming of Nuclear Factor Erythroid-2-Related Factor-2 (Nrf2) Deglycation by Fructosamine-3-Kinase (FN3K)-Inhibitors-A Novel Strategy to Combat Cancers. Cancers (Basel) 2021; 13:cancers13020281. [PMID: 33466626 PMCID: PMC7828646 DOI: 10.3390/cancers13020281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Aim of this review is to provide an overview on (a) Fructosamine-3-Kinase (FN3K) and its role in regulating Nuclear Factor Erythorid-2-Related Factor-2 (Nrf2); (b) the role of glycation and deglycation mechanisms in modulating the functional properties of proteins, in particular, the Nrf2; (c) the dual role of Nrf2 in the prevention and treatment of cancers. Since controlling the glycation of Nrf2 is one of the key mechanisms determining the fate of a cell; whether to get transformed into a cancerous one or to stay as a normal one, it is important to regulate Nrf2 and deglycating FN3K using pharmacological agents. Inhibitors of FN3K are being explored currently to modulate Nrf2 activity thereby control the cancers. Abstract Glycated stress is mediated by the advanced glycation end products (AGE) and the binding of AGEs to the receptors for advanced glycation end products (RAGEs) in cancer cells. RAGEs are involved in mediating tumorigenesis of multiple cancers through the modulation of several downstream signaling cascades. Glycated stress modulates various signaling pathways that include p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa–B (NF-κB), tumor necrosis factor (TNF)-α, etc., which further foster the uncontrolled proliferation, growth, metastasis, angiogenesis, drug resistance, and evasion of apoptosis in several cancers. In this review, a balanced overview on the role of glycation and deglycation in modulating several signaling cascades that are involved in the progression of cancers was discussed. Further, we have highlighted the functional role of deglycating enzyme fructosamine-3-kinase (FN3K) on Nrf2-driven cancers. The activity of FN3K is attributed to its ability to deglycate Nrf2, a master regulator of oxidative stress in cells. FN3K is a unique protein that mediates deglycation by phosphorylating basic amino acids lysine and arginine in various proteins such as Nrf2. Deglycated Nrf2 is stable and binds to small musculoaponeurotic fibrosarcoma (sMAF) proteins, thereby activating cellular antioxidant mechanisms to protect cells from oxidative stress. This cellular protection offered by Nrf2 activation, in one way, prevents the transformation of a normal cell into a cancer cell; however, in the other way, it helps a cancer cell not only to survive under hypoxic conditions but also, to stay protected from various chemo- and radio-therapeutic treatments. Therefore, the activation of Nrf2 is similar to a double-edged sword and, if not controlled properly, can lead to the development of many solid tumors. Hence, there is a need to develop novel small molecule modulators/phytochemicals that can regulate FN3K activity, thereby maintaining Nrf2 in a controlled activation state.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Venugopal R. Bovilla
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
- Public Health Research Institute of India (PHRII), Mysuru, Karnataka 570020, India
| | - Shalini H. Doreswamy
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Sujatha Puttalingaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Asha Srinivasan
- Division of Nanoscience and Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India;
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
- Special Interest Group in Cancer Biology and Cancer Stem Cells, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India
- Correspondence: ; Tel.: +91-810-527-8621
| |
Collapse
|
9
|
Alterations in mitochondrial homeostasis in a potassium dichromate model of acute kidney injury and their mitigation by curcumin. Food Chem Toxicol 2020; 145:111774. [PMID: 32980475 DOI: 10.1016/j.fct.2020.111774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 01/22/2023]
Abstract
Curcumin has protective effects in several acute kidney injury models, including that induced by potassium dichromate (K2Cr2O7). The protective effect of curcumin in this experimental model has been associated to the preservation of mitochondrial bioenergetics. This study is aimed at evaluating whether or not curcumin's protective effect in mitochondrial bioenergetics is related to the modulation of mitochondrial dynamics and biogenesis. Wistar rats were treated with a single subcutaneous dose of K2Cr2O7 (12.5 mg/kg) or received curcumin (400 mg/kg/day) by oral gavage 10 days before and one day after the K2Cr2O7 injection. K2Cr2O7 induced kidney dysfunction and increased mitochondrial hydrogen peroxide production, while decreasing the respiration directly attributable to oxidative phosphorylation and mitochondrial membrane potential. In mitochondria, K2Cr2O7 increased fission and reduced fusion. Structural analysis of mitochondria in the proximal tubular cells corroborated their fragmentation and loss of crests' integrity. Regarding mitochondrial biogenesis, K2Cr2O7 decreased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) levels. Conversely, curcumin treatment mitigated the aforementioned alterations and increased the expression of the mitochondrial transcription factor A (TFAM). Taken together, our results suggest that curcumin can protect against renal injury by modulating mitochondrial homeostasis, mitigating alterations in bioenergetics and dynamics, possibly by stimulating mitochondrial biogenesis.
Collapse
|
10
|
Rigoulet M, Bouchez CL, Paumard P, Ransac S, Cuvellier S, Duvezin-Caubet S, Mazat JP, Devin A. Cell energy metabolism: An update. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148276. [PMID: 32717222 DOI: 10.1016/j.bbabio.2020.148276] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
In living cells, growth is the result of coupling between substrate catabolism and multiple metabolic processes that take place during net biomass formation and maintenance processes. During growth, both ATP/ADP and NADH/NAD+ molecules play a key role. Cell energy metabolism hence refers to metabolic pathways involved in ATP synthesis linked to NADH turnover. Two main pathways are thus involved in cell energy metabolism: glycolysis/fermentation and oxidative phosphorylation. Glycolysis and mitochondrial oxidative phosphorylation are intertwined through thermodynamic and kinetic constraints that are reviewed herein. Further, our current knowledge of short-term and long term regulation of cell energy metabolism will be reviewed using examples such as the Crabtree and the Warburg effect.
Collapse
Affiliation(s)
- M Rigoulet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - C L Bouchez
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - P Paumard
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Ransac
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Cuvellier
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Duvezin-Caubet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - J P Mazat
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - A Devin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.
| |
Collapse
|
11
|
Davinelli S, De Stefani D, De Vivo I, Scapagnini G. Polyphenols as Caloric Restriction Mimetics Regulating Mitochondrial Biogenesis and Mitophagy. Trends Endocrinol Metab 2020; 31:536-550. [PMID: 32521237 DOI: 10.1016/j.tem.2020.02.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
Abstract
The tight coordination between mitochondrial biogenesis and mitophagy can be dysregulated during aging, critically influencing whole-body metabolism, health, and lifespan. To date, caloric restriction (CR) appears to be the most effective intervention strategy to improve mitochondrial turnover in aging organisms. The development of pharmacological mimetics of CR has gained attention as an attractive and potentially feasible approach to mimic the CR phenotype. Polyphenols, ubiquitously present in fruits and vegetables, have emerged as well-tolerated CR mimetics that target mitochondrial turnover. Here, we discuss the molecular mechanisms that orchestrate mitochondrial biogenesis and mitophagy, and we summarize the current knowledge of how CR promotes mitochondrial maintenance and to what extent different polyphenols may mimic CR and coordinate mitochondrial biogenesis and clearance.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Campobasso, Italy. @hsph.harvard.edu
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Campobasso, Italy
| |
Collapse
|
12
|
Farkhondeh T, Folgado SL, Pourbagher-Shahri AM, Ashrafizadeh M, Samarghandian S. The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway. Biomed Pharmacother 2020; 127:110234. [PMID: 32559855 DOI: 10.1016/j.biopha.2020.110234] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022] Open
Abstract
Resveratrol is a natural polyphenol derived from grapes, berries, red wine, peanuts amongst other fruits and nuts. Beneficial effects such as anti-inflammatory, antioxidant, hepatoprotective, neuroprotective, cardioprotective, renoprotective, anti-obesity, anti-diabetic, and anti-cancer of resveratrol have been demonstrated by preclinical and clinical research. A possibility is that these therapeutical effects are associated with modulation of the Nrf2 signaling pathway in the following way: resveratrol may potentiate Nrf2 signaling through blockage of Keap1, by means of changing the Nrf2 mediators, its expression and its nuclear translocation. This article reviews the evidence of the Nrf2 modulating hypothesis as a possible molecular mechanism underlying the medicinal properties of resveratrol.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Silvia Llorens Folgado
- Department of Medical Sciences, Faculty of Medicine of Albacete, Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, 02008, Albacete, Spain
| | | | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
13
|
Moon DK, Kim BG, Lee AR, In Choe Y, Khan I, Moon KM, Jeon RH, Byun JH, Hwang SC, Woo DK. Resveratrol can enhance osteogenic differentiation and mitochondrial biogenesis from human periosteum-derived mesenchymal stem cells. J Orthop Surg Res 2020; 15:203. [PMID: 32493422 PMCID: PMC7268497 DOI: 10.1186/s13018-020-01684-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Osteoporosis is a metabolic bone disorder that leads to low bone mass and microstructural deterioration of bone tissue and increases bone fractures. Resveratrol, a natural polyphenol compound, has pleiotropic effects including anti-oxidative, anti-aging, and anti-cancer effects. Resveratrol also has roles in increasing osteogenesis and in upregulating mitochondrial biogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, it is still unclear that resveratrol can enhance osteogenic differentiation or mitochondrial biogenesis of periosteum-derived MSCs (PO-MSCs), which play key roles in bone tissue maintenance and fracture healing. Thus, in order to test a possible preventive or therapeutic effect of resveratrol on osteoporosis, this study investigated the effects of resveratrol treatments on osteogenic differentiation and mitochondrial biogenesis of PO-MSCs. Methods The optimal doses of resveratrol treatment on PO-MSCs were determined by cell proliferation and viability assays. Osteogenic differentiation of PO-MSCs under resveratrol treatment was assessed by alkaline phosphatase activities (ALP, an early biomarker of osteogenesis) as well as by extracellular calcium deposit levels (a late biomarker). Mitochondrial biogenesis during osteogenic differentiation of PO-MSCs was measured by quantifying both mitochondrial mass and mitochondrial DNA (mtDNA) contents. Results Resveratrol treatments above 10 μM seem to have negative effects on cell proliferation and viability of PO-MSCs. Resveratrol treatment (at 5 μM) on PO-MSCs during osteogenic differentiation increased both ALP activities and calcium deposits compared to untreated control groups, demonstrating an enhancing effect of resveratrol on osteogenesis. In addition, resveratrol treatment (at 5 μM) during osteogenic differentiation of PO-MSCs increased both mitochondrial mass and mtDNA copy numbers, indicating that resveratrol can bolster mitochondrial biogenesis in the process of PO-MSC osteogenic differentiation. Conclusion Taken together, the findings of this study describe the roles of resveratrol in promoting osteogenesis and mitochondrial biogenesis of human PO-MSCs suggesting a possible application of resveratrol as a supplement for osteoporosis and/or osteoporotic fractures.
