1
|
Schoberleitner I, Lackner M, Coraça-Huber DC, Augustin A, Imsirovic A, Sigl S, Wolfram D. SMI-Capsular Fibrosis and Biofilm Dynamics: Molecular Mechanisms, Clinical Implications, and Antimicrobial Approaches. Int J Mol Sci 2024; 25:11675. [PMID: 39519227 PMCID: PMC11546664 DOI: 10.3390/ijms252111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Silicone mammary implants (SMIs) frequently result in capsular fibrosis, which is marked by the overproduction of fibrous tissue surrounding the implant. This review provides a detailed examination of the molecular and immunological mechanisms driving capsular fibrosis, focusing on the role of foreign body responses (FBRs) and microbial biofilm formation. We investigate how microbial adhesion to implant surfaces and biofilm development contribute to persistent inflammation and fibrotic responses. The review critically evaluates antimicrobial strategies, including preoperative antiseptic protocols and antimicrobial-impregnated materials, designed to mitigate infection and biofilm-related complications. Additionally, advancements in material science, such as surface modifications and antibiotic-impregnated meshes, are discussed for their potential to reduce capsular fibrosis and prevent contracture of the capsule. By integrating molecular insights with clinical applications, this review aims to elucidate the current understanding of SMI-related fibrotic responses and highlight knowledge gaps. The synthesis of these findings aims to guide future research directions of improved antimicrobial interventions and implant materials, ultimately advancing the management of capsular fibrosis and enhancing patient outcomes.
Collapse
Affiliation(s)
- Ines Schoberleitner
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Débora C. Coraça-Huber
- BIOFILM Lab, Department of Orthopedics and Traumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Angela Augustin
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anja Imsirovic
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stephan Sigl
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Dolores Wolfram
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Cannon JW, Gruen DS, Zamora R, Brostoff N, Hurst K, Harn JH, El-Dehaibi F, Geng Z, Namas R, Sperry JL, Holcomb JB, Cotton BA, Nam JJ, Underwood S, Schreiber MA, Chung KK, Batchinsky AI, Cancio LC, Benjamin AJ, Fox EE, Chang SC, Cap AP, Vodovotz Y. Digital twin mathematical models suggest individualized hemorrhagic shock resuscitation strategies. COMMUNICATIONS MEDICINE 2024; 4:113. [PMID: 38867000 PMCID: PMC11169363 DOI: 10.1038/s43856-024-00535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Optimizing resuscitation to reduce inflammation and organ dysfunction following human trauma-associated hemorrhagic shock is a major clinical hurdle. This is limited by the short duration of pre-clinical studies and the sparsity of early data in the clinical setting. METHODS We sought to bridge this gap by linking preclinical data in a porcine model with clinical data from patients from the Prospective, Observational, Multicenter, Major Trauma Transfusion (PROMMTT) study via a three-compartment ordinary differential equation model of inflammation and coagulation. RESULTS The mathematical model accurately predicts physiologic, inflammatory, and laboratory measures in both the porcine model and patients, as well as the outcome and time of death in the PROMMTT cohort. Model simulation suggests that resuscitation with plasma and red blood cells outperformed resuscitation with crystalloid or plasma alone, and that earlier plasma resuscitation reduced injury severity and increased survival time. CONCLUSIONS This workflow may serve as a translational bridge from pre-clinical to clinical studies in trauma-associated hemorrhagic shock and other complex disease settings.
Collapse
Affiliation(s)
- Jeremy W Cannon
- Division of Traumatology, Surgical Critical Care & Emergency Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Danielle S Gruen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Trauma Research Center, Pittsburgh, PA, 15213, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Trauma Research Center, Pittsburgh, PA, 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA
| | - Noah Brostoff
- Immunetrics, now wholly owned by Simulations Plus, Pittsburgh, PA, 15219, USA
| | - Kelly Hurst
- Immunetrics, now wholly owned by Simulations Plus, Pittsburgh, PA, 15219, USA
| | - John H Harn
- Immunetrics, now wholly owned by Simulations Plus, Pittsburgh, PA, 15219, USA
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Zhi Geng
- Division of Traumatology, Surgical Critical Care & Emergency Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rami Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Trauma Research Center, Pittsburgh, PA, 15213, USA
| | - Jason L Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Trauma Research Center, Pittsburgh, PA, 15213, USA
| | - John B Holcomb
- Department of Surgery, University of Alabama, Birmingham, AL, 35233, USA
| | - Bryan A Cotton
- Division of Acute Care Surgery, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jason J Nam
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Samantha Underwood
- Division of Trauma, Critical Care and Acute Care Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Martin A Schreiber
- Division of Trauma, Critical Care and Acute Care Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | - Andriy I Batchinsky
- Autonomous Reanimation and Evacuation (AREVA) Research and Innovation Center, San Antonio, TX, 78235, USA
| | - Leopoldo C Cancio
- US Army Institute of Surgical Research, Fort Sam Houston, TX, 78234, USA
| | - Andrew J Benjamin
- Trauma and Acute Care Surgery, Department of Surgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Erin E Fox
- Division of Acute Care Surgery, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Steven C Chang
- Immunetrics, now wholly owned by Simulations Plus, Pittsburgh, PA, 15219, USA
| | - Andrew P Cap
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Trauma Research Center, Pittsburgh, PA, 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
3
|
Laskosky NA, Huston P, Lam WC, Anderson C, Zhong LLD. Are Tai Chi and Qigong effective in the treatment of traumatic brain injury? A systematic review. BMC Complement Med Ther 2024; 24:78. [PMID: 38321432 PMCID: PMC10845721 DOI: 10.1186/s12906-024-04350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) adversely affects both young and old and is a growing public health concern. The common functional, psychological, and cognitive changes associated with TBI and recent trends in its management, such as recommending sub-threshold aerobic activity, and multi-modal treatment strategies including vestibular rehabilitation, suggest that Tai Chi/Qigong could be beneficial for TBI. Tai Chi and Qigong are aerobic mind-body practices with known benefits for maintaining health and mitigating chronic disease. To date, no systematic review has been published assessing the safety and effectiveness of Tai Chi/Qigong for traumatic injury. METHODS The following databases were searched: MEDLINE, CINAHL Cochrane Library, Embase, China National Knowledge Infrastructure Database, Wanfang Database, Chinese Scientific Journal Database, and Chinese Biomedical Literature Database. All people with mild, moderate, or severe TBI who were inpatients or outpatients were included. All Types of Tai Chi and Qigong, and all comparators, were included. All measured outcomes were included. A priori, we chose "return to usual activities" as the primary outcome measure as it was patient-oriented. Cochrane-based risk of bias assessments were conducted on all included trials. Quality of evidence was assessed using the grading of recommendation, assessment, development, and evaluation (GRADE) system. RESULTS Five trials were assessed; three randomized controlled trials (RCTs) and two non-RCTs; only two trials were conducted in the last 5 years. No trial measured "return to normal activities" or vestibular status as an outcome. Four trials - two RCTs and two non-RCTS - all found Tai Chi improved functional, psychological and/or cognitive outcomes. One RCT had a low risk of bias and a high level of certainty; one had some concerns. One non-RCTs had a moderate risk of bias and the other a serious risk of bias. The one Qigong RCT found improved psychological outcomes. It had a low risk of bias and a moderate level of certainty. Only one trial reported on adverse events and found that none were experienced by either the exercise or control group. CONCLUSION Based on the consistent finding of benefit in the four Tai Chi trials, including one RCT that had a high level of certainty, there is a sufficient signal to merit conducting a large, high quality multi-centre trial on Tai Chi for TBI and test it against current trends in TBI management. Based on the one RCT on TBI and Qigong, an additional confirmatory RCT is indicated. Further research is indicated that reflects current management strategies and includes adverse event documentation in both the intervention and control groups. However, these findings suggest that, in addition to Tai Chi's known health promotion and chronic disease mitigation benefits, its use for the treatment of injury, such as TBI, is potentially a new frontier. SYSTEMATIC REVIEW REGISTRATION PROSPERO [ CRD42022364385 ].
Collapse
Affiliation(s)
| | - Patricia Huston
- Department of Family Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Institut du Savoir Montfort (Research), University of Ottawa, Ottawa, Canada
| | - Wai Ching Lam
- School of Chinese Medicine, Hong Kong Baptist University, kowloon tong, Hong Kong, SAR, China
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Linda L D Zhong
- School of Chinese Medicine, Hong Kong Baptist University, kowloon tong, Hong Kong, SAR, China.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
4
|
Mao Q, Liu Y, Zhang J, Li W, Zhang W, Zhou C. Blood virome of patients with traumatic sepsis. Virol J 2023; 20:198. [PMID: 37658428 PMCID: PMC10472630 DOI: 10.1186/s12985-023-02162-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Sepsis is one of the possible outcomes of severe trauma, and it poses a dire threat to human life, particularly in immunocompromised people. The most prevalent pathogens are bacteria and fungi, but viruses should not be overlooked. For viral metagenomic analysis, we collected blood samples from eight patients with post-traumatic sepsis before and seven days after treatment. The results demonstrated that Anellovirus predominated the viral community, followed by Siphoviridae and Myoviridae, and that the variations in viral community and viral load before and after treatment were not statistically significant. This study allows us to investigate methods for establishing NGS-based viral diagnostic instruments for detecting viral infections in the blood of sepsis patients so that antiviral therapy can be administered quickly.
Collapse
Affiliation(s)
- Qingqing Mao
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ying Liu
- Clinical Laboratory Center, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Ju Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wang Li
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
5
|
Shah AM, Zamora R, Vodovotz Y. Interleukin-17 as a spatiotemporal bridge from acute to chronic inflammation: Novel insights from computational modeling. WIREs Mech Dis 2023; 15:e1599. [PMID: 36710253 PMCID: PMC10176872 DOI: 10.1002/wsbm.1599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023]
Abstract
A systematic review of several acute inflammatory diseases ranging from sepsis and trauma/hemorrhagic shock to the relevant pathology of the decade, COVID-19, points to the cytokine interleukin (IL)-17A as being centrally involved in the propagation of inflammation. We summarize the role of IL-17A in acute inflammation, leveraging insights made possible by biological network analysis and novel computational methodologies aimed at defining the spatiotemporal spread of inflammation in both experimental animal models and humans. These studies implicate IL-17A in the cross-tissue spread of inflammation, a process that appears to be in part regulated through neural mechanisms. Although acute inflammatory diseases are currently considered distinct from chronic inflammatory pathologies, we suggest that chronic inflammation may represent repeated, cyclical episodes of acute inflammation driven by mechanisms involving IL-17A. Thus, insights from computational modeling of acute inflammatory diseases may improve diagnosis and treatment of chronic inflammation; in turn, therapeutics developed for chronic/autoimmune disease may be of benefit in acute inflammation. This article is categorized under: Immune System Diseases > Computational Models.
Collapse
Affiliation(s)
- Ashti M Shah
- Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Vodovotz Y. Towards systems immunology of critical illness at scale: from single cell 'omics to digital twins. Trends Immunol 2023; 44:345-355. [PMID: 36967340 PMCID: PMC10147586 DOI: 10.1016/j.it.2023.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023]
Abstract
Single-cell 'omics methodology has yielded unprecedented insights based largely on data-centric informatics for reducing, and thus interpreting, massive datasets. In parallel, parsimonious mathematical modeling based on abstractions of pathobiology has also yielded major insights into inflammation and immunity, with these models being extended to describe multi-organ disease pathophysiology as the basis of 'digital twins' and in silico clinical trials. The integration of these distinct methods at scale can drive both basic and translational advances, especially in the context of critical illness, including diseases such as COVID-19. Here, I explore achievements and argue the challenges that are inherent to the integration of data-driven and mechanistic modeling approaches, highlighting the potential of modeling-based strategies for rational immune system reprogramming.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
7
|
Zamora R, Forsberg JA, Shah AM, Unselt D, Grey S, Lisboa FA, Billiar TR, Schobel SA, Potter BK, Elster EA, Vodovotz Y. Central role for neurally dysregulated IL-17A in dynamic networks of systemic and local inflammation in combat casualties. Sci Rep 2023; 13:6618. [PMID: 37095162 PMCID: PMC10126120 DOI: 10.1038/s41598-023-33623-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/15/2023] [Indexed: 04/26/2023] Open
Abstract
Dynamic Network Analysis (DyNA) and Dynamic Hypergraphs (DyHyp) were used to define protein-level inflammatory networks at the local (wound effluent) and systemic circulation (serum) levels from 140 active-duty, injured service members (59 with TBI and 81 non-TBI). Interleukin (IL)-17A was the only biomarker elevated significantly in both serum and effluent in TBI vs. non-TBI casualties, and the mediator with the most DyNA connections in TBI wounds. DyNA combining serum and effluent data to define cross-compartment correlations suggested that IL-17A bridges local and systemic circulation at late time points. DyHyp suggested that systemic IL-17A upregulation in TBI patients was associated with tumor necrosis factor-α, while IL-17A downregulation in non-TBI patients was associated with interferon-γ. Correlation analysis suggested differential upregulation of pathogenic Th17 cells, non-pathogenic Th17 cells, and memory/effector T cells. This was associated with reduced procalcitonin in both effluent and serum of TBI patients, in support of an antibacterial effect of Th17 cells in TBI patients. Dysregulation of Th17 responses following TBI may drive cross-compartment inflammation following combat injury, counteracting wound infection at the cost of elevated systemic inflammation.
Collapse
Affiliation(s)
- Ruben Zamora
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jonathan A Forsberg
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
| | - Ashti M Shah
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Desiree Unselt
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Scott Grey
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Felipe A Lisboa
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Seth A Schobel
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Benjamin K Potter
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
| | - Eric A Elster
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA.
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
8
|
Laskosky NA, Huston P, Lam WC, Anderson C, Zheng Y, Zhong LLD. Are tai chi and qigong effective in the treatment of TBI? A systematic review protocol. Front Aging Neurosci 2023; 15:1121064. [PMID: 36949776 PMCID: PMC10025504 DOI: 10.3389/fnagi.2023.1121064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/20/2023] [Indexed: 03/08/2023] Open
Abstract
Background Traumatic brain injury (TBI) adversely affects both young and old and is a growing public health issue. A number of recent trends in managing TBI, such as recommending sub-threshold aerobic activity, tailoring multi-modal treatment strategies, and studying the possible role of low-grade inflammation in those with persistent symptoms, all suggest that the physical and cognitive exercise of tai chi/qigong could have benefit. Method Designed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the following databases will be searched: MEDLINE, CINAHL, Cochrane Library, Embase, China National Knowledge Infrastructure Database, Wanfang Database, Chinese Scientific Journal Database, and Chinese Biomedical Literature Database. All clinical trials on mild, moderate and/or severe TBI with tai chi and/or qigong as the treatment group and any comparison group, in any setting will be included. Four reviewers will independently select studies; two reviewers for the English and two for the Chinese databases. Cochrane-based risk of bias assessments will be conducted on all included studies. An analysis will then be conducted with the grading of recommendation, assessment, development, and evaluation (GRADE) instrument. Results This review will summarize the clinical trial evidence on tai chi/qigong for TBI including type of TBI, age/sex of participants, type and length of intervention and comparator, outcome measures, and any adverse events. The risk of bias will be considered, and the strengths and weaknesses of each trial will be analyzed. Discussion The results of this review will be considered with respect to whether there is enough evidence of benefit to merit a more definitive randomized controlled trial.Systematic Review Registration: PROSPERO [CRD42022364385].
Collapse
Affiliation(s)
| | - Patricia Huston
- Department of Family Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Institut du Savoir Montfort (Research), University of Ottawa, Ottawa, ON, Canada
| | - Wai Ching Lam
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Ya Zheng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Linda L. D. Zhong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
9
|
Bonaroti J, Billiar I, Moheimani H, Wu J, Namas R, Li S, Kar UK, Vodovotz Y, Neal MD, Sperry JL, Billiar TR. Plasma proteomics reveals early, broad release of chemokine, cytokine, TNF, and interferon mediators following trauma with delayed increases in a subset of chemokines and cytokines in patients that remain critically ill. Front Immunol 2022; 13:1038086. [PMID: 36532045 PMCID: PMC9750757 DOI: 10.3389/fimmu.2022.1038086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Severe injury is known to cause a systemic cytokine storm that is associated with adverse outcomes. However, a comprehensive assessment of the time-dependent changes in circulating levels of a broad spectrum of protein immune mediators and soluble immune mediator receptors in severely injured trauma patients remains uncharacterized. To address this knowledge gap, we defined the temporal and outcome-based patterns of 184 known immune mediators and soluble cytokine receptors in the circulation of severely injured patients. Proteomics (aptamer-based assay, SomaLogic, Inc) was performed on plasma samples drawn at 0, 24, and 72 hours (h) from time of admission from 150 trauma patients, a representative subset from the Prehospital Plasma during Air Medical Transport in Trauma Patients at Risk for Hemorrhagic Shock (PAMPer) trial. Patients were categorized into outcome groups including Early Non-Survivors (died within 72 h; ENS; n=38), Non-Resolvers (died after 72 h or required ≥7 days of intensive care; NR; n=78), and Resolvers (survivors that required < 7 days of intensive care; R; n=34), with low Injury Severity Score (ISS) patients from the Tranexamic Acid During Prehospital Transport in Patients at Risk for Hemorrhage After Injury (STAAMP) trial as controls. The major findings include an extensive release of immune mediators and cytokine receptors at time 0h that is more pronounced in ENS and NR patients. There was a selective subset of mediators elevated at 24 and 72 h to a greater degree in NR patients, including multiple cytokines and chemokines not previously described in trauma patients. These findings were validated in a quantitative fashion using mesoscale discovery immunoassays (MSD) from an external validation cohort (VC) of samples from 58 trauma patients matched for R and NR status. This comprehensive longitudinal description of immune mediator patterns associated with trauma outcomes provides a new level of characterization of the immune response that follows severe injury.
Collapse
Affiliation(s)
- Jillian Bonaroti
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Isabel Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hamed Moheimani
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Junru Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Xiangya School of Medicine, Central South University, Changsha, China
| | - Rami Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shimena Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Upendra K. Kar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew D. Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jason L. Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Timothy R. Billiar,
| |
Collapse
|
10
|
Huang Q, Gao S, Yao Y, Wang Y, Li J, Chen J, guo C, Zhao D, Li X. Innate immunity and immunotherapy for hemorrhagic shock. Front Immunol 2022; 13:918380. [PMID: 36091025 PMCID: PMC9453212 DOI: 10.3389/fimmu.2022.918380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Hemorrhagic shock (HS) is a shock result of hypovolemic injury, in which the innate immune response plays a central role in the pathophysiology ofthe severe complications and organ injury in surviving patients. During the development of HS, innate immunity acts as the first line of defense, mediating a rapid response to pathogens or danger signals through pattern recognition receptors. The early and exaggerated activation of innate immunity, which is widespread in patients with HS, results in systemic inflammation, cytokine storm, and excessive activation of complement factors and innate immune cells, comprised of type II innate lymphoid cells, CD4+ T cells, natural killer cells, eosinophils, basophils, macrophages, neutrophils, and dendritic cells. Recently, compelling evidence focusing on the innate immune regulation in preclinical and clinical studies promises new treatment avenues to reverse or minimize HS-induced tissue injury, organ dysfunction, and ultimately mortality. In this review, we first discuss the innate immune response involved in HS injury, and then systematically detail the cutting-edge therapeutic strategies in the past decade regarding the innate immune regulation in this field; these strategies include the use of mesenchymal stem cells, exosomes, genetic approaches, antibody therapy, small molecule inhibitors, natural medicine, mesenteric lymph drainage, vagus nerve stimulation, hormones, glycoproteins, and others. We also reviewed the available clinical studies on immune regulation for treating HS and assessed the potential of immune regulation concerning a translation from basic research to clinical practice. Combining therapeutic strategies with an improved understanding of how the innate immune system responds to HS could help to identify and develop targeted therapeutic modalities that mitigate severe organ dysfunction, improve patient outcomes, and reduce mortality due to HS injury.
Collapse
Affiliation(s)
- Qingxia Huang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Song Gao
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd., Changchun, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yisa Wang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chen guo
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Daqing Zhao, ; Xiangyan Li,
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Daqing Zhao, ; Xiangyan Li,
| |
Collapse
|
11
|
Khan A, Khan SU, Khan A, Shal B, Rehman SU, Rehman SU, Htar TT, Khan S, Anwar S, Alafnan A, Rengasamy KRR. Anti-Inflammatory and Anti-Rheumatic Potential of Selective Plant Compounds by Targeting TLR-4/AP-1 Signaling: A Comprehensive Molecular Docking and Simulation Approaches. Molecules 2022; 27:molecules27134319. [PMID: 35807562 PMCID: PMC9268648 DOI: 10.3390/molecules27134319] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Plants are an important source of drug development and numerous plant derived molecules have been used in clinical practice for the ailment of various diseases. The Toll-like receptor-4 (TLR-4) signaling pathway plays a crucial role in inflammation including rheumatoid arthritis. The TLR-4 binds with pro-inflammatory ligands such as lipopolysaccharide (LPS) to induce the downstream signaling mechanism such as nuclear factor κappa B (NF-κB) and mitogen activated protein kinases (MAPKs). This signaling activation leads to the onset of various diseases including inflammation. In the present study, 22 natural compounds were studied against TLR-4/AP-1 signaling, which is implicated in the inflammatory process using a computational approach. These compounds belong to various classes such as methylxanthine, sesquiterpene lactone, alkaloid, flavone glycosides, lignan, phenolic acid, etc. The compounds exhibited different binding affinities with the TLR-4, JNK, NF-κB, and AP-1 protein due to the formation of multiple hydrophilic and hydrophobic interactions. With TLR-4, rutin had the highest binding energy (−10.4 kcal/mol), poncirin had the highest binding energy (−9.4 kcal/mol) with NF-κB and JNK (−9.5 kcal/mol), respectively, and icariin had the highest binding affinity (−9.1 kcal/mol) with the AP-1 protein. The root means square deviation (RMSD), root mean square fraction (RMSF), and radius of gyration (RoG) for 150 ns were calculated using molecular dynamic simulation (MD simulation) based on rutin’s greatest binding energy with TLR-4. The RMSD, RMSF, and RoG were all within acceptable limits in the MD simulation, and the complex remained stable for 150 ns. Furthermore, these compounds were assessed for the potential toxic effect on various organs such as the liver, heart, genotoxicity, and oral maximum toxic dose. Moreover, the blood–brain barrier permeability and intestinal absorption were also predicted using SwissADME software (Lausanne, Switzerland). These compounds exhibited promising physico-chemical as well as drug-likeness properties. Consequently, these selected compounds portray promising anti-inflammatory and drug-likeness properties.
Collapse
Affiliation(s)
- Ashrafullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Shafi Ullah Khan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar 25000, Pakistan;
- Product & Process Innovation Department, Qarshi Brands (Pvt) Ltd., Hattar 22610, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Faculty of Health Sciences, IQRA University, Islamabad Campus (Chak Shahzad), Park link Rd., Islamabad 44000, Pakistan
| | - Sabih Ur Rehman
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore 54600, Pakistan; (S.U.R.); (S.U.R.)
| | - Shaheed Ur Rehman
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore 54600, Pakistan; (S.U.R.); (S.U.R.)
| | - Thet Thet Htar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia;
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Correspondence: or (S.K.); (K.R.R.)
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55211, Saudi Arabia; (S.A.); (A.A.)