Collapse
Affiliation(s)
- Dong Kyu Moon
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Gyeongsang National University Hospital, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo Gyu Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - A Ram Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Yeong In Choe
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Imran Khan
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyoung Mi Moon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Ryoung-Hoon Jeon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun-Chul Hwang
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Gyeongsang National University Hospital, Gyeongsang National University, Jinju, Republic of Korea.
| | - Dong Kyun Woo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
14
|
Panieri E, Telkoparan-Akillilar P, Suzen S, Saso L. The NRF2/KEAP1 Axis in the Regulation of Tumor Metabolism: Mechanisms and Therapeutic Perspectives. Biomolecules 2020; 10:biom10050791. [PMID: 32443774 PMCID: PMC7277620 DOI: 10.3390/biom10050791] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
The NRF2/KEAP1 pathway is a fundamental signaling cascade that controls multiple cytoprotective responses through the induction of a complex transcriptional program that ultimately renders cancer cells resistant to oxidative, metabolic and therapeutic stress. Interestingly, accumulating evidence in recent years has indicated that metabolic reprogramming is closely interrelated with the regulation of redox homeostasis, suggesting that the disruption of NRF2 signaling might represent a valid therapeutic strategy against a variety of solid and hematologic cancers. These aspects will be the focus of the present review.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (E.P.); (L.S.); Tel.: +39-06-4991-2481 (E.P. & L.S.)
| | - Pelin Telkoparan-Akillilar
- Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, 06520 Balgat, Ankara, Turkey;
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Tandogan, Ankara, Turkey;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (E.P.); (L.S.); Tel.: +39-06-4991-2481 (E.P. & L.S.)
| |
Collapse
|
15
|
Gheibi S, Samsonov AP, Gheibi S, Vazquez AB, Kashfi K. Regulation of carbohydrate metabolism by nitric oxide and hydrogen sulfide: Implications in diabetes. Biochem Pharmacol 2020; 176:113819. [PMID: 31972170 DOI: 10.1016/j.bcp.2020.113819] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the human body and have a key role in many of the physiological activities of the various organ systems. Decreased NO bioavailability and deficiency of H2S are involved in the pathophysiology of type 2 diabetes and its complications. Restoration of NO levels have favorable metabolic effects in diabetes. The role of H2S in pathophysiology of diabetes is however controversial; H2S production is decreased during development of obesity, diabetes, and its complications, suggesting the potential therapeutic effects of H2S. On the other hand, increased H2S levels disturb the pancreatic β-cell function and decrease insulin secretion. In addition, there appear to be important interactions between NO and H2S at the levels of both biosynthesis and signaling pathways, yet clear an insight into this relationship is lacking. H2S potentiates the effects of NO in the cardiovascular system as well as NO release from its storage pools. Likewise, NO increases the activity and the expression of H2S-generating enzymes. Inhibition of NO production leads to elimination/attenuation of the cardioprotective effects of H2S. Regarding the increasing interest in the therapeutic applications of NO or H2S-releasing molecules in a variety of diseases, particularly in the cardiovascular disorders, much is to be learned about their function in glucose/insulin metabolism, especially in diabetes. The aim of this review is to provide a better understanding of the individual and the interactive roles of NO and H2S in carbohydrate metabolism.
Collapse
Affiliation(s)
- Sevda Gheibi
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden.
| | - Alan P Samsonov
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Shahsanam Gheibi
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Alexandra B Vazquez
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, USA.
| |
Collapse
|
16
|
Gore A, Gauthier AG, Lin M, Patel V, Thomas DD, Ashby CR, Mantell LL. The nitric oxide donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate/D-NO), increases survival by attenuating hyperoxia-compromised innate immunity in bacterial clearance in a mouse model of ventilator-associated pneumonia. Biochem Pharmacol 2020; 176:113817. [PMID: 31972169 DOI: 10.1016/j.bcp.2020.113817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Mechanical ventilation (MV) with supraphysiological levels of oxygen (hyperoxia) is a life-saving therapy for the management of patients with respiratory distress. However, a significant number of patients on MV develop ventilator-associated pneumonia (VAP). Previously, we have reported that prolonged exposure to hyperoxia impairs the capacity of macrophages to phagocytize Pseudomonas aeruginosa (PA), which can contribute to the compromised innate immunity in VAP. In this study, we show that the high mortality rate in mice subjected to hyperoxia and PA infection was accompanied by a significant decrease in the airway levels of nitric oxide (NO). Decreased NO levels were found to be, in part, due to a significant reduction in NO release by macrophages upon exposure to PA lipopolysaccharide (LPS). Based on these findings, we postulated that NO supplementation should restore hyperoxia-compromised innate immunity and decrease mortality by increasing the clearance of PA under hyperoxic conditions. To test this hypothesis, cultured macrophages were exposed to hyperoxia (95% O2) in the presence or absence of the NO donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate/D-NO). Interestingly, D-NO (up to 37.5 µM) significantly attenuated hyperoxia-compromised macrophage migratory, phagocytic, and bactericidal function. To determine whether the administration of exogenous NO enhances the host defense in bacteria clearance, C57BL/6 mice were exposed to hyperoxia (99% O2) and intranasally inoculated with PA in the presence or absence of D-NO. D-NO (300 µM-800 µM) significantly increased the survival of mice inoculated with PA under hyperoxic conditions, and significantly decreased bacterial loads in the lung and attenuated lung injury. These results suggest the NO donor, D-NO, can improve the clinical outcomes in VAP by augmenting the innate immunity in bacterial clearance. Thus, provided these results can be extrapolated to humans, NO supplementation may represent a potential therapeutic strategy for preventing and treating patients with VAP.
Collapse
Affiliation(s)
- Ashwini Gore
- Department of Pharmaceutical Sciences, St. John's University, College of Pharmacy and Health Sciences, Queens, NY 11439, USA
| | - Alex G Gauthier
- Department of Pharmaceutical Sciences, St. John's University, College of Pharmacy and Health Sciences, Queens, NY 11439, USA
| | - Mosi Lin
- Department of Pharmaceutical Sciences, St. John's University, College of Pharmacy and Health Sciences, Queens, NY 11439, USA
| | - Vivek Patel
- Department of Pharmaceutical Sciences, St. John's University, College of Pharmacy and Health Sciences, Queens, NY 11439, USA
| | - Douglas D Thomas
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, College of Pharmacy and Health Sciences, Queens, NY 11439, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, St. John's University, College of Pharmacy and Health Sciences, Queens, NY 11439, USA; Cardiopulmonary Research, The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY 11030, USA.
| |
Collapse
|
17
|
Costanzini A, Sgarbi G, Maresca A, Del Dotto V, Solaini G, Baracca A. Mitochondrial Mass Assessment in a Selected Cell Line under Different Metabolic Conditions. Cells 2019; 8:cells8111454. [PMID: 31752092 PMCID: PMC6912592 DOI: 10.3390/cells8111454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/27/2019] [Accepted: 11/14/2019] [Indexed: 01/14/2023] Open
Abstract
Changes of quantity and/or morphology of cell mitochondria are often associated with metabolic modulation, pathology, and apoptosis. Exogenous fluorescent probes used to investigate changes in mitochondrial content and dynamics are strongly dependent, for their internalization, on the mitochondrial membrane potential and composition, thus limiting the reliability of measurements. To overcome this limitation, genetically encoded recombinant fluorescent proteins, targeted to different cellular districts, were used as reporters. Here, we explored the potential use of mitochondrially targeted red fluorescent probe (mtRFP) to quantify, by flow cytometry, mitochondrial mass changes in cells exposed to different experimental conditions. We first demonstrated that the mtRFP fluorescence intensity is stable during cell culture and it is related with the citrate synthase activity, an established marker of the mitochondrial mass. Incidentally, the expression of mtRFP inside mitochondria did not alter the oxygen consumption rate under both state 3 and 4 respiration conditions. In addition, using this method, we showed for the first time that different inducers of mitochondrial mass change, such as hypoxia exposure or resveratrol treatment of cells, could be consistently detected. We suggest that transfection and selection of stable clones expressing mtRFP is a reliable method to monitor mitochondrial mass changes, particularly when pathophysiological or experimental conditions change ΔΨm, as it occurs during mitochondrial uncoupling or hypoxia/anoxia conditions.
Collapse
Affiliation(s)
- Anna Costanzini
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.S.)
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Gianluca Sgarbi
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.S.)
| | - Alessandra Maresca
- UOC Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40126 Bologna, Italy;
| | - Valentina Del Dotto
- Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy;
| | - Giancarlo Solaini
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.S.)
- Correspondence: (G.S.); (A.B.); Tel.: +39-051-2091215 (G.S.); Tel.: +39-051-2091244 (A.B.)
| | - Alessandra Baracca
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.S.)