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55211, Saudi Arabia; (S.A.); (A.A.)
| | - Kannan RR Rengasamy
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College, Chennai 600077, India
- Correspondence: or (S.K.); (K.R.R.)
| |
Collapse
|
12
|
Shah AM, Zamora R, Korff S, Barclay D, Yin J, El-Dehaibi F, Billiar TR, Vodovotz Y. Inferring Tissue-Specific, TLR4-Dependent Type 17 Immune Interactions in Experimental Trauma/Hemorrhagic Shock and Resuscitation Using Computational Modeling. Front Immunol 2022; 13:908618. [PMID: 35663944 PMCID: PMC9160183 DOI: 10.3389/fimmu.2022.908618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Trauma/hemorrhagic shock followed by resuscitation (T/HS-R) results in multi-system inflammation and organ dysfunction, in part driven by binding of damage-associated molecular pattern molecules to Toll-like Receptor 4 (TLR4). We carried out experimental T/HS-R (pseudo-fracture plus 2 h of shock followed by 0-22 h of resuscitation) in C57BL/6 (wild type [WT]) and TLR4-null (TLR4-/-) mice, and then defined the dynamics of 20 protein-level inflammatory mediators in the heart, gut, lung, liver, spleen, kidney, and systemic circulation. Cross-correlation and Principal Component Analysis (PCA) on data from the 7 tissues sampled suggested that TLR4-/- samples express multiple inflammatory mediators in a small subset of tissue compartments as compared to the WT samples, in which many inflammatory mediators were localized non-specifically to nearly all compartments. We and others have previously defined a central role for type 17 immune cells in human trauma. Accordingly, correlations between IL-17A and GM-CSF (indicative of pathogenic Th17 cells); between IL-17A and IL-10 (indicative of non-pathogenic Th17 cells); and IL-17A and TNF (indicative of memory/effector T cells) were assessed across all tissues studied. In both WT and TLR4-/- mice, positive correlations were observed between IL-17A and GM-CSF, IL-10, and TNF in the kidney and gut. In contrast, the variable and dynamic presence of both pathogenic and non-pathogenic Th17 cells was inferred in the systemic circulation of TLR4-/- mice over time, suggesting a role for TLR4 in efflux of these cells into peripheral tissues. Hypergraph analysis - used to define dynamic, cross compartment networks - in concert with PCA-suggested that IL-17A was present persistently in all tissues at all sampled time points except for its absence in the plasma at 0.5h in the WT group, supporting the hypothesis that T/HS-R induces efflux of Th17 cells from the circulation and into specific tissues. These analyses suggest a complex, context-specific role for TLR4 and type 17 immunity following T/HS-R.
Collapse
Affiliation(s)
- Ashti M Shah
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
| | - Sebastian Korff
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
13
|
TREJO IMELDA, BÜYÜKKAHRAMAN MEHTAPLAFCI, KOJOUHAROV HRISTOV. MATHEMATICAL INSIGHTS INTO THE DYNAMICS OF INNATE IMMUNE RESPONSE DURING INFLAMMATION. J BIOL SYST 2022. [DOI: 10.1142/s0218339022500139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Innate immune system cells activate in response to infection and trigger an acute inflammatory reaction to restore tissue homeostasis and promote subsequent tissue repair. Their activation and functions must be very well regulated to avoid tissue damage, organ dysfunction, or even death. In this work, a new set of mathematical models is presented to examine the dynamics of the innate immune system response to tissue damage and provide further understanding of the role of the innate immune system during the early stages of an inflammatory response. Different damaged cells production functions are proposed to represent the effect of secondary tissue damage by the innate immune system. The stability and bifurcation analyses of the model reveal that there is an important threshold parameter that can be controlled in order to avoid sustained chronic inflammation and secure a successful healing outcome. A set of numerical simulations is also performed to support the presented theoretical results and demonstrate the medical applicability of the new mathematical model.
Collapse
Affiliation(s)
- IMELDA TREJO
- Theoretical Biology and Biophysics Group (T-6), Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - HRISTO V. KOJOUHAROV
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX 76019-0408, USA
| |
Collapse
|
14
|
McKinley TO, Gaski GE, Billiar TR, Vodovotz Y, Brown KM, Elster EA, Constantine GM, Schobel SA, Robertson HT, Meagher AD, Firoozabadi R, Gary JL, O'Toole RV, Aneja A, Trochez KM, Kempton LB, Steenburg SD, Collins SC, Frey KP, Castillo RC. Patient-Specific Precision Injury Signatures to Optimize Orthopaedic Interventions in Multiply Injured Patients (PRECISE STUDY). J Orthop Trauma 2022; 36:S14-S20. [PMID: 34924514 DOI: 10.1097/bot.0000000000002289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 02/02/2023]
Abstract
SUMMARY Optimal timing and procedure selection that define staged treatment strategies can affect outcomes dramatically and remain an area of major debate in the treatment of multiply injured orthopaedic trauma patients. Decisions regarding timing and choice of orthopaedic procedure(s) are currently based on the physiologic condition of the patient, resource availability, and the expected magnitude of the intervention. Surgical decision-making algorithms rarely rely on precision-type data that account for demographics, magnitude of injury, and the physiologic/immunologic response to injury on a patient-specific basis. This study is a multicenter prospective investigation that will work toward developing a precision medicine approach to managing multiply injured patients by incorporating patient-specific indices that quantify (1) mechanical tissue damage volume; (2) cumulative hypoperfusion; (3) immunologic response; and (4) demographics. These indices will formulate a precision injury signature, unique to each patient, which will be explored for correspondence to outcomes and response to surgical interventions. The impact of the timing and magnitude of initial and staged surgical interventions on patient-specific physiologic and immunologic responses will be evaluated and described. The primary goal of the study will be the development of data-driven models that will inform clinical decision-making tools that can be used to predict outcomes and guide intervention decisions.
Collapse
Affiliation(s)
- Todd O McKinley
- Department of Orthopedic Surgery, Indiana University Health Methodist Hospital, Indianapolis, IN
| | - Greg E Gaski
- Department of Orthopedic Surgery, Inova Fairfax Medical Campus, Falls Church, VA
| | | | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Krista M Brown
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Eric A Elster
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Greg M Constantine
- Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, PA
| | - Seth A Schobel
- Department of Surgery, Uniformed Services University of the Health Sciences, Surgical Critical Care Initiative, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Henry T Robertson
- Department of Surgery, Uniformed Services University of the Health Sciences, Surgical Critical Care Initiative, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Ashley D Meagher
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Reza Firoozabadi
- Department of Orthopaedics and Sports Medicine, University of Washington Harborview Medical Center, Seattle, WA
| | - Joshua L Gary
- Department of Orthopedic Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX (now at Keck School of Medicine of University of Southern California, Los Angeles, CA)
| | - Robert V O'Toole
- Department of Orthopaedics, R Adams Cowley Shock Trauma Center at the University of Maryland, Baltimore, MD
| | - Arun Aneja
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, KY
| | - Karen M Trochez
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Laurence B Kempton
- Department of Orthopaedic Surgery, Carolinas Medical Center, Atrium Health Musculoskeletal Institute, Charlotte, NC
| | - Scott D Steenburg
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine and Indiana University Health Methodist Hospital, Indianapolis, IN; and
| | - Susan C Collins
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Katherine P Frey
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Renan C Castillo
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
15
|
Wu J, Vodovotz Y, Abdelhamid S, Guyette FX, Yaffe MB, Gruen DS, Cyr A, Okonkwo DO, Kar UK, Krishnamoorthi N, Voinchet RG, Billiar IM, Yazer MH, Namas RA, Daley BJ, Miller RS, Harbrecht BG, Claridge JA, Phelan HA, Zuckerbraun BS, Johansson PI, Stensballe J, Morrissey JH, Tracy RP, Wisniewski SR, Neal MD, Sperry JL, Billiar TR, PAMPer study group. Multi-omic analysis in injured humans: Patterns align with outcomes and treatment responses. Cell Rep Med 2021; 2:100478. [PMID: 35028617 PMCID: PMC8715070 DOI: 10.1016/j.xcrm.2021.100478] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022]
Abstract
Trauma is a leading cause of death and morbidity worldwide. Here, we present the analysis of a longitudinal multi-omic dataset comprising clinical, cytokine, endotheliopathy biomarker, lipidome, metabolome, and proteome data from severely injured humans. A "systemic storm" pattern with release of 1,061 markers, together with a pattern suggestive of the "massive consumption" of 892 constitutive circulating markers, is identified in the acute phase post-trauma. Data integration reveals two human injury response endotypes, which align with clinical trajectory. Prehospital thawed plasma rescues only endotype 2 patients with traumatic brain injury (30-day mortality: 30.3 versus 75.0%; p = 0.0015). Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) was identified as the most predictive circulating biomarker to identify endotype 2-traumatic brain injury (TBI) patients. These response patterns refine the paradigm for human injury, while the datasets provide a resource for the study of critical illness, trauma, and human stress responses.
Collapse
Affiliation(s)
- Junru Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cardiology & Center of Pharmacology, The 3rd Xiangya Hospital, Central South University, Changsha, China
- Eight-Year Program of Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sultan Abdelhamid
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francis X. Guyette
- Department of Emergency Medicine, Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael B. Yaffe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Danielle S. Gruen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony Cyr
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Upendra K. Kar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Isabel M. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark H. Yazer
- The Institute for Transfusion Medicine, Pittsburgh, PA, USA
| | - Rami A. Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian J. Daley
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, TN, USA
| | | | | | - Jeffrey A. Claridge
- Metro Health Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Herbert A. Phelan
- Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Brian S. Zuckerbraun
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pär I. Johansson
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jakob Stensballe
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Anesthesia and Trauma Center, Centre of Head and Orthopaedics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Emergency Medical Services, The Capital Region of Denmark, Hillerød, Denmark
| | - James H. Morrissey
- Departments of Biological Chemistry & Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Russell P. Tracy
- Department of Pathology & Laboratory Medicine and Biochemistry, University of Vermont Larner College of Medicine, Colchester, VT, USA
| | | | - Matthew D. Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason L. Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - PAMPer study group
- The PAMPer study group is detailed in Supplemental acknowledgments (Document S1)
| |
Collapse
|
16
|
Bonaroti J, Abdelhamid S, Kar U, Sperry J, Zamora R, Namas RA, McKinley T, Vodovotz Y, Billiar T. The Use of Multiplexing to Identify Cytokine and Chemokine Networks in the Immune-Inflammatory Response to Trauma. Antioxid Redox Signal 2021; 35:1393-1406. [PMID: 33860683 PMCID: PMC8905234 DOI: 10.1089/ars.2021.0054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: The immunoinflammatory responses that follow trauma contribute to clinical trajectory and patient outcomes. While remarkable advances have been made in trauma services and injury management, clarity on how the immune system in humans responds to trauma is lagging. Recent Advances: Multiplexing platforms have transformed our ability to analyze comprehensive immune mediator responses in human trauma. In parallel, with the establishment of large data sets, computational methods have been adapted to yield new insights based on mediator patterns. These efforts have added an important data layer to the emerging multiomic characterization of the human response to injury. Critical Issues: Outcome after trauma is greatly affected by the host immunoinflammatory response. Excessive or sustained responses can contribute to organ damage. Hence, understanding the pathophysiology behind traumatic injury is of vital importance. Future Directions: This review summarizes our work in the study of circulating immune mediators in trauma patients. Our foundational studies into dynamic patterns of inflammatory mediators represent an important contribution to the concepts and computational challenges that these large data sets present. We hope to see further integration and understanding of multiomics strategies in the field of trauma that can aid in patient endotyping and in potentially identifiying certain therapeutic targets in the future. Antioxid. Redox Signal. 35, 1393-1406.
Collapse
Affiliation(s)
- Jillian Bonaroti
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sultan Abdelhamid
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Upendra Kar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rami Ahmd Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Todd McKinley
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Timothy Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Zamora R, Chavan S, Zanos T, Simmons RL, Billiar TR, Vodovotz Y. Spatiotemporally specific roles of TLR4, TNF, and IL-17A in murine endotoxin-induced inflammation inferred from analysis of dynamic networks. Mol Med 2021; 27:65. [PMID: 34167455 PMCID: PMC8223370 DOI: 10.1186/s10020-021-00333-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/19/2021] [Indexed: 12/14/2022] Open
Abstract
Background Bacterial lipopolysaccharide (LPS) induces a multi-organ, Toll-like receptor 4 (TLR4)-dependent acute inflammatory response. Methods Using network analysis, we defined the spatiotemporal dynamics of 20, LPS-induced, protein-level inflammatory mediators over 0–48 h in the heart, gut, lung, liver, spleen, kidney, and systemic circulation, in both C57BL/6 (wild-type) and TLR4-null mice. Results Dynamic Network Analysis suggested that inflammation in the heart is most dependent on TLR4, followed by the liver, kidney, plasma, gut, lung, and spleen, and raises the possibility of non-TLR4 LPS signaling pathways at defined time points in the gut, lung, and spleen. Insights from computational analyses suggest an early role for TLR4-dependent tumor necrosis factor in coordinating multiple signaling pathways in the heart, giving way to later interleukin-17A—possibly derived from pathogenic Th17 cells and effector/memory T cells—in the spleen and blood. Conclusions We have derived novel, systems-level insights regarding the spatiotemporal evolution acute inflammation.
Collapse
Affiliation(s)
- Ruben Zamora
- Department of Surgery, University of Pittsburgh, Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Sangeeta Chavan
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Theodoros Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh, Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA. .,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA. .,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA. .,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
18
|
Azhar N, Namas RA, Almahmoud K, Zaaqoq A, Malak OA, Barclay D, Yin J, El-Dehaibi F, Abboud A, Simmons RL, Zamora R, Billiar TR, Vodovotz Y. A putative "chemokine switch" that regulates systemic acute inflammation in humans. Sci Rep 2021; 11:9703. [PMID: 33958628 PMCID: PMC8102583 DOI: 10.1038/s41598-021-88936-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Systemic inflammation is complex and likely drives clinical outcomes in critical illness such as that which ensues following severe injury. We obtained time course data on multiple inflammatory mediators in the blood of blunt trauma patients. Using dynamic network analyses, we inferred a novel control architecture for systemic inflammation: a three-way switch comprising the chemokines MCP-1/CCL2, MIG/CXCL9, and IP-10/CXCL10. To test this hypothesis, we created a logical model comprising this putative architecture. This model predicted key qualitative features of systemic inflammation in patient sub-groups, as well as the different patterns of hospital discharge of moderately vs. severely injured patients. Thus, a rational transition from data to data-driven models to mechanistic models suggests a novel, chemokine-based mechanism for control of acute inflammation in humans and points to the potential utility of this workflow in defining novel features in other complex diseases.
Collapse
Affiliation(s)
- Nabil Azhar
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Khalid Almahmoud
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Akram Zaaqoq
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Othman A Malak
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Andrew Abboud
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA. .,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA. .,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
19
|
Reitz KM, Gruen DS, Guyette F, Brown JB, Yazer MH, Vodovotz Y, Johanssen PI, Stensballe J, Daley B, Miller RS, Harbrecht BG, Claridge J, Phelan HA, Neal MD, Zuckerbraun BS, Sperry JL. Age of thawed plasma does not affect clinical outcomes or biomarker expression in patients receiving prehospital thawed plasma: a PAMPer secondary analysis. Trauma Surg Acute Care Open 2021; 6:e000648. [PMID: 33634214 PMCID: PMC7880105 DOI: 10.1136/tsaco-2020-000648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
Background Prehospital plasma administration during air medical transport reduces the endotheliopathy of trauma, circulating pro-inflammatory cytokines, and 30-day mortality among traumatically injured patients at risk of hemorrhagic shock. No clinical data currently exists evaluating the age of thawed plasma and its association with clinical outcomes and biomarker expression post-injury. Methods We performed a secondary analysis from the prehospital plasma administration randomized controlled trial, PAMPer. We dichotomized the age of thawed plasma creating three groups: standard-care, YOUNG (day 0-1) plasma, and OLD (day 2-5) plasma. We generated HRs and 95% CIs for mortality. Among all patients randomized to plasma, we compared predicted biomarker values at hospital admission (T0) and 24 hours later (T24) controlling for key difference between groups with a multivariable linear regression. Analyses were repeated in a severely injured subgroup. Results Two hundred and seventy-one patients were randomized to standard-care and 230 to plasma (40% YOUNG, 60% OLD). There were no clinically or statistically significant differences in demographics, injury, admission vital signs, or laboratory values including thromboelastography between YOUNG and OLD. Compared with standard-care, YOUNG (HR 0.66 (95% CI 0.41 to 1.07), p=0.09) and OLD (HR 0.64 (95% CI 0.42 to 0.96), p=0.03) plasma demonstrated reduced 30-day mortality. Among those randomized to plasma, plasma age did not affect mortality (HR 1.04 (95% CI 0.60 to 1.82), p=0.90) and/or adjusted serum markers by plasma age at T0 or T24 (p>0.05). However, among the severely injured subgroup, OLD plasma was significantly associated with increased adjusted inflammatory and decreased adjusted endothelial biomarkers at T0. Discussion Age of thawed plasma does not result in clinical outcome or biomarker expression differences in the overall PAMPer study cohort. There were biomarker expression differences in those patients with severe injury. Definitive investigation is needed to determine if the age of thawed plasma is associated with biomarker expression and outcome differences following traumatic injury. Level of evidence II.
Collapse
Affiliation(s)
- Katherine M Reitz
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Danielle S Gruen
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Frances Guyette
- Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joshua B Brown
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Mark H Yazer
- Department of Pathology, University of Pittsburgh and the Institute for Transfusion Medicine, Pittsburgh, Pennsylvania, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Pär I Johanssen
- Capital Region Blood Bank, Section for Transfusion Medicine, University of Copenhagen, Kobenhavn, Denmark
| | - Jakob Stensballe
- Capital Region Blood Bank, Section for Transfusion Medicine, University of Copenhagen, Kobenhavn, Denmark
| | - Brian Daley
- The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Richard S Miller
- Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Herb A Phelan
- Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Matthew D Neal
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Brian S Zuckerbraun
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jason L Sperry
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Abstract
INTRODUCTION Traumatic brain injury (TBI) is associated with secondary injury to the central nervous system (CNS) via inflammatory mechanisms. The combination of polytrauma and TBI further exacerbates the inflammatory response to injury; however, combined injury phenomena have not been thoroughly studied. In this study, we examined the inflammatory differences between patients with TBI versus patients with polytrauma, but no TBI (polytrauma). We hypothesize that patients with TBI have a heightened early inflammatory response compared with polytrauma. METHODS We conducted a single-center retrospective study of a cohort of patients with polytrauma, who were enrolled in the PROPPR study. These patients had blood samples prospectively collected at eight time points in the first 3 days of admission. Using radiological data to determine TBI, our polytrauma cohort was dichotomized into TBI (n = 30) or polytrauma (n = 54). Inflammatory biomarkers were measured using ELISA. Data across time were compared for TBI versus polytrauma groups using Wilcoxon rank-sum test. Network analysis techniques were used to systematically characterize the inflammatory responses at admission. RESULTS Patients with TBI (51.6%) had a higher 30-day mortality compared with polytrauma (16.9%) (P <0.001). Expression levels of IL6, IL8, and CCL2 were elevated from the 2-h through 24-h time points, becoming significant at the 6-h time point (IL6, IL8, and CCL2; P <0.05) (). CSF3 showed a similar pattern, but did not attain significance. TBI and polytrauma networks underwent diverging trends from admission to the 6-h time point. CONCLUSION Patients with TBI demonstrated upregulations in proinflammatory cytokines IL6, IL8, and CCL2. Utilizing informatics methods, we were able to identify temporal differences in network trends, as well as uncharacterized cytokines and chemokines in TBI. These data suggest TBI induces a distinct inflammatory response and pathologically heightened inflammatory response in the presence of polytrauma and may propagate worsened patient outcomes including mortality.
Collapse
|
21
|
Gui Q, Jiang Z, Zhang L. Insights into the modulatory role of cyclosporine A and its research advances in acute inflammation. Int Immunopharmacol 2021; 93:107420. [PMID: 33540245 DOI: 10.1016/j.intimp.2021.107420] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Cyclosporine A(CsA), a classic immunosuppressant, is mainly applied for solid organ transplantation and some autoimmune diseases by suppressing T lymphocytes. Early studies showed that the application of CsA is primarily focused on chronic but not acute inflammation, nevertheless, increasing evidence supporting a role for CsA in acute inflammation, although most of proofs come from experimental models. It has long been known to us that the nuclear factor of activated T cells (NFAT) is the target of CsA to regulate T lymphocytes. However, NFAT also contributes to the regulation of innate immune cells, thus, CsA can not only target lymphocytes but also innate immune cells such as monocytes/macrophages, dendritic cells and neutrophils, which provides a basis for CsA to act on acute inflammation. Moreover, some other pathophysiological events in acute inflammation such as decreased vascular activity, mitochondrial dysfunction and endogenous cell apoptosis can also be alleviated by CsA. There being a moderate successes in the application of CsA for experimental acute inflammation such as sepsis, trauma/hemorrhagic shock and ischemic/reperfusion injury, yet data of the clinical treatment is not clear. In this review, we will critically analyze the existing hypotheses, summarize the application of CsA and its possible mechanisms in various acute inflammation over the past few decades, hope to provide some clues for the clinical treatment of acute inflammation.
Collapse
Affiliation(s)
- Qiuyi Gui
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
22
|
An Aging-Related Single-Nucleotide Polymorphism is Associated With Altered Clinical Outcomes and Distinct Inflammatory Profiles in Aged Blunt Trauma Patients. Shock 2021; 53:146-155. [PMID: 31318836 DOI: 10.1097/shk.0000000000001411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The contribution of individual genetic determinants of aging to the adverse clinical outcomes and altered inflammation mediator networks characteristic of aged trauma patients is unknown. The AA genotype of the aging-related single-nucleotide polymorphism (SNP) rs2075650 in TOMM40 has been associated with longevity, while the AG and GG genotypes are associated with an increased risk of Alzheimer disease. Here, we studied the effect of rs2075650 on clinical outcomes and dynamic biomarker patterns after traumatic injury. Genomic DNA was obtained from blunt trauma patients admitted to the ICU and examined for 551,839 SNPs using an Illumina microarray kit. Plasma was sampled from each patient three times within the first 24 h and daily from day 1 to 7 then assayed for 31 biomarkers using Luminex. Aged patients (65-90 years) were segregated into AA (n = 77) and AG/GG (n = 17) genotypes. Additional comparisons were made with matched groups of young patients (18-30 years), controlling for injury severity score (ISS) and sex ratio, and also segregated into AA (n = 56) and AG/GG (n = 19) genotypes. Aged patients with the AA genotype had a significantly lower requirement for ventilation and fewer days on mechanical ventilation, as well as significantly higher levels of one mediator and lower levels of two mediators. Dynamic Bayesian Network inference revealed IL-23 as a central node in each network regardless of age or genotype, with MIG and IP-10 also as key mediators in the networks of the aged patients. These findings suggest that an aging-related SNP, rs2075650, may influence clinical outcomes and inflammation networks in aged patients following blunt trauma, and thus may serve as a predictive outcome biomarker in the setting of polytrauma.
Collapse
|
23
|
Schimunek L, Lindberg H, Cohen M, Namas RA, Mi Q, Yin J, Barclay D, El-Dehaibi F, Abboud A, Zamora R, Billiar TR, Vodovotz Y. Computational Derivation of Core, Dynamic Human Blunt Trauma Inflammatory Endotypes. Front Immunol 2021; 11:589304. [PMID: 33537029 PMCID: PMC7848165 DOI: 10.3389/fimmu.2020.589304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/30/2020] [Indexed: 02/03/2023] Open
Abstract
Systemic inflammation ensues following traumatic injury, driving immune dysregulation and multiple organ dysfunction (MOD). While a balanced immune/inflammatory response is ideal for promoting tissue regeneration, most trauma patients exhibit variable and either overly exuberant or overly damped responses that likely drive adverse clinical outcomes. We hypothesized that these inflammatory phenotypes occur in the context of severe injury, and therefore sought to define clinically distinct endotypes of trauma patients based on their systemic inflammatory responses. Using Patient-Specific Principal Component Analysis followed by unsupervised hierarchical clustering of circulating inflammatory mediators obtained in the first 24 h after injury, we segregated a cohort of 227 blunt trauma survivors into three core endotypes exhibiting significant differences in requirement for mechanical ventilation, duration of ventilation, and MOD over 7 days. Nine non-survivors co-segregated with survivors. Dynamic network inference, Fisher Score analysis, and correlations of IL-17A with GM-CSF, IL-10, and IL-22 in the three survivor sub-groups suggested a role for type 3 immunity, in part regulated by Th17 and γδ 17 cells, and related tissue-protective cytokines as a key feature of systemic inflammation following injury. These endotypes may represent archetypal adaptive, over-exuberant, and overly damped inflammatory responses.