- Correspondence: (G.S.); (A.B.); Tel.: +39-051-2091215 (G.S.); Tel.: +39-051-2091244 (A.B.)
| |
Collapse
|
18
|
Mhillaj E, Cuomo V, Trabace L, Mancuso C. The Heme Oxygenase/Biliverdin Reductase System as Effector of the Neuroprotective Outcomes of Herb-Based Nutritional Supplements. Front Pharmacol 2019; 10:1298. [PMID: 31780933 PMCID: PMC6859463 DOI: 10.3389/fphar.2019.01298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/10/2019] [Indexed: 12/28/2022] Open
Abstract
Over the last few years, several preclinical studies have shown that some herbal products, such as ferulic acid, Ginkgo biloba, and resveratrol, exert neuroprotective effects through the modulation of the heme oxygenase/biliverdin reductase system. Unfortunately, sufficient data supporting the shift of knowledge from preclinical studies to humans, particularly in neurodegenerative diseases, are not yet available in the literature. The purpose of this review is to summarize the studies and the main results achieved on the potential therapeutic role of the interaction between the heme oxygenase/biliverdin reductase system with ferulic acid, G. biloba, and resveratrol. Some critical issues have also been reported, mainly concerning the safety profile and the toxicological sequelae associated to the supplementation with the herbs mentioned above, based on both current literature and specific reports issued by the competent Regulatory Authorities.
Collapse
Affiliation(s)
- Emanuela Mhillaj
- Institute of Pharmacology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Cesare Mancuso
- Institute of Pharmacology, Università Cattolica del Sacro Cuore, Roma, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| |
Collapse
|
19
|
The nuclear transcription factor FoxG1 affects the sensitivity of mimetic aging hair cells to inflammation by regulating autophagy pathways. Redox Biol 2019; 28:101364. [PMID: 31731101 PMCID: PMC6920089 DOI: 10.1016/j.redox.2019.101364] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a self-defense response to protect individuals from infection and tissue damage, but excessive or persistent inflammation can have adverse effects on cell survival. Many individuals become especially susceptible to chronic-inflammation-induced sensorineural hearing loss as they age, but the intrinsic molecular mechanism behind aging individuals' increased risk of hearing loss remains unclear. FoxG1 (forkhead box transcription factor G1) is a key transcription factor that plays important roles in hair cell survival through the regulation of mitochondrial function, but how the function of FoxG1 changes during aging and under inflammatory conditions is unknown. In this study, we first found that FoxG1 expression and autophagy both increased gradually in the low concentration lipopolysaccharide (LPS)-induced inflammation model, while after high concentration of LPS treatment both FoxG1 expression and autophagy levels decreased as the concentration of LPS increased. We then used siRNA to downregulate Foxg1 expression in hair cell-like OC-1 cells and found that cell death and apoptosis were significantly increased after LPS injury. Furthermore, we used d-galactose (D-gal) to create an aging model with hair cell-like OC-1 cells and cochlear explant cultures in vitro and found that the expression of Foxg1 and the level of autophagy were both decreased after D-gal and LPS co-treatment. Lastly, we knocked down the expression of Foxg1 under aged inflammation conditions and found increased numbers of dead and apoptotic cells. Together these results suggest that FoxG1 affects the sensitivity of mimetic aging hair cells to inflammation by regulating autophagy pathways.
Collapse
|
20
|
Galiè M, Covi V, Tabaracci G, Malatesta M. The Role of Nrf2 in the Antioxidant Cellular Response to Medical Ozone Exposure. Int J Mol Sci 2019; 20:E4009. [PMID: 31426459 PMCID: PMC6720777 DOI: 10.3390/ijms20164009] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
Ozone (O3) is a natural, highly unstable atmospheric gas that rapidly decomposes to oxygen. Although not being a radical molecule, O3 is a very strong oxidant and therefore it is potentially toxic for living organisms. However, scientific evidence proved that the effects of O3 exposure are dose-dependent: high dosages stimulate severe oxidative stress resulting in inflammatory response and tissue injury, whereas low O3 concentrations induce a moderate oxidative eustress activating antioxidant pathways. These properties make O3 a powerful medical tool, which can be used as either a disinfectant or an adjuvant agent in the therapy of numerous diseases. In this paper, the cellular mechanisms involved in the antioxidant response to O3 exposure will be reviewed with special reference to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its role in the efficacy of ozone therapy.
Collapse
Affiliation(s)
- Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Viviana Covi
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, I-25018 Montichiari (BS), Italy
| | - Gabriele Tabaracci
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, I-25018 Montichiari (BS), Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
21
|
Drummond GS, Baum J, Greenberg M, Lewis D, Abraham NG. HO-1 overexpression and underexpression: Clinical implications. Arch Biochem Biophys 2019; 673:108073. [PMID: 31425676 DOI: 10.1016/j.abb.2019.108073] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/23/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022]
Abstract
In this review we examine the effects of both over- and under-production of heme oxygenase-1 (HO-1) and HO activity on a broad spectrum of biological systems and on vascular disease. In a few instances e.g., neonatal jaundice, overproduction of HO-1 and increased HO activity results in elevated levels of bilirubin requiring clinical intervention with inhibitors of HO activity. In contrast HO-1 levels and HO activity are low in obesity and the HO system responds to mitigate the deleterious effects of oxidative stress through increased levels of bilirubin (anti-inflammatory) and CO (anti-apoptotic) and decreased levels of heme (pro-oxidant). Site specific HO-1 overexpression diminishes adipocyte terminal differentiation and lipid accumulation of obesity mediated release of inflammatory molecules. A series of diverse strategies have been implemented that focus on increasing HO-1 and HO activity that are central to reversing the clinical complications associated with diseases including, obesity, metabolic syndrome and vascular disease.
Collapse
Affiliation(s)
- George S Drummond
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Jeffrey Baum
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Menachem Greenberg
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - David Lewis
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
22
|
Involvement of Nrf2 in myocardial ischemia and reperfusion injury. Int J Biol Macromol 2019; 125:496-502. [DOI: 10.1016/j.ijbiomac.2018.11.190] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022]
|
23
|
Kim HJ, Joe Y, Chen Y, Park GH, Kim UH, Chung HT. Carbon monoxide attenuates amyloidogenesis via down-regulation of NF-κB-mediated BACE1 gene expression. Aging Cell 2019; 18:e12864. [PMID: 30411846 PMCID: PMC6351829 DOI: 10.1111/acel.12864] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β (Aβ) peptides, the major constituent of plaques, are generated by sequential proteolytic cleavage of the amyloid precursor protein (APP) via β-secretase (BACE1) and the γ-secretase complex. It has been proposed that the abnormal secretion and accumulation of Aβ are the initial causative events in the development of Alzheimer's disease (AD). Drugs modulating this pathway could be used for AD treatment. Previous studies indicated that carbon monoxide (CO), a product of heme oxygenase (HO)-1, protects against Aβ-induced toxicity and promotes neuroprotection. However, the mechanism underlying the mitigative effect of CO on Aβ levels and BACE1 expression is unclear. Here, we show that CO modulates cleavage of APP and Aβ production by decreasing BACE1 expression in vivo and in vitro. CO reduces Aβ levels and improves memory deficits in AD transgenic mice. The regulation of BACE1 expression by CO is dependent on nuclear factor-kappa B (NF-κB). Consistent with the negative role of SIRT1 in the NF-κB activity, CO fails to evoke significant decrease in BACE1 expression in the presence of the SIRT1 inhibitor. Furthermore, CO attenuates elevation of BACE1 level in brains of 3xTg-AD mouse model as well as mice fed high-fat, high-cholesterol diets. CO reduces the NF-κB-mediated transcription of BACE1 induced by the cholesterol oxidation product 27-hydroxycholesterol or hydrogen peroxide. These data suggest that CO reduces the NF-κB-mediated BACE1 transcription and consequently decreases Aβ production. Our study provides novel mechanisms by which CO reduces BACE1 expression and Aβ production and may be an effective agent for AD treatment.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| | - Yeonsoo Joe
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| | - Yingqing Chen
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| | - Gyu Hwan Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Uh-Hyun Kim
- National Creative Research Laboratory for Ca Signaling Network, Medical School; Chonbuk National University; Jeonju South Korea
| | - Hun Taeg Chung
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| |
Collapse
|
24
|
Kim HJ, Joe Y, Rah SY, Kim SK, Park SU, Park J, Kim J, Ryu J, Cho GJ, Surh YJ, Ryter SW, Kim UH, Chung HT. Carbon monoxide-induced TFEB nuclear translocation enhances mitophagy/mitochondrial biogenesis in hepatocytes and ameliorates inflammatory liver injury. Cell Death Dis 2018; 9:1060. [PMID: 30333475 PMCID: PMC6193007 DOI: 10.1038/s41419-018-1112-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Carbon monoxide (CO) can confer protection against cellular stress, whereas the potential involvement of autophagy and lysosomal biogenesis remains incompletely understood. We demonstrate here that the activation of protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK) with CO increased the nuclear translocation of transcription factor EB (TFEB). PERK activation by CO increased intracellular Ca2+ concentration and the phosphatase activity of calcineurin against TFEB. Moreover, we found that in the deficiency of TFEB, CO not only failed to recruit Parkin to the mitochondria but also failed to increase expression of lysosomal genes such as Lamp1, CathB, and TPP1. Therefore, we suggest that CO increases mitophagy through TFEB nuclear translocation by PERK-calcinuerin activation. In addition, the inhibition of TFEB with siRNA against TFEB abrogated the increase of mtDNA with CO, markers of mitochondrial biogenesis such as PGC1α, NRF1, and TFAM, and the mitochondrial proteins COX II, COX IV, and cytochrome c. To investigate the effects of CO on mitochondrial homeostasis in vivo, mice were treated with lipopolysaccharide (LPS)/d-galactosamine (D-GalN). CO inhalation reduced liver injury after challenge with LPS/GalN. Furthermore, CO inhalation increased TFEB activation, mitophagy and mitochondrial biogenesis in mice treated with LPS/GalN. Our findings describe novel mechanisms underlying CO-dependent cytoprotection in hepatocytes and liver tissue via activation of TFEB-dependent mitophagy and associated induction of both lysosomal and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Republic of Korea
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Republic of Korea
| | - So-Young Rah
- National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seul-Ki Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Republic of Korea
| | - Se-Ung Park
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Republic of Korea
| | | | | | - Jinhyun Ryu
- Department of Anatomy, School of Medicine and Institute of Health Sciences, Gyeongsang National University, JinJu, 660-701, Republic of Korea
| | - Gyeong Jae Cho
- Department of Anatomy, School of Medicine and Institute of Health Sciences, Gyeongsang National University, JinJu, 660-701, Republic of Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical Center, New York, NY, USA
| | - Uh-Hyun Kim
- National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea.