Collapse
Affiliation(s)
- Lukas Schimunek
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Haley Lindberg
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Maria Cohen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qi Mi
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regeneration Medicine, University of Pittsburgh, Pittsburgh, PA, United State
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew Abboud
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regeneration Medicine, University of Pittsburgh, Pittsburgh, PA, United State
| | - Timothy Robert Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regeneration Medicine, University of Pittsburgh, Pittsburgh, PA, United State
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regeneration Medicine, University of Pittsburgh, Pittsburgh, PA, United State
| |
Collapse
|
24
|
Savage SA, Zarzaur BL, Gaski GE, McCarroll T, Zamora R, Namas RA, Vodovotz Y, Callcut RA, Billiar TR, McKinley TO. Insights into the association between coagulopathy and inflammation: abnormal clot mechanics are a warning of immunologic dysregulation following major injury. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1576. [PMID: 33437775 PMCID: PMC7791215 DOI: 10.21037/atm-20-3651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Severe injury initiates a complex physiologic response encompassing multiple systems and varies phenotypically between patients. Trauma-induced coagulopathy may be an early warning of a poorly coordinated response at the molecular level, including a deleterious immunologic response and worsening of shock states. The onset of trauma-induced coagulopathy (TIC) may be subtle however. In previous work, we identified an early warning sign of coagulopathy from the admission thromboelastogram, called the MAR ratio. We hypothesized that a low MAR ratio would be associated with specific derangements in the inflammatory response. Methods In this prospective, observational study, 88 blunt trauma patients admitted to the intensive care unit (ICU) were identified. Concentrations of inflammatory mediators were recorded serially over the course of a week and the MAR ratio was calculated from the admission thromboelastogram. Correlation analysis was used to assess the relationship between MAR and inflammatory mediators. Dynamic network analysis was used to assess coordination of immunologic response. Results Seventy-nine percent of patients were male and mean age was 37 years (SD 12). The mean ISS was 30.2 (SD 12) and mortality was 7.2%. CRITICAL patients (MAR ratio ≤14.2) had statistically higher shock volumes at three time points in the first day compared to NORMAL patients (MAR ratio >14.2). CRITICAL patients had significant differences in IL-6 (P=0.0065), IL-8 (P=0.0115), IL-10 (P=0.0316) and MCP-1 (P=0.0039) concentrations compared to NORMAL. Differences in degree of expression and discoordination of immune response continued in CRITICAL patients throughout the first day. Conclusions The admission MAR ratio may be the earliest warning signal of a pathologic inflammatory response associated with hypoperfusion and TIC. A low MAR ratio is an early indication of complicated dysfunction of multiple molecular processes following trauma.
Collapse
Affiliation(s)
- Stephanie A Savage
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| | - Ben L Zarzaur
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| | - Greg E Gaski
- Department of Orthopedics, Inova Fairfax Medical Campus, Fairfax, Virginia, USA
| | - Tyler McCarroll
- Department of Orthopedics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rachael A Callcut
- Department of Surgery, University of California Davis School of Medicine, Davis, California, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Todd O McKinley
- Department of Orthopedics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
25
|
Kostrzewa-Nowak D, Ciechanowicz A, Clark JS, Nowak R. Damage-Associated Molecular Patterns and Th-Cell-Related Cytokines Released after Progressive Effort. J Clin Med 2020; 9:jcm9030876. [PMID: 32210109 PMCID: PMC7141504 DOI: 10.3390/jcm9030876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 01/08/2023] Open
Abstract
Inflammation-induced processes commence with the activation of signalling pathways at the cellular level, which mobilize inflammatory cells and stimulate the secretion of chemokines, cytokines, and damage-associated molecular pattern molecules (DAMPs). Physical effort stimulates inflammation, contributing to muscle repair and regeneration. We have examined the impact of different protocols of progressive-effort tests on T-cell DAMP levels, extracellular cleavage products (fibronectin and hyaluronan), and Th-cell-related cytokine levels among soccer players. Thirty male soccer players with a median age of 17 (16–22) years performed different defined protocols for progressive exercise until exhaustion: (1) YO-YO intermittent recovery test level 1 (YYRL1, n = 10); (2) maximal multistage 20 m shuttle run (Beep, n = 10); and mechanical treadmill (MT, n = 10); and (3) shuttle-run test (n = 10). Blood samples were taken three times as follows: at baseline, post effort, and in recovery. Significantly higher post-effort concentrations of IL-4, IL-6, IL-10, and IFN-γ were observed in the Beep group, IL-4 in the YYRL1 group, and IL-6 and IFN-γ in the MT group as compared with the baseline values. Recovery values were significantly higher for concentrations of IL-4, IL-10, and IFN-γ in the YYRL1 group, only for IFN-γ in the Beep group, and for IL-6, IL-10, and INF-γ in the MT group as compared with the baseline values. Post-effort concentrations of DEFβ2, Hsp27, Fn, and UA in the Beep group and Hsp27 and HA in the YYRL1 group were significantly higher as compared with the baseline values. It seems the performed efficiency test protocols caused a short-term imbalance in Th1/Th2 cytokine levels without giving common molecular patterns. The rapidity of these changes was apparently related to specific physical movements and the type of running surface.
Collapse
Affiliation(s)
- Dorota Kostrzewa-Nowak
- Centre for Human Structural and Functional Research, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland;
- Correspondence:
| | - Andrzej Ciechanowicz
- Department of Clinical & Molecular Biochemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.C.)
| | - Jeremy S.C. Clark
- Department of Clinical & Molecular Biochemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.C.)
| | - Robert Nowak
- Centre for Human Structural and Functional Research, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland;
| |
Collapse
|
26
|
Liu D, Namas RA, Vodovotz Y, Peitzman AB, Simmons RL, Yuan H, Mi Q, Billiar TR. Unsupervised Clustering Analysis Based on MODS Severity Identifies Four Distinct Organ Dysfunction Patterns in Severely Injured Blunt Trauma Patients. Front Med (Lausanne) 2020; 7:46. [PMID: 32161760 PMCID: PMC7053419 DOI: 10.3389/fmed.2020.00046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose: We sought to identify a MODS score parameter that highly correlates with adverse outcomes and then use this parameter to test the hypothesis that multiple severity-based MODS clusters could be identified after blunt trauma. Methods: MOD score across days (D) 2-5 was subjected to Fuzzy C-means Clustering Analysis (FCM) followed by eight Clustering Validity Indices (CVI) to derive organ dysfunction patterns among 376 blunt trauma patients admitted to the intensive care unit (ICU) who survived to discharge. Thirty-one inflammation biomarkers were assayed (Luminex™) in serial blood samples (3 samples within the first 24 h and then daily up to D 5) and were analyzed using Two-Way ANOVA and Dynamic Network analysis (DyNA). Results: The FCM followed by CVI suggested four distinct clusters based on MOD score magnitude between D2 and D5. Distinct patterns of organ dysfunction emerged in each of the four clusters and exhibited statistically significant differences with regards to in-hospital outcomes. Interleukin (IL)-6, MCP-1, IL-10, IL-8, IP-10, sST2, and MIG were elevated differentially over time across the four clusters. DyNA identified remarkable differences in inflammatory network interconnectivity. Conclusion: These results suggest the existence of four distinct organ failure patterns based on MOD score magnitude in blunt trauma patients admitted to the ICU who survive to discharge.
Collapse
Affiliation(s)
- Dongmei Liu
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rami A. Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew B. Peitzman
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Richard L. Simmons
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hong Yuan
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Qi Mi
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
27
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part I – Modulation of inflammation. Clin Hemorheol Microcirc 2020; 73:381-408. [PMID: 31177205 DOI: 10.3233/ch-199102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rebecca Rothe
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
28
|
Khurana S, Bhardwaj N, Kumar S, Sagar S, Pal R, Soni KD, Aggarwal R, Malhotra R, Mathur P. Crosstalk between T Helper Cell Subsets and Their Roles in Immunopathogenesis and Outcome of Polytrauma Patients. Indian J Crit Care Med 2020; 24:1037-1044. [PMID: 33384508 PMCID: PMC7751033 DOI: 10.5005/jp-journals-10071-23577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose One of the leading causes of morbidity and early-age mortality across the globe is trauma. It disrupts immune system homeostasis and intensely affects the innate and adaptive immune responses, predisposing patients to posttrauma complications and poor outcomes. Most of the studies on posttrauma cellular immune response have been centered on the T helper-1-T helper-2 imbalances after trauma. This study was conducted to understand the role of circulating novel T helper cells in the acute posttraumatic period and clinical outcome of trauma patients. Materials and methods Signature cytokines and transcription factors of circulating Th (T helper)-9, Th-17, Th-22, and regulatory T helper cells were studied using flowcytometry along with serum biomarkers in 49 patients with polytraumatic injuries admitted to a tertiary care hospital. The patients were followed up until their outcome. The results were correlated with their clinical outcomes. Results In patients who died, higher nTreg, iTreg, Tr1 (early-phase), and higher IRF4+Th-9, IL17+ Th-17, and RORγT+ Th-17 (mid-phase) were seen. However, by the late phase, only RORγT+ Th-17 remained higher. Serum IL-6 and PCT were found to be consistently higher. In survivors, higher Th-3 (early phase), Th-22 (mid-phase), and IRF4+Th-9, IL17+ Th-17, nTreg, Th-3 (late phase) were observed to have played a protective role. Serum IL-2, IL-4, IL-17A and IL-22 were significantly higher in survivors. Conclusion Different T helper subsets were observed to be playing pathogenic and protective roles in different phases of trauma and could be used for early prognostication and make way for noninvasive management of critically injured trauma patients by immunomodulation. How to cite this article Khurana S, Bhardwaj N, Kumar S, Sagar S, Pal R, Soni KD, et al. Crosstalk between T Helper Cell Subsets and Their Roles in Immunopathogenesis and Outcome of Polytrauma Patients. Indian J Crit Care Med 2020;24(11):1037–1044.
Collapse
Affiliation(s)
- Surbhi Khurana
- Department of Laboratory Medicine, JPNA Trauma Center, All India Institute of Medical Sciences, New Delhi, India
| | - Nidhi Bhardwaj
- Department of Laboratory Medicine, JPNA Trauma Center, All India Institute of Medical Sciences, New Delhi, India
| | - Subodh Kumar
- Department of Trauma Surgery and Critical Care, JPNA Trauma Center, All India Institute of Medical Sciences, New Delhi, India
| | - Sushma Sagar
- Department of Trauma Surgery and Critical Care, JPNA Trauma Center, All India Institute of Medical Sciences, New Delhi, India
| | - Rahul Pal
- Immunoendocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Kapil Dev Soni
- Department of Anesthesia and Critical Care, JPNA Trauma Center, All India Institute of Medical Sciences, New Delhi, India
| | - Richa Aggarwal
- Department of Anesthesia and Critical Care, JPNA Trauma Center, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Malhotra
- Department of Orthopedics, JPNA Trauma Center, All India Institute of Medical Sciences, New Delhi, India
| | - Purva Mathur
- Department of Laboratory Medicine, JPNA Trauma Center, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
29
|
Zaaqoq AM, Namas RA, Abdul-Malak O, Almahmoud K, Barclay D, Yin J, Zamora R, Rosengart MR, Billiar TR, Vodovotz Y. Diurnal Variation in Systemic Acute Inflammation and Clinical Outcomes Following Severe Blunt Trauma. Front Immunol 2019; 10:2699. [PMID: 31824494 PMCID: PMC6879654 DOI: 10.3389/fimmu.2019.02699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
Animal studies suggest that the time of day is a determinant of the immunological response to both injury and infection. We hypothesized that due to this diurnal variation, time of injury could affect the systemic inflammatory response and outcomes post-trauma and tested this hypothesis by examining the dynamics of circulating inflammatory mediators in blunt trauma patients injured during daytime vs. nighttime. From a cohort of 472 blunt trauma survivors, two stringently matched sub-cohorts of moderately/severely injured patients [injury severity score (ISS) >20] were identified. Fifteen propensity-matched, daytime-inured (“mDay”) patients (age 43.6 ± 5.2, M/F 11/4, ISS 22.9 ± 0.7) presented during the shortest local annual period (8:00 am−5:00 pm), and 15 propensity-matched “mNight” patients (age 43 ± 4.3, M/F 11/4, ISS 24.5 ± 2.5) presented during the shortest night period (10:00 pm−5:00 am). Serial blood samples were obtained (3 samples within the first 24 h and daily from days 1–7) from all patients. Thirty-two plasma inflammatory mediators were assayed. Two-way Analysis of Variance (ANOVA) was used to compare groups. Dynamic Network Analysis (DyNA) and Dynamic Bayesian Network (DyBN) inference were utilized to infer dynamic interrelationships among inflammatory mediators. Both total hospital and intensive care unit length of stay were significantly prolonged in the mNight group. Circulating IL-17A was elevated significantly in the mNight group from 24 h to 7 days post-injury. Circulating MIP-1α, IL-7, IL-15, GM-CSF, and sST2 were elevated in the mDay group. DyNA demonstrated elevated network complexity in the mNight vs. the mDay group. DyBN suggested that cortisol and sST2 were central nodes upstream of TGF-β1, chemokines, and Th17/protective mediators in both groups, with IL-6 being an additional downstream node in the mNight group only. Our results suggest that time of injury affects clinical outcomes in severely injured patients in a manner associated with an altered systemic inflammation program, possibly implying a role for diurnal or circadian variation in the response to traumatic injury.
Collapse
Affiliation(s)
- Akram M Zaaqoq
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Critical Care Medicine, MedStar Washington Hospital Center, Washington, DC, United States
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Othman Abdul-Malak
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Khalid Almahmoud
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew R Rosengart
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Critical Care Medicine, MedStar Washington Hospital Center, Washington, DC, United States
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
30
|
Schimunek L, Namas RA, Yin J, Barclay D, Liu D, El-Dehaibi F, Abboud A, Cohen M, Zamora R, Billiar TR, Vodovotz Y. MPPED2 Polymorphism Is Associated With Altered Systemic Inflammation and Adverse Trauma Outcomes. Front Genet 2019; 10:1115. [PMID: 31781170 PMCID: PMC6857553 DOI: 10.3389/fgene.2019.01115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 10/16/2019] [Indexed: 12/25/2022] Open
Abstract
Trauma is a leading cause of morbidity and mortality. It is unclear why some trauma victims follow a complicated clinical course and die, while others, with apparently similar injury characteristics, do not. Interpatient genomic differences, in the form of single nucleotide polymorphisms (SNPs), have been associated previously with adverse outcomes after trauma. Recently, we identified seven novel SNPs associated with mortality following trauma. The aim of the present study was to determine if one or more of these SNPs was also associated with worse clinical outcomes and altered inflammatory trajectories in trauma survivors. Accordingly, of 413 trauma survivors, DNA samples, full blood samples, and clinical data were collected at multiple time points in the first 24 h and then daily over 7 days following hospital admission. Subsequently, single-SNP groups were created and outcomes, such as hospital length of stay (LOS), ICU LOS, and requirement for mechanical ventilation, were compared. Across a broad range of Injury Severity Scores (ISS), patients carrying the rs2065418 TT SNP in the metallophosphoesterase domain-containing 2 (MPPED2) gene exhibited higher Marshall MODScores vs. the control group of rs2065418 TG/GG patients. In patients with high-severity trauma (ISS ≥ 25, n = 94), those carrying the rs2065418 TT SNP in MPPED2 exhibited higher Marshall MODScores, longer hospital LOS (21.8 ± 2 days), a greater requirement for mechanical ventilation (9.2 ± 1.4 days on ventilator, DOV), and higher creatinine plasma levels over 7 days vs. the control group of rs2065418 TG/GG high-severity trauma patients (LOS: 15.9 ± 1.2 days, p = 0.03; DOV: 5.7 ± 1 days, p = 0.04; plasma creatinine; p < 0.0001 MODScore: p = 0.0003). Furthermore, rs2065418 TT patients with ISS ≥ 25 had significantly different plasma levels of nine circulating inflammatory mediators and elevated dynamic network complexity. These studies suggest that the rs2065418 TT genotype in the MPPED2 gene is associated with altered systemic inflammation, increased organ dysfunction, and greater hospital resource utilization. A screening for this specific SNP at admission might stratify severely injured patients regarding their lung and kidney function and clinical complications.
Collapse
Affiliation(s)
- Lukas Schimunek
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dongmei Liu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew Abboud
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Maria Cohen
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
31
|
Vodovotz Y, Simmons RL, Barclay D, Yin J, Jefferson BS, Zamora R. Decoding the secreted inflammatory response of primary human hepatocytes to hypoxic stress in vitro. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:371. [PMID: 31555685 DOI: 10.21037/atm.2019.07.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The cellular and molecular response of liver cells to hypoxic stress is not fully understood. We used computational modeling to gain insights into the inflammatory response of primary human hepatocytes (HC) to hypoxic stress in vitro. Methods Primary HC from cancer patients were exposed to hypoxia (1% O2) or normoxia (21% O2) for 1-48 h, and the cell supernatants were assayed for 21 inflammatory mediators. Data were analyzed by Two-Way ANOVA, Dynamic Bayesian Network (DBN) inference, Dynamic Network Analysis (DyNA), and Time-interval Principal Component Analysis (TI-PCA). Results The chemokines MCP-1/CCL2 and IP-10/CXCL10, along with the cytokines interleukin (IL)-2 and IL-15 were altered significantly over time in hypoxic vs. normoxic HC. DBN inference suggested central, coordinating roles for MCP-1 and IL-8 in regulating a largely conserved inflammatory program in both hypoxic and normoxic HC. DyNA likewise suggested similar network trajectories of decreasing complexity over time in both hypoxic and normoxic HC, though with differential connectivity of MCP-1, IP-10, IL-8, and Eotaxin. TI-PCA pointed to IL-1β as a central characteristic of inflammation in hypoxic HC across all time intervals, along with IL-15 and IL-10, vs. Eotaxin, IL-7, IL-10, IL-15, and IL-17A in normoxic HC. Conclusions Thus, diverse human HC appear to respond in a largely conserved fashion to cell culture stress, with distinct characteristics based on the presence or absence of hypoxia.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richard L Simmons
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Elevations in Circulating sST2 Levels Are Associated With In-Hospital Mortality and Adverse Clinical Outcomes After Blunt Trauma. J Surg Res 2019; 244:23-33. [PMID: 31279260 DOI: 10.1016/j.jss.2019.05.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/09/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Soluble suppression of tumorigenicity 2 (sST2), a decoy receptor for interleukin (IL)-33, has emerged as a novel biomarker in various disease processes. Recent studies have elucidated the role of the sST2/IL-33 complex in modulating the balance of Th1/Th2 immune responses after tissue stress. However, the role of sST2 as a biomarker after traumatic injury remains unclear. To address this, we evaluated serum sST2 correlations with mortality and in-hospital adverse outcomes as endpoints in blunt trauma patients. METHODS We retrospectively analyzed clinical and biobank data of 493 blunt trauma victims 472 survivors (mean age: 48.4 ± 0.87; injury severity score [ISS]: 19.6 ± 0.48) and 19 nonsurvivors (mean age: 58.8 ± 4.5; ISS: 23.3 ± 2.1) admitted to the intensive care unit. Given the confounding impact of age on the inflammatory response, we derived a propensity-matched survivor subgroup (n = 19; mean age: 59 ± 3; ISS: 23.4 ± 2) using an IBM SPSS case-control matching algorithm. Serial blood samples were obtained from all patients (3 samples within the first 24 h and then once daily from day [D] 1 to D5 after injury). sST2 and twenty-nine inflammatory biomarkers were assayed using enzyme-linked immunosorbent assay and Luminex, respectively. Two-way analysis of variance on ranks was used to compare groups (P < 0.05). Spearman rank correlation was performed to determine the association of circulating sST2 levels with biomarker levels and in-hospital clinical outcomes. RESULTS Circulating sST2 levels of the nonsurvivor cohort were statistically significantly elevated at 12 h after injury and remained elevated up to D5 when compared either to the overall 472 survivor cohort or a matched 19 survivor subcohort. Admission sST2 levels obtained from the first blood draw after injury in the survivor cohort correlated positively with admission base deficit (correlation coefficient [CC] = 0.1; P = 0.02), international normalized ratio (CC = 0.1, P = 0.03), ISS (CC = 0.1, P = 0.008), and the average Marshall multiple organ dysfunction score between D2 and D5 (CC = 0.1, P = 0.04). Correlations with ISS revealed a positive correlation of ISS with plasma sST2 levels across the mild ISS (CC = 0.47, P < 0.001), moderate ISS (CC = 0.58, P < 0.001), and severe ISS groups (CC = 0.63, P < 0.001). Analysis of biomarker correlations in the matched survivor group over the initial 24 h after injury showed that sST2 correlates strongly and positively with IL-4 (CC = 0.65, P = 0.002), IL-5 (CC = 0.57, P = 0.01), IL-21 (CC = 0.52, P = 0.02), IL-2 (CC = 0.51, P = 0.02), soluble IL-2 receptor-α (CC = 0.5, P = 0.02), IL-13 (CC = 0.49, P = 0.02), and IL-17A (CC = 0.48, P = 0.03). This was not seen in the matched nonsurvivor group. sST2/IL-33 ratios were significantly elevated in nonsurvivors and patients with severe injury based on ISS ≥ 25. CONCLUSIONS Elevations in serum sST2 levels are associated with poor clinical trajectories and mortality after blunt trauma. High sST2 coupled with low IL-33 associates with severe injury, mortality, and worse clinical outcomes. These findings suggest that sST2 could serve as an early prognostic biomarker in trauma patients and that sustained elevations of sST2 could contribute to a detrimental suppression of IL-33 bioavailability in patients with high injury severity.
Collapse
|
33
|
Lamparello AJ, Namas RA, Constantine G, McKinley TO, Elster E, Vodovotz Y, Billiar TR. A conceptual time window-based model for the early stratification of trauma patients. J Intern Med 2019; 286:2-15. [PMID: 30623510 DOI: 10.1111/joim.12874] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Progress in the testing of therapies targeting the immune response following trauma, a leading cause of morbidity and mortality worldwide, has been slow. We propose that the design of interventional trials in trauma would benefit from a scheme or platform that could support the identification and implementation of prognostic strategies for patient stratification. Here, we propose a stratification scheme based on defined time periods or windows following the traumatic event. This 'time-window' model allows for the incorporation of prognostic variables ranging from circulating biomarkers and clinical data to patient-specific information such as gene variants to predict adverse short- or long-term outcomes. A number of circulating biomarkers, including cell injury markers and damage-associated molecular patterns (DAMPs), and inflammatory mediators have been shown to correlate with adverse outcomes after trauma. Likewise, several single nucleotide polymorphisms (SNPs) associate with complications or death in trauma patients. This review summarizes the status of our understanding of the prognostic value of these classes of variables in predicting outcomes in trauma patients. Strategies for the incorporation of these prognostic variables into schemes designed to stratify trauma patients, such as our time-window model, are also discussed.