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Republic of Korea.
| |
Collapse
|
25
|
Ryoo IG, Kwak MK. Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria. Toxicol Appl Pharmacol 2018; 359:24-33. [PMID: 30236989 DOI: 10.1016/j.taap.2018.09.014] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria play essential roles in cellular bioenergetics, biosynthesis, and apoptosis. During the process of respiration and oxidative phosphorylation, mitochondria utilize oxygen to generate ATP, and at the same time, there is an inevitable generation of reactive oxygen species (ROS). As excess ROS create oxidative stress and damage cells, the proper function of the antioxidant defense system is critical for eukaryotic cell survival under aerobic conditions. Nuclear factor, erythroid 2-like 2 (Nfe2l2/Nrf2) is a master transcription factor for regulating basal as well as inducible expression of multiple antioxidant proteins. Nrf2 has been involved in maintaining mitochondrial redox homeostasis by providing reduced forms of glutathione (GSH); the reducing cofactor NADPH; and mitochondrial antioxidant enzymes such as GSH peroxidase 1, superoxide dismutase 2, and peroxiredoxin 3/5. In addition, recent research advances suggest that Nrf2 contributes to mitochondrial regulation through more divergent intermolecular linkages. Nrf2 has been positively associated with mitochondrial biogenesis through the direct upregulation of mitochondrial transcription factors and is involved in the mitochondrial quality control system through mitophagy activation. Moreover, several mitochondrial proteins participate in regulating Nrf2 to form a reciprocal regulatory loop between mitochondria and Nrf2. Additionally, Nrf2 modulation in cancer cells leads to changes in the mitochondrial respiration system and cancer bioenergetics that overall affect cancer metabolism. In this review, we describe recent experimental observations on the relationship between Nrf2 and mitochondria, and further discuss the effects of Nrf2 on cancer mitochondria and metabolism.
Collapse
Affiliation(s)
- In-Geun Ryoo
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon 14662, Gyeonggi-do, Republic of Korea
| | - Mi-Kyoung Kwak
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon 14662, Gyeonggi-do, Republic of Korea; College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
26
|
Lv YJ, Yang Y, Sui BD, Hu CH, Zhao P, Liao L, Chen J, Zhang LQ, Yang TT, Zhang SF, Jin Y. Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice. Theranostics 2018; 8:2387-2406. [PMID: 29721087 PMCID: PMC5928897 DOI: 10.7150/thno.23620] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/18/2018] [Indexed: 01/08/2023] Open
Abstract
Rational: Senescence of mesenchymal stem cells (MSCs) and the related functional decline of osteogenesis have emerged as the critical pathogenesis of osteoporosis in aging. Resveratrol (RESV), a small molecular compound that safely mimics the effects of dietary restriction, has been well documented to extend lifespan in lower organisms and improve health in aging rodents. However, whether RESV promotes function of senescent stem cells in alleviating age-related phenotypes remains largely unknown. Here, we intend to investigate whether RESV counteracts senescence-associated bone loss via osteogenic improvement of MSCs and the underlying mechanism. Methods: MSCs derived from bone marrow (BMMSCs) and the bone-specific, senescence-accelerated, osteoblastogenesis/osteogenesis-defective mice (the SAMP6 strain) were used as experimental models. In vivo application of RESV was performed at 100 mg/kg intraperitoneally once every other day for 2 months, and in vitro application of RESV was performed at 10 μM. Bone mass, bone formation rates and osteogenic differentiation of BMMSCs were primarily evaluated. Metabolic statuses of BMMSCs and the mitochondrial activity, transcription and morphology were also examined. Mitofilin expression was assessed at both mRNA and protein levels, and short hairpin RNA (shRNA)-based gene knockdown was applied for mechanistic experiments. Results: Chronic intermittent application of RESV enhances bone formation and counteracts accelerated bone loss, with RESV improving osteogenic differentiation of senescent BMMSCs. Furthermore, in rescuing osteogenic decline under BMMSC senescence, RESV restores cellular metabolism through mitochondrial functional recovery via facilitating mitochondrial autonomous gene transcription. Molecularly, in alleviating senescence-associated mitochondrial disorders of BMMSCs, particularly the mitochondrial morphological alterations, RESV upregulates Mitofilin, also known as inner membrane protein of mitochondria (Immt) or Mic60, which is the core component of the mitochondrial contact site and cristae organizing system (MICOS). Moreover, Mitofilin is revealed to be indispensable for mitochondrial homeostasis and osteogenesis of BMMSCs, and that insufficiency of Mitofilin leads to BMMSC senescence and bone loss. More importantly, Mitofilin mediates resveratrol-induced mitochondrial and osteogenic improvements of BMMSCs in senescence. Conclusion: Our findings uncover osteogenic functional improvements of senescent MSCs as critical impacts in anti-osteoporotic practice of RESV, and unravel Mitofilin as a novel mechanism mediating RESV promotion on mitochondrial function in stem cell senescence.
Collapse
|
27
|
Deng ZJ, Liu RX, Li AR, Guo JW, Zeng QP. How Do Structurally Distinct Compounds Exert Functionally Identical Effects in Combating Obesity? Front Pharmacol 2018; 9:69. [PMID: 29467658 PMCID: PMC5808319 DOI: 10.3389/fphar.2018.00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/19/2018] [Indexed: 11/25/2022] Open
Abstract
Although the concept of inflammatory obesity remains to be widely accepted, a plethora of antibiotics, anti-inflammatory agents, mitochondrial uncouplers, and other structurally distinct compounds with unknown mechanisms have been demonstrated to exert functionally identical effects on weight reduction. Here we summarize a universal mechanism in which weight loss is modulated by mitochondrial biogenesis, which is correlated with conversion from the mitochondria-insufficient white adipose tissue to the mitochondria-abundant brown adipose tissue. This mechanistic description of inflammatory obesity may prove useful in the future for guiding pathology-based drug discovery for weight reduction.
Collapse
Affiliation(s)
- Zhi-Jun Deng
- Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Ruo-Xuan Liu
- Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - A-Rong Li
- Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jie-Wen Guo
- Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Qing-Ping Zeng
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
28
|
Resveratrol suppresses hyperglycemia-induced activation of NF-κB and AP-1 via c-Jun and RelA gene regulation. Med J Islam Repub Iran 2018; 32:10. [PMID: 30159261 PMCID: PMC6108266 DOI: 10.14196/mjiri.32.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 01/06/2023] Open
Abstract
Background: Resveratrol (RSV) provides several important biological functions in wide variety of cells. In this study, we investigated the molecular mechanisms underlying anti-inflammatory effect of RSV on HepG2 cells by assessing the gene expression of RelA and c-Jun- subunits of NF-κB and AP-1 transcription factors.
Methods: HepG2 cells were settled in a serum- free medium with high concentrations of glucose (30 mM) and insulin (1 µM) overnight and were then incubated with RSV (5, 10, and 20 µM) for 24 and 48 hours. Real time quantitative polymerase chain reaction (qRT-PCR) was used to determine RelA and c-Jun expression.
Results: RSV diminished hyperglycemia/hyperinsulinemia stimulated expression of c-Jun dose- dependently after 24 and 48 hours (p<0.05). In addition, RelA gene expression was decreased dose-dependently in all RSV doses after 48-hour incubation (p<0.05). Our results indicated that RSV may reduce NF-κB and AP-1 activity via RelA and c-Jun gene regulation.
Conclusion: The findings of the present study demonstrated that RSV may be considered as a preventative and therapeutic agent for antagonizing inflammation in Hepatocellular carcinoma (HCC).
Collapse
|
29
|
Joe Y, Kim S, Kim HJ, Park J, Chen Y, Park HJ, Jekal SJ, Ryter SW, Kim UH, Chung HT. FGF21 induced by carbon monoxide mediates metabolic homeostasis via the PERK/ATF4 pathway. FASEB J 2018; 32:2630-2643. [PMID: 29295856 PMCID: PMC5901375 DOI: 10.1096/fj.201700709rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The prevalence of metabolic diseases, including type 2 diabetes, obesity, and cardiovascular disease, has rapidly increased, yet the molecular mechanisms underlying the metabolic syndrome, a primary risk factor, remain incompletely understood. The small, gaseous molecule carbon monoxide (CO) has well-known anti-inflammatory, antiproliferative, and antiapoptotic effects in a variety of cellular- and tissue-injury models, whereas its potential effects on the complex pathways of metabolic disease remain unknown. We demonstrate here that CO can alleviate metabolic dysfunction in vivo and in vitro. We show that CO increased the expression and section of the fibroblast growth factor 21 (FGF21) in hepatocytes and liver. CO-stimulated PERK activation and enhanced the levels of FGF21 via the eIF2α–ATF4 signaling pathway. The induction of FGF21 by CO attenuated endoreticulum stress- or diet-induced, obesity-dependent hepatic steatosis. Moreover, CO inhalation lowered blood glucose levels, enhanced insulin sensitivity, and promoted energy expenditure by stimulating the emergence of beige adipose cells from white adipose cells. In conclusion, we suggest that CO acts as a potent inducer of FGF21 expression and that CO critically depends on FGF21 to regulate metabolic homeostasis.—Joe, Y., Kim, S., Kim, H. J., Park, J., Chen, Y., Park, H.-J., Jekal, S.-J., Ryter, S. W., Kim, U. H., Chung, H. T. FGF21 induced by carbon monoxide mediates metabolic homeostasis via the PERK/ATF4 pathway.