Collapse
Affiliation(s)
- A J Lamparello
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - R A Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - G Constantine
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | - T O McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IU Health Methodist Hospital, Indianapolis, IN, USA
| | - E Elster
- Department of Surgery, University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Y Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - T R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
34
|
Almahmoud K, Abboud A, Namas RA, Zamora R, Sperry J, Peitzman AB, Truitt MS, Gaski GE, McKinley TO, Billiar TR, Vodovotz Y. Computational evidence for an early, amplified systemic inflammation program in polytrauma patients with severe extremity injuries. PLoS One 2019; 14:e0217577. [PMID: 31163056 PMCID: PMC6548366 DOI: 10.1371/journal.pone.0217577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
Extremity and soft tissue injuries contribute significantly to inflammation and adverse in-hospital outcomes for trauma survivors; accordingly, we examined the complex association between clinical outcomes inflammatory responses in this setting using in silico tools. Two stringently propensity-matched, moderately/severely injured (Injury Severity Score > 16) patient sub-cohorts of ~30 patients each were derived retrospectively from a cohort of 472 blunt trauma survivors and segregated based on their degree of extremity injury severity (above or below 3 on the Abbreviated Injury Scale). Serial blood samples were analyzed for 31 plasma inflammatory mediators. In addition to standard statistical analyses, Dynamic Network Analysis (DyNA) and Principal Component Analysis (PCA) were used to model systemic inflammation following trauma. Patients in the severe extremity injury sub-cohort experienced longer intensive care unit length of stay (LOS), total LOS, and days on a mechanical ventilator, with higher Marshall Multiple Organ Dysfunction (MOD) Scores over the first 7 days post-injury as compared to the mild/moderate extremity injury sub-cohort. The higher severity cohort had statistically significant elevated lactate, base deficit, and creatine phosphokinase on first blood draw, along with significant changes in multiple circulating inflammatory mediators. DyNA pointed to a sustained role for type 17 immunity in both sub-cohorts, along with IFN-γ in the severe extremity injury group. DyNA network complexity increased over 7 days post-injury in the severe injury group, while generally decreasing over this same time period in the mild/moderate injury group. PCA suggested a more robust activation of multiple pathways in the severe extremity injury group as compared to the mild/moderate injury group. These studies thus point to the possibility of self-sustaining inflammation following severe extremity injury vs. resolving inflammation following less severe extremity injury.
Collapse
Affiliation(s)
- Khalid Almahmoud
- Department of Surgery, Division of Trauma & Critical Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Graduate Medical Education, Department of Surgery, Methodist Dallas Health System, Dallas, TX, United States of America
| | - Andrew Abboud
- Department of Surgery, Division of Trauma & Critical Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Rami A. Namas
- Department of Surgery, Division of Trauma & Critical Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ruben Zamora
- Department of Surgery, Division of Trauma & Critical Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jason Sperry
- Department of Surgery, Division of Trauma & Critical Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Andrew B. Peitzman
- Department of Surgery, Division of Trauma & Critical Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Michael S. Truitt
- Department of Graduate Medical Education, Department of Surgery, Methodist Dallas Health System, Dallas, TX, United States of America
| | - Greg E. Gaski
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Todd O. McKinley
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Timothy R. Billiar
- Department of Surgery, Division of Trauma & Critical Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Yoram Vodovotz
- Department of Surgery, Division of Trauma & Critical Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
35
|
Wu Y, Wu C, Zhang S, Wu D, Zhong Y. Tumor Necrosis Factor-α -308G/A Genetic Polymorphism and the Susceptibility of Posttraumatic Sepsis. Int Surg 2019; 104:291-296. [DOI: 10.9738/intsurg-d-19-00016.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
Summary of background data
The association between tumor necrosis factor α (TNFα) -308G/A polymorphism and susceptibility to posttraumatic sepsis has been studied extensively. But the results have not remained very clear.
Purpose
We carried out this meta-analysis to explore the influence of TNF on susceptibility to posttraumatic sepsis.
Methods
Relevant studies were identified from PubMed, Web of Science, Embase, and China National Knowledge Internet without language limitation, following the inclusion and exclusion criteria. Statistical analyses were implemented with the STATA 12.0 statistical software.
Results
Seven case-control studies were included in the meta-analyses on the association of TNFα -308 G/A genetic polymorphism and risk of posttraumatic sepsis. TNFα -308 G/A genetic polymorphism was significantly associated with susceptibility to posttraumatic sepsis in the dominant model [odds ratio (OR), 2.17; 95% confidence interval (95% CI), 1.19–3.95; P = 0.011] and allelic model (OR, 1.72; 95% CI, 1.23–2.39; P = 0.001), but not in the heterozygous model (OR, 1.38; 95% CI, 0.58–3.39; P = 0.489). There was no significant publication bias for these 3 models. However, marked heterogeneity existed in the dominant model (I2 = 68.9%, P = 0.004) and the heterozygous model (I2 = 68.9%, P = 0.022).
Conclusions
TNF -308 G/A genetic polymorphism may have an influence on susceptibility to posttraumatic sepsis. Further studies with large sample sizes and well-designed studies are needed to confirm these results.
Collapse
Affiliation(s)
- Ying Wu
- ICU Center, The Second Xiangya Hospital, Central South University, Furong, China
| | - Chenfang Wu
- ICU Center, The Second Xiangya Hospital, Central South University, Furong, China
| | - Siye Zhang
- ICU Center, The Second Xiangya Hospital, Central South University, Furong, China
| | - Diling Wu
- ICU Center, The Second Xiangya Hospital, Central South University, Furong, China
| | - Yanjun Zhong
- ICU Center, The Second Xiangya Hospital, Central South University, Furong, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
36
|
Bian X, Xiao YT, Wu T, Yao M, Du L, Ren S, Wang J. Microvesicles and chemokines in tumor microenvironment: mediators of intercellular communications in tumor progression. Mol Cancer 2019; 18:50. [PMID: 30925930 PMCID: PMC6441155 DOI: 10.1186/s12943-019-0973-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence indicates that the ability of cancer cells to convey biological information to recipient cells within the tumor microenvironment (TME) is crucial for tumor progression. Microvesicles (MVs) are heterogenous vesicles formed by budding of the cellular membrane, which are secreted in larger amounts by cancer cells than normal cells. Recently, several reports have also disclosed that MVs function as important mediators of intercellular communication between cancerous and stromal cells within the TME, orchestrating complex pathophysiological processes. Chemokines are a family of small inflammatory cytokines that are able to induce chemotaxis in responsive cells. MVs which selective incorporate chemokines as their molecular cargos may play important regulatory roles in oncogenic processes including tumor proliferation, apoptosis, angiogenesis, metastasis, chemoresistance and immunomodulation, et al. Therefore, it is important to explore the association of MVs and chemokines in TME, identify the potential prognostic marker of tumor, and develop more effective treatment strategies. Here we review the relevant literature regarding the role of MVs and chemokines in TME.
Collapse
Affiliation(s)
- Xiaojie Bian
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Tianqi Wu
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Mengfei Yao
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Leilei Du
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Jianhua Wang
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China. .,School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, China.
| |
Collapse
|
37
|
Liu Q, Dwyer GK, Zhao Y, Li H, Mathews LR, Chakka AB, Chandran UR, Demetris JA, Alcorn JF, Robinson KM, Ortiz LA, Pitt BR, Thomson AW, Fan MH, Billiar TR, Turnquist HR. IL-33-mediated IL-13 secretion by ST2+ Tregs controls inflammation after lung injury. JCI Insight 2019; 4:123919. [PMID: 30779711 DOI: 10.1172/jci.insight.123919] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/12/2019] [Indexed: 12/24/2022] Open
Abstract
Acute respiratory distress syndrome is an often fatal disease that develops after acute lung injury and trauma. How released tissue damage signals, or alarmins, orchestrate early inflammatory events is poorly understood. Herein we reveal that IL-33, an alarmin sequestered in the lung epithelium, is required to limit inflammation after injury due to an unappreciated capacity to mediate Foxp3+ Treg control of local cytokines and myeloid populations. Specifically, Il33-/- mice are more susceptible to lung damage-associated morbidity and mortality that is typified by augmented levels of the proinflammatory cytokines and Ly6Chi monocytes in the bronchoalveolar lavage fluid. Local delivery of IL-33 at the time of injury is protective but requires the presence of Treg cells. IL-33 stimulates both mouse and human Tregs to secrete IL-13. Using Foxp3Cre × Il4/Il13fl/fl mice, we show that Treg expression of IL-13 is required to prevent mortality after acute lung injury by controlling local levels of G-CSF, IL-6, and MCP-1 and inhibiting accumulation of Ly6Chi monocytes. Our study identifies a regulatory mechanism involving IL-33 and Treg secretion of IL-13 in response to tissue damage that is instrumental in limiting local inflammatory responses and may shape the myeloid compartment after lung injury.
Collapse
Affiliation(s)
- Quan Liu
- Thomas E. Starzl Transplantation Institute.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Gaelen K Dwyer
- Thomas E. Starzl Transplantation Institute.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yifei Zhao
- Thomas E. Starzl Transplantation Institute.,Tsinghua University School of Medicine, Beijing, China
| | - Huihua Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | | | | | | | - Jake A Demetris
- Thomas E. Starzl Transplantation Institute.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John F Alcorn
- Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Luis A Ortiz
- Department of Environmental and Occupational Heath, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Bruce R Pitt
- Department of Environmental and Occupational Heath, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Angus W Thomson
- Thomas E. Starzl Transplantation Institute.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ming-Hui Fan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hēth R Turnquist
- Thomas E. Starzl Transplantation Institute.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
38
|
Khan H, Ullah H, Nabavi SM. Mechanistic insights of hepatoprotective effects of curcumin: Therapeutic updates and future prospects. Food Chem Toxicol 2019; 124:182-191. [PMID: 30529260 DOI: 10.1016/j.fct.2018.12.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023]
Abstract
The liver is the most essential organ of the body performing vital functions. Hepatic disorders affect the physiological and biochemical functions of the body. These disorders include hepatitis B, hepatitis C, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), liver cirrhosis, hepatic failure and hepatocellular carcinoma (HCC). Drugs related hepatotoxicity is one of the major challenges facing by clinicians as it is a leading cause of liver failure. During post-marketing surveillance studies, detection and reporting of drug-induced hepatotoxicity may lead to drug withdrawal or warnings. Several mechanisms are involved in hepatotoxicity such as cell membrane disruption, initiating an immune response, alteration of cellular pathways of drug metabolism, accumulation of reactive oxygen species (ROS), lipid peroxidation and cell death. Curcumin, the active ingredient of turmeric and exhibits therapeutic potential for the treatment of diabetes, cardiovascular disorders and various types of cancers. Curcumin is strong anti-oxidant and anti-inflammatory effects and thus it possesses hepatoprotective properties. Despite its low bioavailability, its hepatoprotective effects have been studied in various protocols of hepatotoxicity including acetaminophen, alcohol, lindane, carbon tetrachloride (CCL4), diethylnitrosamine and heavy metals induced hepatotoxicities. This report reviews the hepatoprotective effects of curcumin with a focus on its mechanistic insights in various hepatotoxic protocols.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
An Enrichment Strategy Yields Seven Novel Single Nucleotide Polymorphisms Associated With Mortality and Altered Th17 Responses Following Blunt Trauma. Shock 2019; 49:259-268. [PMID: 28930911 DOI: 10.1097/shk.0000000000000987] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Trauma is the leading cause of death worldwide for individuals under the age of 55. Interpatient genomic differences, in the form of candidate single-nucleotide polymorphisms (SNPs), have been associated previously with adverse outcomes after trauma. However, the utility of these SNPs to predict outcomes based on a meaningful endpoint such as survival is as yet undefined. We hypothesized that specific SNP haplotypes could segregate trauma survivors from non-survivors. Genomic DNA samples were obtained from 453 blunt trauma patients, for whom complete daily clinical and biomarker data were available for 397. Of these, 13 patients were non-survivors and the remaining 384 were survivors. All 397 DNA samples were amplified, fragmented, and examined for 551,839 SNPs using the Illumina Infinium CoreExome-24 v1.1 BeadChip (Illumina). To enrich for likely important SNPs, we initially compared SNPs of the 13 non-survivors versus 13 matched survivors, who were matched algorithmically for injury severity score (ISS), age, and gender ratio. This initial enrichment yielded 126 SNPs; a further comparison to the haplotypes of the remaining 371 survivors yielded a final total of 7 SNPs that distinguished survivors from non-survivors. Furthermore, severely injured survivors with the same seven SNPs as non-survivor exhibited distinct inflammatory responses from similarly injured survivors without those SNPs, and specifically had evidence of altered Th17 cell phenotypes based on computational modeling. These studies suggest an interaction among genetic polymorphism, injury severity, and initial inflammatory responses in driving trauma outcomes.