Collapse
Affiliation(s)
- Yeonsoo Joe
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Sena Kim
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Hyo Jeong Kim
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Jeongmin Park
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Yingqing Chen
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Hyeok-Jun Park
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Seung-Joo Jekal
- Wonkwang Health Science University, Iksan, Jeonbuk, South Korea
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA; and
| | - Uh Hyun Kim
- National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, South Korea
| | - Hun Taeg Chung
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| |
Collapse
|
30
|
Kumar S, Stokes J, Singh UP, Scissum-Gunn K, Singh R, Manne U, Mishra MK. Prolonged exposure of resveratrol induces reactive superoxide species-independent apoptosis in murine prostate cells. Tumour Biol 2017; 39:1010428317715039. [PMID: 29065794 DOI: 10.1177/1010428317715039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide, a signaling molecule, inhibits mitochondrial respiration by binding with cytochrome c oxidase, resulting in elevated production of reactive superoxide species (reactive oxygen and nitrogen) in the mitochondria and increased susceptibility to cell death. Generation of mitochondrial superoxide species can be suppressed by natural compounds such as resveratrol, a dietary polyphenol found in the skin of red fruits. In various cancer cells, resveratrol shows anti-oxidant and cancer preventive properties. Since, the effect of resveratrol on reactive superoxide species-independent apoptosis in prostate cancer cells is not well illustrated; therefore, we investigated this phenomenon in TRAMP murine prostate cancer cells. To accomplish this, TRAMP cells were incubated with resveratrol, resveratrol + DETA-NONOate, DETA-NONOate (nitric oxide donor), resveratrol + L-NMMA, or L-NMMA (nitric oxide inhibitor) for 48 h, and reactive superoxide species in the mitochondria and culture supernatant were measured. In addition, the mitochondrial membrane potential, cell viability, expression of apoptotic markers (Bax and Bcl2), γ-H2A.x, p53, and caspase-3 was determined. We found that resveratrol suppressed reactive superoxide species such as reactive oxygen species in the mitochondria and nitric oxide in culture supernatant when compared to the DETA-NONOate treatment and disrupted the mitochondrial membrane potential. Resveratrol also reduced cell viability, altered the expression of apoptotic markers (Bax and Bcl2), and increased expression of γ-H2A.x (indicative marker of DNA fragmentation) and p53 (a critical DNA damage response protein). However, there was no appreciable modulation of the caspase-3. Therefore, our data suggest that resveratrol induces superoxide species-independent apoptosis and may act as a therapeutic agent against prostate cancer.
Collapse
Affiliation(s)
- Sanjay Kumar
- 1 Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - James Stokes
- 1 Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Udai P Singh
- 2 Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Karyn Scissum-Gunn
- 1 Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Rajesh Singh
- 3 Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Upender Manne
- 4 Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Manoj K Mishra
- 1 Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| |
Collapse
|
31
|
Madreiter-Sokolowski CT, Sokolowski AA, Graier WF. Dosis Facit Sanitatem-Concentration-Dependent Effects of Resveratrol on Mitochondria. Nutrients 2017; 9:nu9101117. [PMID: 29027961 PMCID: PMC5691733 DOI: 10.3390/nu9101117] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/20/2017] [Accepted: 10/07/2017] [Indexed: 01/04/2023] Open
Abstract
The naturally occurring polyphenol, resveratrol (RSV), is known for a broad range of actions. These include a positive impact on lifespan and health, but also pro-apoptotic anti-cancer properties. Interestingly, cell culture experiments have revealed a strong impact of RSV on mitochondrial function. The compound was demonstrated to affect mitochondrial respiration, structure and mass of mitochondria as well as mitochondrial membrane potential and, ultimately, mitochondria-associated cell death pathways. Notably, the mitochondrial effects of RSV show a very strict and remarkable concentration dependency: At low concentrations, RSV (<50 μM) fosters cellular antioxidant defense mechanisms, activates AMP-activated protein kinase (AMPK)- and sirtuin 1 (SIRT1)-linked pathways and enhances mitochondrial network formation. These mechanisms crucially contribute to the cytoprotective effects of RSV against toxins and disease-related damage, in vitro and in vivo. However, at higher concentrations, RSV (>50 μM) triggers changes in (sub-)cellular Ca2+ homeostasis, disruption of mitochondrial membrane potential and activation of caspases selectively yielding apoptotic cancer cell death, in vitro and in vivo. In this review, we discuss the promising therapeutic potential of RSV, which is most probably related to the compound’s concentration-dependent manipulation of mitochondrial function and structure.
Collapse
Affiliation(s)
- Corina T Madreiter-Sokolowski
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Armin A Sokolowski
- Department of Dentistry and Maxillofacial Surgery, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria.
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| |
Collapse
|
32
|
Olugbami JO, Damoiseaux R, France B, Onibiyo EM, Gbadegesin MA, Sharma S, Gimzewski JK, Odunola OA. A comparative assessment of antiproliferative properties of resveratrol and ethanol leaf extract of Anogeissus leiocarpus (DC) Guill and Perr against HepG2 hepatocarcinoma cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:381. [PMID: 28768515 PMCID: PMC5541659 DOI: 10.1186/s12906-017-1873-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022]
Abstract
Background Epidemiological and experimental evidences have shown cancer as a leading cause of death worldwide. Although the folklore use of plants as a reliable source of health-restoring principles is well-documented, the search for more of such plants that are active against diseases, such as cancer, continues. We report here a laboratory-based evidence of the relevance of an ethanol leaf extract of Anogeissus leiocarpus (A2L) in comparison with resveratrol, a natural polyphenol, in cancer therapy. Methods The quantitative assessment of flavonoid and phenolic contents involved quercetin and gallic acid as standards, respectively were determined using spectrophotometry. Cytotoxicity was determined fluorometrically using propidium-iodide-staining method. Antioxidant status, adenosine triphosphate (ATP) levels, caspase activities and mitochondrial integrity were assessed using fluorometry/luminometry. Results The antioxidant assay demonstrated that A2L possesses a strong antioxidant capacity as compared with the reference compounds, ascorbic acid and butylated hydroxytoluene. This is further buttressed by the significantly high level of phenolics obtained in the quantitative assessment of the extract. A 72-h post-treatment examination indicated that both A2L and resveratrol modulate the proliferation of HepG2 liver carcinoma cells in a time- and concentration-dependent manner. Determination of the total nuclei area, propidium-iodide negative and positive nuclei areas all further buttress the modulation of cell proliferation by A2L and resveratrol with the indication that the observed cell death is due to apoptosis and necrosis at lower and higher concentrations of treatments respectively. At lower concentrations (0.39–3.13 μg/mL), resveratrol possesses higher tendencies to activate caspases 3 and 7. Bioenergetically, both resveratrol and A2L do not adversely affect the cells at lower concentrations (0.39–6.25 μg/mL for resveratrol and 12.5–100.0 μg/mL for A2L) except at higher concentrations (12.5–25.0 μg/mL for resveratrol and 200–800 μg/mL for A2L) which are more pronounced in A2L-treated cells. Furthermore, the antioxidant status of HepG2 cells is not perturbed by resveratrol as compared with A2L. Assessment of 24-h post-treatment mitochondrial function shows that resveratrol is not mitotoxic as compared with A2L which exhibits mitotoxicity at its highest concentration. Conclusions Taken together, findings from this study showed that A2L possesses strong antiproliferative activity and its prospect in the management of hepatocellular carcinoma deserves further investigation.
Collapse
|
33
|
Navarro E, Gonzalez-Lafuente L, Pérez-Liébana I, Buendia I, López-Bernardo E, Sánchez-Ramos C, Prieto I, Cuadrado A, Satrustegui J, Cadenas S, Monsalve M, López MG. Heme-Oxygenase I and PCG-1α Regulate Mitochondrial Biogenesis via Microglial Activation of Alpha7 Nicotinic Acetylcholine Receptors Using PNU282987. Antioxid Redox Signal 2017; 27:93-105. [PMID: 27554853 DOI: 10.1089/ars.2016.6698] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS A loss in brain acetylcholine and cholinergic markers, subchronic inflammation, and impaired mitochondrial function, which lead to low-energy production and high oxidative stress, are common pathological factors in several neurodegenerative diseases (NDDs). Glial cells are important for brain homeostasis, and microglia controls the central immune response, where α7 acetylcholine nicotinic receptors (nAChR) seem to play a pivotal role; however, little is known about the effects of this receptor in metabolism. Therefore, the aim of this study was to evaluate if glial mitochondrial energetics could be regulated through α7 nAChR. RESULTS Primary glial cultures treated with the α7 nicotinic agonist PNU282987 increased their mitochondrial mass and their mitochondrial oxygen consumption without increasing oxidative stress; these changes were abolished when nuclear erythroid 2-related factor 2 (Nrf2) was absent, heme oxygenase-1 (HO-1) was inhibited, or peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) was silenced. More specifically, microglia of animals treated intraperitoneally with the α7 nAChR agonist PNU282987 (10 mg/kg) showed a significant increase in mitochondrial mass. Interestingly, LysMcre-Hmox1Δ/Δ and PGC-1α-/- animals showed lower microglial mitochondrial levels and treatment with PNU282987 did not produce effects on mitochondrial levels. INNOVATION Increases in microglial mitochondrial mass and metabolism can be achieved via α7 nAChR by a mechanism that implicates Nrf2, HO-1, and PGC-1α. This signaling pathway could open a new strategy for the treatment of NDDs, such as Alzheimer's, characterized by a reduction of cholinergic markers. CONCLUSION α7 nAChR signaling increases glial mitochondrial mass, both in vitro and in vivo, via HO-1 and PCG-1α. These effects could be of potential benefit in the context of NDDs. Antioxid. Redox Signal. 27, 93-105.
Collapse
Affiliation(s)
- Elisa Navarro
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain .,2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| | - Laura Gonzalez-Lafuente
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain
| | - Irene Pérez-Liébana
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain
| | - Izaskun Buendia
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain .,2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| | - Elia López-Bernardo
- 2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,3 Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid , Madrid, Spain
| | | | - Ignacio Prieto
- 4 Instituto de Investigaciones Biomédicas Alberto Sols , Madrid, Spain
| | - Antonio Cuadrado
- 4 Instituto de Investigaciones Biomédicas Alberto Sols , Madrid, Spain
| | - Jorgina Satrustegui
- 3 Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid , Madrid, Spain
| | - Susana Cadenas
- 2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,3 Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid , Madrid, Spain
| | - Maria Monsalve
- 4 Instituto de Investigaciones Biomédicas Alberto Sols , Madrid, Spain
| | - Manuela G López
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain .,2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| |
Collapse
|
34
|
Yang JH, Siroky MB, Yalla SV, Azadzoi KM. Mitochondrial stress and activation of PI3K and Akt survival pathway in bladder ischemia. Res Rep Urol 2017; 9:93-100. [PMID: 28652996 PMCID: PMC5476760 DOI: 10.2147/rru.s132082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Detrusor overactivity contributes to bothersome constellation of lower urinary tract symptoms (LUTS) in men and women as they age. However, the underlying mechanisms of non-obstructive detrusor overactivity and LUTS remain largely unknown. Growing evidence suggests that ischemia may be an independent factor in the development of non-obstructive bladder dysfunction. Our goal was to determine the effects of ischemia on detrusor function and voiding behavior and define redox-mediated cellular stress and cell survival signaling in the ischemic bladder. MATERIALS AND METHODS Male Sprague Dawley rats were randomly divided into treatment (n=8) and control (n=8) groups. In the treatment group, iliac artery atherosclerosis and chronic bladder ischemia were induced. At 8 weeks after bladder ischemia, voiding patterns were examined in metabolic cages, cystometrograms were recorded in conscious animals, and then bladder blood flow was measured under general anesthesia. Bladder tissues were processed for assessment of transcription factors, markers of cellular and mitochondrial stress, mitochondrial respiration, and cell survival signaling pathway. RESULTS Atherosclerotic occlusive disease spread from the common iliac arteries to the internal iliac and vesical arteries and produced sustained bladder ischemia. Studies in metabolic cages showed increased micturition frequency and decreased voided volume in bladder ischemia. Conscious cystometrograms produced consistent data showing significant increase in micturition frequency and decreased voided volume and bladder capacity. Voiding behavior and cystometric changes in bladder ischemia were associated with significant decrease in DNA binding activity of Nrf2, significant increase in cellular levels of stress protein Hsp70 and mitochondrial stress protein GRP75, and significant decrease in mitochondrial oxygen consumption and upregulation of PI3K and Akt expression. CONCLUSION Chronic bladder ischemia may be a mediating variable in the development of detrusor overactivity in the non-obstructive bladder. The mechanism may involve ischemia-induced cellular stress, Nrf2 functional deficit, depression of mitochondrial respiration, and upregulation of PI3K/Akt cell survival signaling pathway.
Collapse
Affiliation(s)
- Jing-Hua Yang
- Department of Urology, VA Boston Healthcare System, Boston University School of Medicine
| | - Mike B Siroky
- Department of Urology, VA Boston Healthcare System, Boston University School of Medicine
| | - Subbarao V Yalla
- Department of Urology, VA Boston Healthcare System, Harvard Medical School
| | - Kazem M Azadzoi
- Department of Urology.,Department of Pathology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
35
|
HO-1 Is Essential for Tetrahydroxystilbene Glucoside Mediated Mitochondrial Biogenesis and Anti-Inflammation Process in LPS-Treated RAW264.7 Macrophages. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1818575. [PMID: 28473878 PMCID: PMC5394384 DOI: 10.1155/2017/1818575] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/08/2017] [Accepted: 02/15/2017] [Indexed: 01/15/2023]
Abstract
2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an important monomer extracted from Polygonum multiflorum, can prevent a number of inflammation associated chronic diseases. However, the mechanism involved in TSG inducing anti-inflammatory role remains unclear. As an inducible antioxidant enzyme, Heme oxygenase-1 (HO-1), is crucial for protecting the mammalian cells against adverse stimuli. Here, we found that the TSG treatment strongly induces the expression of HO-1 in an NRF2-depended manner. Meanwhile, TSG increased the mitochondrial mass through upregulation of the mitochondrial biogenesis activators (PGC-1α, NRF1, and TFAM) as well as the mitochondrial complex IV. Furthermore, TSG attenuated Lipopolysaccharide (LPS) mediated RAW264.7 cells activation and secretion of proinflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Zinc Protoporphyrin (ZnPP), a selective inhibitor of HO-1 activity, was able to attenuate TSG mediated mitochondrial biogenesis and anti-inflammatory process. Finally, we observed that LPS induced obvious mtDNA depletion and ATP deficiency, which indicated a severe damage of mitochondria. TSG restored the LPS induced mitochondrial dysfunction via activation of the mitochondrial biogenesis. ZnPP treatment markedly reversed the inhibitory effects of TSG on mitochondrial damage and oxidative stress in LPS stimulated macrophages. Taken together, these findings suggest that TSG enhances mitochondrial biogenesis and function mainly via activation the HO-1. TSG can be developed as a potential drug for treatment of inflammatory diseases.
Collapse
|
36
|
Mizuguchi Y, Hatakeyama H, Sueoka K, Tanaka M, Goto YI. Low dose resveratrol ameliorates mitochondrial respiratory dysfunction and enhances cellular reprogramming. Mitochondrion 2017; 34:43-48. [PMID: 28093354 DOI: 10.1016/j.mito.2016.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 01/05/2023]
Abstract
Mitochondrial disease is associated with a wide variety of clinical presentations, even among patients carrying heteroplasmic mitochondrial DNA (mtDNA) mutations, probably because of variations in mutant mtDNA proportions at the tissue and organ levels. Although several case reports and clinical trials have assessed the effectiveness of various types of drugs and supplements for the treatment of mitochondrial diseases, there are currently no cures for these conditions. In this study, we demonstrated for the first time that low dose resveratrol (RSV) ameliorated mitochondrial respiratory dysfunction in patient-derived fibroblasts carrying homoplasmic mtDNA mutations. Furthermore, low dose RSV also facilitated efficient cellular reprogramming of the patient-derived fibroblasts into induced pluripotent stem cells, partly due to improved cellular viability. Our results highlight the potential of RSV as a new therapeutic drug candidate for the treatment of mitochondrial diseases.
Collapse
Affiliation(s)
- Yuki Mizuguchi
- Department of Obstetrics and Gynecology, Keio University, School of Medicine, Tokyo 160-0016, Japan; Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Hideyuki Hatakeyama
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| | - Kou Sueoka
- Department of Obstetrics and Gynecology, Keio University, School of Medicine, Tokyo 160-0016, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University, School of Medicine, Tokyo 160-0016, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
37
|
Resveratrol induces mitochondrial respiration and apoptosis in SW620 colon cancer cells. Biochim Biophys Acta Gen Subj 2016; 1861:431-440. [PMID: 27760368 DOI: 10.1016/j.bbagen.2016.10.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND The polyphenol resveratrol (RSV) is found in the skin of red grapes and has been reported to exhibit anticancer properties. The antitumor effects of RSV in the gastrointestinal tract have gained considerable interest due to the high exposure of this tissue to this dietary compound. One of the hallmarks of cancer cells is their particular metabolism mainly relying on glycolysis for ATP production rather than mitochondrial oxidative phosphorylation. Although RSV has been described to act as a calorie-restriction mimetic, modulating energy metabolism in normal tissues, little efforts have been done to study the effects of this polyphenol in the metabolism of cancer cells. Taking this into account, the aim of this study was to explore metabolic effects of this polyphenol in colon cancer. METHODS Oxygen consumption, ATP levels, Western blotting and other molecular biology techniques were carried out to characterize the metabolic signature of RSV in SW620 colon cancer cells. RESULTS Paradoxically, the cytotoxic effects of RSV were associated with an increase in oxygen consumption supported by mitochondrial biogenesis and increased fatty acid oxidation. This partial reversion of the Warburg effect was followed by hyperpolarization of mitochondrial membrane and ROS production, leading to an increased apoptosis. CONCLUSIONS Our results propose that the anticancer mechanisms of RSV could reside in targeting cancer cell metabolism, promoting mitochondrial electron transport chain overload and, ultimately, increasing ROS production. GENERAL SIGNIFICANCE These results shed new light into the anticancer mechanism of RSV supporting the ability of this compound in potentiating the effects of chemotherapy.
Collapse
|
38
|
Merry TL, Ristow M. Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice. J Physiol 2016; 594:5195-207. [PMID: 27094017 DOI: 10.1113/jp271957] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Reactive oxygen species (ROS) and nitric oxide (NO) regulate exercise-induced nuclear factor erythroid 2-related factor 2 (NFE2L2) expression in skeletal muscle. NFE2L2 is required for acute exercise-induced increases in skeletal muscle mitochondrial biogenesis genes, such as nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A, and anti-oxidant genes, such as superoxide dismutase (SOD)1, SOD2 and catalase. Following exercise training mice with impaired NFE2L2 expression have reduced exercise performance, energy expenditure, mitochondrial volume and anti-oxidant activity. In muscle cells, ROS and NO can regulate mitochondrial biogenesis via a NFE2L2/NRF-1-dependent pathway. ABSTRACT Regular exercise induces adaptations to skeletal muscle, which can include mitochondrial biogenesis and enhanced anti-oxidant reserves. These adaptations and others are at least partly responsible for the improved health of physically active individuals. Reactive oxygen species (ROS) and nitric oxide (NO) are produced during exercise and may mediate the adaptive response to exercise in skeletal muscle. However, the mechanisms through which they act are unclear. In the present study, we aimed to determine the role of the redox-sensitive transcription factor nuclear factor erythroid-derived 2-like 2 (NFE2L2) in acute exercise- and training-induced mitochondrial biogenesis and the anti-oxidant response. We report that ROS and NO regulate acute exercise-induced expression of NFE2L2 in mouse skeletal muscle and muscle cells, and that deficiency in NFE2L2 prevents normal acute treadmill exercise-induced increases in mRNA of the mitochondrial biogenesis markers, nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (mtTFA), and the anti-oxidants superoxide dismutase (SOD) 1 and 2, as well as catalase, in mouse gastrocnemius muscle. Furthermore, after 5 weeks of treadmill exercise training, mice deficient in NFE2L2 had reduced exercise capacity and whole body energy expenditure, as well as skeletal muscle mitochondrial mass and SOD activity, compared to wild-type littermates. In C2C12 myoblasts, acute treatment with exogenous H2 O2 (ROS)- and diethylenetriamine/NO adduct (NO donor) induced increases in mtTFA, which was prevented by small interfering RNA and short hairpin RNA knockdown of either NFE2L2 or NRF-1. Our results suggest that, during exercise, ROS and NO can act via NFE2L2 to functionally regulate skeletal muscle mitochondrial biogenesis and anti-oxidant defence gene expression.
Collapse
Affiliation(s)
- Troy L Merry
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland. .,Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.
| | - Michael Ristow
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
39
|
Luciano JA, Kautza B, Darwiche S, Martinez S, Stratimirovic S, Waltz P, Sperry J, Rosengart M, Shiva S, Zuckerbraun BS. Sirtuin 1 Agonist Minimizes Injury and Improves the Immune Response Following Traumatic Shock. Shock 2016; 44 Suppl 1:149-55. [PMID: 26009827 DOI: 10.1097/shk.0000000000000412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Survival from traumatic injury requires a coordinated and controlled inflammatory and immune response. Mitochondrial and metabolic responses to stress have been shown to play a role in these inflammatory and immune responses. We hypothesized that increases in mitochondrial biogenesis via a sirtuin 1 agonist would decrease tissue injury and partially ameliorate the immunosuppression seen following trauma. C57Bl/6 mice were subjected to a multiple trauma model. Mice were pretreated with either 100 mg/kg per day of the sirtuin 1 agonist, Srt1720, via oral gavage for 2 days prior to trauma and extended until the day the animals were killed, or they were pretreated with peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) siRNA via hydrodynamic tail vein injection 48 h prior to trauma. Markers for mitochondrial function and biogenesis were measured in addition to splenocyte proliferative capacity and bacterial clearance. Srt1720 was noted to improve mitochondrial biogenesis, mitochondrial function, and complex IV activity following traumatic injury (P < 0.05), whereas knockdown of PGC1α resulted in exacerbation of mitochondrial dysfunction (P < 0.05). These changes in mitochondrial function were associated with altered severity of hepatic injury with significant reductions in serum alanine aminotransferase levels seen in mice treated with srt1720. Splenocyte proliferative capacity and intraperitoneal bacterial clearance were evaluated as markers for overall immune function following trauma-hemorrhage. Treatment with Srt1720 minimized the trauma-induced decreases in splenocyte proliferation (P < 0.05), whereas treatment with PGC1α siRNA led to diminished bacterial clearance. The PGC1α signaling pathway is an important regulator of mitochondrial function and biogenesis, which can potentially be harnessed to protect against hepatic injury and minimize the immunosuppression that is seen following trauma-hemorrhage.
Collapse
Affiliation(s)
- Jason A Luciano
- *Department of Surgery, University of Pittsburgh; †VA Pittsburgh Healthcare System; Departments of ‡Critical Care Medicine and §Pharmacology & Chemical Biology, ∥Vascular Medicine Institute, and ¶The Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM. Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta Gen Subj 2016; 1860:727-45. [PMID: 26802309 DOI: 10.1016/j.bbagen.2016.01.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/19/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mitochondria, the power plants of the cell, are known as a cross-road of different cellular signaling pathways. These cytoplasmic double-membraned organelles play a pivotal role in energy metabolism and regulate calcium flux in the cells. It is well known that mitochondrial dysfunction is associated with different diseases such as neurodegeneration and cancer. A growing body of literature has shown that polyphenolic compounds exert direct effects on mitochondrial ultra-structure and function. Resveratrol is known as one of the most common bioactive constituents of red wine, which improves mitochondrial functions under in vitro and in vivo conditions. SCOPE OF REVIEW This paper aims to review the molecular pathways underlying the beneficial effects of resveratrol on mitochondrial structure and functions. In addition, we discuss the chemistry and main sources of resveratrol. MAJOR CONCLUSIONS Resveratrol represents the promising effects on mitochondria in different experimental models. However, there are several reports on the detrimental effects elicited by resveratrol on mitochondria. GENERAL SIGNIFICANCE An understanding of the chemistry and source of resveratrol, its bioavailability and the promising effects on mitochondria brings a new hope to therapy of mitochondrial dysfunction-related diseases.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry, ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiabá, MT, Brazil.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Zohreh Hajheydari
- Department of Dermatology, Boo Ali Sina (Avicenna) Hospital, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Fayad-Kobeissi S, Ratovonantenaina J, Dabiré H, Wilson JL, Rodriguez AM, Berdeaux A, Dubois-Randé JL, Mann BE, Motterlini R, Foresti R. Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule. Biochem Pharmacol 2015; 102:64-77. [PMID: 26721585 DOI: 10.1016/j.bcp.2015.12.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/17/2015] [Indexed: 01/04/2023]
Abstract
Carbon monoxide (CO) is generated by heme oxygenase-1 (HO-1) and displays important signaling, anti-apoptotic and anti-inflammatory activities, indicating that pharmacological agents mimicking its action may have therapeutic benefit. This study examined the biochemical and pharmacological properties of CORM-401, a recently described CO-releasing molecule containing manganese as a metal center. We used in vitro approaches, ex-vivo rat aortic rings and the EA.hy926 endothelial cell line in culture to address how CORM-401 releases CO and whether the compound modulates vascular tone and pro-angiogenic activities, respectively. We found that CORM-401 released up to three CO/mole of compound depending on the concentration of the acceptor myoglobin. Oxidants such as H2O2, tert-butyl hydroperoxide or hypochlorous acid increased the CO liberated by CORM-401. CORM-401 also relaxed pre-contracted aortic rings and vasorelaxation was enhanced in combination with H2O2. Consistent with the release of multiple CO molecules, CORM-401-induced vasodilation was three times higher than that elicited by CORM-A1, which exhibits a similar half-life to CORM-401 but liberates only one CO/mole of compound. Furthermore, endothelial cells exposed to CORM-401 accumulated CO intracellularly, accelerated migration in vitro and increased VEGF and IL-8 levels. Studies using pharmacological inhibitors revealed HO-1 and p38 MAP kinase as two independent and parallel mechanisms involved in stimulating migration. We conclude that the ability of CORM-401 to release multiple CO, its sensitivity to oxidants which increase CO release, and its vascular and pro-angiogenic properties highlight new advances in the design of CO-releasing molecules that can be tailored for the treatment of inflammatory and oxidative stress-mediated pathologies.
Collapse
Affiliation(s)
- Sarah Fayad-Kobeissi
- Université Paris-Est, Faculté de Medicine, Créteil 94000, France; INSERM, U955, Equipe 12, Créteil 94000, France.
| | - Johary Ratovonantenaina
- Université Paris-Est, Faculté de Medicine, Créteil 94000, France; INSERM, U955, Equipe 12, Créteil 94000, France.
| | | | - Jayne Louise Wilson
- Université Paris-Est, Faculté de Medicine, Créteil 94000, France; INSERM, U955, Equipe 12, Créteil 94000, France.
| | - Anne Marie Rodriguez
- Université Paris-Est, Faculté de Medicine, Créteil 94000, France; INSERM, U955, Equipe 12, Créteil 94000, France.
| | | | - Jean-Luc Dubois-Randé
- AP-HP, Hôpital Henri Mondor-A. Chenevier, Service Hospitalier, Créteil 94000, France.
| | - Brian E Mann
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom.
| | - Roberto Motterlini
- Université Paris-Est, Faculté de Medicine, Créteil 94000, France; INSERM, U955, Equipe 12, Créteil 94000, France.
| | - Roberta Foresti
- Université Paris-Est, Faculté de Medicine, Créteil 94000, France; INSERM, U955, Equipe 12, Créteil 94000, France.
| |
Collapse
|
42
|
Abraham NG, Junge JM, Drummond GS. Translational Significance of Heme Oxygenase in Obesity and Metabolic Syndrome. Trends Pharmacol Sci 2015; 37:17-36. [PMID: 26515032 DOI: 10.1016/j.tips.2015.09.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 01/04/2023]
Abstract
The global epidemic of obesity continues unabated with sequelae of diabetes and metabolic syndrome. This review reflects the dramatic increase in research on the role of increased expression of heme oxygenase (HO)-1/HO-2, biliverdin reductase, and HO activity on vascular disease. The HO system engages with other systems to mitigate the deleterious effects of oxidative stress in obesity and cardiovascular disease (CVD). Recent reports indicate that HO-1/HO-2 protein expression and HO activity have several important roles in hemostasis and reactive oxygen species (ROS)-dependent perturbations associated with metabolic syndrome. HO-1 protects tissue during inflammatory stress in obesity through the degradation of pro-oxidant heme and the production of carbon monoxide (CO) and bilirubin, both of which have anti-inflammatory and anti-apoptotic properties. By contrast, repression of HO-1 is associated with increases of cellular heme and inflammatory conditions including hypertension, stroke, and atherosclerosis. HO-1 is a major focus in the development of potential therapeutic strategies to reverse the clinical complications of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA; Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, USA.
| | - Joshua M Junge
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| | - George S Drummond
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| |
Collapse
|
43
|
Carbon monoxide decreases interleukin-1β levels in the lung through the induction of pyrin. Cell Mol Immunol 2015; 14:349-359. [PMID: 26435068 PMCID: PMC5380940 DOI: 10.1038/cmi.2015.79] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/24/2015] [Accepted: 07/24/2015] [Indexed: 12/20/2022] Open
Abstract
Carbon monoxide (CO) can act as an anti-inflammatory effector in mouse models of lung injury and disease, through the downregulation of pro-inflammatory cytokines production, though the underlying mechanisms remain unclear. The nucleotide-binding oligomerization domain-, leucine-rich region-, and pyrin domain-containing-3 (NLRP3) inflammasome is a protein complex that regulates the maturation and secretion of pro-inflammatory cytokines, including interleukin-1β (IL-1β). In this report, we show that the CO-releasing molecule (CORM-2) can stimulate the expression of pyrin, a negative regulator of the NLRP3 inflammasome. CORM-2 increased the transcription of pyrin in the human leukemic cell line (THP-1) in the absence and presence of lipopolysaccharide (LPS). In THP-1 cells, CORM-2 treatment dose-dependently reduced the activation of caspase-1 and the secretion of IL-1β, and increased the levels of IL-10, in response to LPS and adenosine 5′-triphosphate (ATP), an NLRP3 inflammasome activation model. Genetic interference of IL-10 by small interfering RNA (siRNA) reduced the effectiveness of CORM-2 in inhibiting IL-1β production and in inducing pyrin expression. Genetic interference of pyrin by siRNA increased IL-1β production in response to LPS and ATP, and reversed CORM-2-dependent inhibition of caspase-1 activation. CO inhalation (250 ppm) in vivo increased the expression of pyrin and IL-10 in lung and spleen, and decreased the levels of IL-1β induced by LPS. Consistent with the induction of pyrin and IL-10, and the downregulation of lung IL-1β production, CO provided protection in a model of acute lung injury induced by intranasal LPS administration. These results provide a novel mechanism underlying the anti-inflammatory effects of CO, involving the IL-10-dependent upregulation of pyrin expression.
Collapse
|
44
|
Joe Y, Zheng M, Kim HJ, Uddin MJ, Kim SK, Chen Y, Park J, Cho GJ, Ryter SW, Chung HT. Cilostazol attenuates murine hepatic ischemia and reperfusion injury via heme oxygenase-dependent activation of mitochondrial biogenesis. Am J Physiol Gastrointest Liver Physiol 2015; 309:G21-9. [PMID: 25951827 DOI: 10.1152/ajpgi.00307.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/21/2015] [Indexed: 01/31/2023]
Abstract
Hepatic ischemia-reperfusion (I/R) can cause hepatocellular injury associated with the inflammatory response and mitochondrial dysfunction. We studied the protective effects of the phosphodiesterase inhibitor cilostazol in hepatic I/R and the roles of mitochondria and the Nrf2/heme oxygenase-1 (HO-1) system. Wild-type, Hmox1(-/-), or Nrf2(-/-) mice were subjected to hepatic I/R in the absence or presence of cilostazol followed by measurements of liver injury. Primary hepatocytes were subjected to cilostazol with the HO-1 inhibitor ZnPP, or Nrf2-specific siRNA, followed by assessment of mitochondrial biogenesis. Preconditioning with cilostazol prior to hepatic I/R protected against hepatocellular injury and mitochondrial dysfunction. Cilostazol reduced the serum levels of alanine aminotransferase, TNF-α, and liver myeloperoxidase content relative to control I/R-treated mice. In primary hepatocytes, cilostazol increased the expression of HO-1, and markers of mitochondrial biogenesis, PGC-1α, NRF-1, and TFAM, induced the mitochondrial proteins COX III and COX IV and increased mtDNA and mitochondria content. Pretreatment of primary hepatocytes with ZnPP inhibited cilostazol-induced PGC-1α, NRF-1, and TFAM mRNA expression and reduced mtDNA and mitochondria content. Genetic silencing of Nrf2 prevented the induction of HO-1 and mitochondrial biogenesis by cilostazol in HepG2 cells. Cilostazol induced hepatic HO-1 production and mitochondrial biogenesis in wild-type mice, but not in Hmox1(-/-) or Nrf2(-/-) mice, and failed to protect against liver injury in Nrf2(-/-) mice. These results suggest that I/R injury can impair hepatic mitochondrial function, which can be reversed by cilostazol treatment. These results also suggest that cilostazol-induced mitochondrial biogenesis was mediated by an Nrf-2- and HO-1-dependent pathway.
Collapse
Affiliation(s)
- Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Min Zheng
- School of Biological Sciences, University of Ulsan, Ulsan, Korea; Department of Neurology, Affiliated Hospital of YanBian University, YanJi, China
| | - Hyo Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Md Jamal Uddin
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Seul-Ki Kim
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Yingqing Chen
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Jeongmin Park
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Gyeong Jae Cho
- Department of Anatomy, School of Medicine, and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea; and
| | - Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, and Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical Center, New York, New York
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan, Korea;
| |
Collapse
|
45
|
Itoh K, Ye P, Matsumiya T, Tanji K, Ozaki T. Emerging functional cross-talk between the Keap1-Nrf2 system and mitochondria. J Clin Biochem Nutr 2015; 56:91-7. [PMID: 25759513 PMCID: PMC4345178 DOI: 10.3164/jcbn.14-134] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/01/2014] [Indexed: 12/30/2022] Open
Abstract
Nuclear factor erythroid-derived 2-related factor 2 (Nrf2) was originally identified as a positive regulator of drug detoxifying enzyme gene expression during exposure to environmental electrophiles. Currently, Nrf2 is known to regulate the expression of hundreds of cytoprotective genes to counteract endogenously or exogenously generated oxidative stress. Furthermore, when activated in human tumors by somatic mutations, Nrf2 confers growth advantages and chemoresistance by regulating genes involved in various processes such as the pentose phosphate pathway and nucleotide synthesis in addition to antioxidant proteins. Interestingly, increasing evidence shows that Nrf2 is associated with mitochondrial biogenesis during environmental stresses in certain tissues such as the heart. Furthermore, SKN-1, a functional homolog of Nrf2 in C. elegans, is activated by mitochondrial reactive oxygen species and extends life span by promoting mitochondrial homeostasis (i.e., mitohormesis). Similarly, Nrf2 activation was recently observed in the heart of surfeit locus protein 1 (Surf1) -/- mice in which cellular respiration was decreased due to cytochrome c oxidase defects. In this review, we critically examine the relationship between Nrf2 and mitochondria and argue that the Nrf2 stress pathway intimately communicates with mitochondria to maintain cellular homeostasis during oxidative stress.
Collapse
Affiliation(s)
- Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Peng Ye
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Taku Ozaki
- Research Center for Child Mental Development, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
46
|
Jeong SH, Kim HK, Song IS, Noh SJ, Marquez J, Ko KS, Rhee BD, Kim N, Mishchenko NP, Fedoreyev SA, Stonik VA, Han J. Echinochrome a increases mitochondrial mass and function by modulating mitochondrial biogenesis regulatory genes. Mar Drugs 2014; 12:4602-15. [PMID: 25196935 PMCID: PMC4145333 DOI: 10.3390/md12084602] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 01/28/2023] Open
Abstract
Echinochrome A (Ech A) is a natural pigment from sea urchins that has been reported to have antioxidant properties and a cardio protective effect against ischemia reperfusion injury. In this study, we ascertained whether Ech A enhances the mitochondrial biogenesis and oxidative phosphorylation in rat cardio myoblast H9c2 cells. To study the effects of Ech A on mitochondrial biogenesis, we measured mitochondrial mass, level of oxidative phosphorylation, and mitochondrial biogenesis regulatory gene expression. Ech A treatment did not induce cytotoxicity. However, Ech A treatment enhanced oxygen consumption rate and mitochondrial ATP level. Likewise, Ech A treatment increased mitochondrial contents in H9c2 cells. Furthermore, Ech A treatment up-regulated biogenesis of regulatory transcription genes, including proliferator-activated receptor gamma co-activator (PGC)-1α, estrogen-related receptor (ERR)-α, peroxisome proliferator-activator receptor (PPAR)-γ, and nuclear respiratory factor (NRF)-1 and such mitochondrial transcription regulatory genes as mitochondrial transcriptional factor A (TFAM), mitochondrial transcription factor B2 (TFB2M), mitochondrial DNA direct polymerase (POLMRT), single strand binding protein (SSBP) and Tu translation elongation factor (TUFM). In conclusion, these data suggest that Ech A is a potentiated marine drug which enhances mitochondrial biogenesis.
Collapse
Affiliation(s)
- Seung Hun Jeong
- Cardiovascular and Metabolic Disease Center (CMDC), National Research Laboratory for Mitochondrial Signaling, Inje University, Busan 614-735, Korea.
| | - Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center (CMDC), National Research Laboratory for Mitochondrial Signaling, Inje University, Busan 614-735, Korea.
| | - In-Sung Song
- Cardiovascular and Metabolic Disease Center (CMDC), National Research Laboratory for Mitochondrial Signaling, Inje University, Busan 614-735, Korea.
| | - Su Jin Noh
- Department of Health Sciences and Technology, Graduate School of Inje University, Busan 614-735, Korea.
| | - Jubert Marquez
- Department of Health Sciences and Technology, Graduate School of Inje University, Busan 614-735, Korea.
| | - Kyung Soo Ko
- Cardiovascular and Metabolic Disease Center (CMDC), National Research Laboratory for Mitochondrial Signaling, Inje University, Busan 614-735, Korea.
| | - Byoung Doo Rhee
- Cardiovascular and Metabolic Disease Center (CMDC), National Research Laboratory for Mitochondrial Signaling, Inje University, Busan 614-735, Korea.
| | - Nari Kim
- Cardiovascular and Metabolic Disease Center (CMDC), National Research Laboratory for Mitochondrial Signaling, Inje University, Busan 614-735, Korea.
| | - Natalia P Mishchenko
- George B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | - Sergey A Fedoreyev
- George B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | - Valentin A Stonik
- George B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | - Jin Han
- Cardiovascular and Metabolic Disease Center (CMDC), National Research Laboratory for Mitochondrial Signaling, Inje University, Busan 614-735, Korea.
| |
Collapse
|
47
|
Heme oxygenase-1 as a novel metabolic player. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:814058. [PMID: 24381718 PMCID: PMC3871917 DOI: 10.1155/2013/814058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 11/17/2022]
|