Collapse
|
40
|
Day JD, Cockrell C, Namas R, Zamora R, An G, Vodovotz Y. Inflammation and Disease: Modelling and Modulation of the Inflammatory Response to Alleviate Critical Illness. CURRENT OPINION IN SYSTEMS BIOLOGY 2018; 12:22-29. [PMID: 30886940 PMCID: PMC6420220 DOI: 10.1016/j.coisb.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Critical illness, a constellation of interrelated inflammatory and physiological derangements occurring subsequent to severe infection or injury, affects a large number of individuals in both developed and developing countries. The prototypical complex system embodied in critical illness has largely defied therapy beyond supportive care. We have focused on the utility of data-driven and mechanistic computational modelling to help address the complexity of critical illness and provide pathways towards discovering potential therapeutic options and combinations. Herein, we review recent progress in this field, with a focus on both animal and computational models of critical illness. We suggest that therapy for critical illness can be posed as a model-based dynamic control problem, and discuss novel theoretical and experimental approaches involving biohybrid devices aimed at reprogramming inflammation dynamically. Together, these advances offer the potential for Model-based Precision Medicine for critical illness.
Collapse
Affiliation(s)
- Judy D. Day
- Departments of Mathematics and Electrical Engineering & Computer Science, University of Tennessee, USA
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, USA
| | | | - Rami Namas
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA
- Department of Surgery, University of Pittsburgh, USA
| | - Ruben Zamora
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA
- Department of Surgery, University of Pittsburgh, USA
| | - Gary An
- Department of Surgery, University of Chicago, USA
| | - Yoram Vodovotz
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA
- Department of Surgery, University of Pittsburgh, USA
| |
Collapse
|
41
|
A computational analysis of dynamic, multi-organ inflammatory crosstalk induced by endotoxin in mice. PLoS Comput Biol 2018; 14:e1006582. [PMID: 30399158 PMCID: PMC6239343 DOI: 10.1371/journal.pcbi.1006582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/16/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
Bacterial lipopolysaccharide (LPS) induces an acute inflammatory response across multiple organs, primarily via Toll-like receptor 4 (TLR4). We sought to define novel aspects of the complex spatiotemporal dynamics of LPS-induced inflammation using computational modeling, with a special focus on the timing of pathological systemic spillover. An analysis of principal drivers of LPS-induced inflammation in the heart, gut, lung, liver, spleen, and kidney to assess organ-specific dynamics, as well as in the plasma (as an assessment of systemic spillover), was carried out using data on 20 protein-level inflammatory mediators measured over 0-48h in both C57BL/6 and TLR4-null mice. Using a suite of computational techniques, including a time-interval variant of Principal Component Analysis, we confirm key roles for cytokines such as tumor necrosis factor-α and interleukin-17A, define a temporal hierarchy of organ-localized inflammation, and infer the point at which organ-localized inflammation spills over systemically. Thus, by employing a systems biology approach, we obtain a novel perspective on the time- and organ-specific components in the propagation of acute systemic inflammation. Gram-negative bacterial lipopolysaccharide (LPS) is both a central mediator of sepsis and a canonical inducer of acute inflammation via Toll-like receptor 4 (TLR4). Sepsis involves the systemic spillover of inflammation that normally remains localized in individual organs. The goal of this study was to gain insights into 1) early vs. later drivers of LPS-induced inflammation in various compartments, and 2) the systemic spillover from affected organs vs. local production of inflammatory mediators in the blood. This study involved a large number of data points on the dynamics of inflammatory mediators at the protein level, data-driven computational modeling of principal characteristics and cross-correlations, and validation of key hypotheses. In addition to verifying key mechanisms in LPS/TLR4-driven acute inflammation, this approach yielded key insights into the progression of inflammation across tissues, and also suggested the presence of TLR4-independent pathways (especially in the gut). This is, to our knowledge, the first study examining the dynamic evolution of some key inflammatory mediators and their interactions with each other in both the systemic circulation and within a number of targeted parenchymal organs in mice.
Collapse
|
42
|
Guisasola MC, Alonso B, Bravo B, Vaquero J, Chana F. An overview of cytokines and heat shock response in polytraumatized patients. Cell Stress Chaperones 2018; 23:483-489. [PMID: 29101529 PMCID: PMC6045557 DOI: 10.1007/s12192-017-0859-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Early after injury, local tissue damage induces a local and systemic inflammatory response that activates the immune system and leads to the development of systemic inflammatory response syndrome (SIRS). This post-traumatic response often results in uncontrolled release of inflammatory mediators and over-activation of the immune system, which occasionally results in multiple organ dysfunction syndrome (MODS). In parallel, a state of immunosuppression develops. This counter-regulating suppression of different cellular and humoral immune functions has been termed "compensatory anti-inflammatory response syndrome (CARS)." Both SIRS and CARS occur simultaneously even in the initial phase after injury. Pro- and anti-inflammatory cytokines have been suggested to play a major role in development of SIRS, although the degree of involvement of the different cytokines is quite disparate. While TNF-α and IL-1β are quite irrelevant for predicting organ dysfunction, IL-6 is the parameter that best predicts mortality. The hyperinflammatory state seems to be the cause of post-traumatic immunosuppression and heat shock proteins (HSPs), which have been proposed as one of the endogenous stimuli for the deterioration of the immune system acting as danger-associated molecular patterns (DAMPs). Extracellular HSPA1A released from injured tissues increase up to ten times immediately after trauma and even more in patients with MODS. It has powerful immune properties that could contribute to post-traumatic immunosuppression through several mechanisms that have been previously described, so HSPs could represent trauma-associated immunomodulatory mediators. For this reason, HSPA1A has been suggested to be a helpful early prognostic biomarker of trauma after severe injury: serial quantification of serum HSPA1A and anti-Hsp70 concentrations in the first hours after trauma is proposed to be used as a predictive biomarker of MODS and immunosuppression development in polytraumatized patients.
Collapse
Affiliation(s)
- Maria Concepción Guisasola
- Servicio de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario “Gregorio Marañón”, Dr. Esquerdo 46, 28007 Madrid, Spain
| | - Berta Alonso
- Servicio de Cirugía Ortopédica y Traumatología, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario “Gregorio Marañón”, Dr. Esquerdo 46, 28007 Madrid, Spain
| | - Beatriz Bravo
- Instituto de Medicina Molecular Aplicada. Facultad de Medicina, Universidad San Pablo-CEU, Ctra de Boadilla del Monte km. 5,300 Boadilla del Monte, 28668 Madrid, Spain
| | - Javier Vaquero
- Servicio de Cirugía Ortopédica y Traumatología, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario “Gregorio Marañón”, Dr. Esquerdo 46, 28007 Madrid, Spain
- Departamento de Cirugía. Facultad de Medicina, Universidad Complutense, Plaza de Ramón y Cajal, 28040 Madrid, Spain
| | - Francisco Chana
- Servicio de Cirugía Ortopédica y Traumatología, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario “Gregorio Marañón”, Dr. Esquerdo 46, 28007 Madrid, Spain
- Departamento de Cirugía. Facultad de Medicina, Universidad Complutense, Plaza de Ramón y Cajal, 28040 Madrid, Spain
| |
Collapse
|
43
|
Dimitrova E, Caromile LA, Laubenbacher R, Shapiro LH. The innate immune response to ischemic injury: a multiscale modeling perspective. BMC SYSTEMS BIOLOGY 2018; 12:50. [PMID: 29631571 PMCID: PMC5891907 DOI: 10.1186/s12918-018-0580-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022]
Abstract
Background Cell death as a result of ischemic injury triggers powerful mechanisms regulated by germline-encoded Pattern Recognition Receptors (PRRs) with shared specificity that recognize invading pathogens and endogenous ligands released from dying cells, and as such are essential to human health. Alternatively, dysregulation of these mechanisms contributes to extreme inflammation, deleterious tissue damage and impaired healing in various diseases. The Toll-like receptors (TLRs) are a prototypical family of PRRs that may be powerful anti-inflammatory targets if agents can be designed that antagonize their harmful effects while preserving host defense functions. This requires an understanding of the complex interactions and consequences of targeting the TLR-mediated pathways as well as technologies to analyze and interpret these, which will then allow the simulation of perturbations targeting specific pathway components, predict potential outcomes and identify safe and effective therapeutic targets. Results We constructed a multiscale mathematical model that spans the tissue and intracellular scales, and captures the consequences of targeting various regulatory components of injury-induced TLR4 signal transduction on potential pro-inflammatory or pro-healing outcomes. We applied known interactions to simulate how inactivation of specific regulatory nodes affects dynamics in the context of injury and to predict phenotypes of potential therapeutic interventions. We propose rules to link model behavior to qualitative estimates of pro-inflammatory signal activation, macrophage infiltration, production of reactive oxygen species and resolution. We tested the validity of the model by assessing its ability to reproduce published data not used in its construction. Conclusions These studies will enable us to form a conceptual framework focusing on TLR4-mediated ischemic repair to assess potential molecular targets that can be utilized therapeutically to improve efficacy and safety in treating ischemic/inflammatory injury.
Collapse
Affiliation(s)
- Elena Dimitrova
- Department of Mathematical Sciences, Clemson University, Clemson, SC, USA
| | - Leslie A Caromile
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, 06030, CT, USA
| | - Reinhard Laubenbacher
- Center for Quantitative Medicine, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA. .,Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Linda H Shapiro
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, 06030, CT, USA.
| |
Collapse
|
44
|
Abstract
Multiply injured patients with severe extremity trauma are at risk of acute systemic complications and are at high risk of developing longer term orthopaedic complications including soft-tissue infection, osteomyelitis, posttraumatic osteoarthritis, and nonunion. It is becoming increasingly recognized that injury magnitude and response to injury have major jurisdiction pertaining to patient outcomes and complications. The complexities of injury and injury response that affect outcomes present opportunities to apply precision approaches to understand and quantify injury magnitude and injury response on a patient-specific basis. Here, we present novel approaches to measure injury magnitude by adopting methods that quantify both mechanical and ischemic tissue injury specific to each patient. We also present evolving computational approaches that have provided new insight into the complexities of inflammation and immunologic response to injury specific to each patient. These precision approaches are on the forefront of understanding how to stratify individualized injury and injury response in an effort to optimize titrated orthopaedic surgical interventions, which invariably involve most of the multiply injured patients. Finally, we present novel methods directed at mangled limbs with severe soft-tissue injury that comprise severely injured patients. Specifically, methods being developed to treat mangled limbs with volumetric muscle loss have the potential to improve limb outcomes and also mitigate uncompensated inflammation that occurs in these patients.
Collapse
|
45
|
Zrzavy T, Machado-Santos J, Christine S, Baumgartner C, Weiner HL, Butovsky O, Lassmann H. Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts. Brain Pathol 2017; 28:791-805. [PMID: 29222823 PMCID: PMC6334527 DOI: 10.1111/bpa.12583] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/27/2017] [Indexed: 01/06/2023] Open
Abstract
Inflammatory mechanisms, involving granulocytes, T‐cells, B‐cells, macrophages and activated microglia, have been suggested to play a pathogenic role in experimental models of stroke and may be targets for therapeutic intervention. However, knowledge on the inflammatory response in human stroke lesions is limited. Here, we performed a quantitative study on the inflammatory reaction in human ischemic infarct lesions. We found increased numbers of T‐lymphocytes, mainly CD8+ cells, but not of B‐lymphocytes. Their number was very low in comparison to that seen in inflammatory diseases of the central nervous system and they did not show signs of activation. Polymorphonuclear leukocytes were present in meninges and less prominently in the perivascular space in early lesions, but their infiltration into the lesioned tissue was sparse with the exception of a single case. Microglia were lost in the necrotic core of fresh lesions, their number was increased in the surrounding penumbra, apparently due to proliferation. Using TMEM119 as a marker for the resident microglia pool, macrophages in lesions were in part derived from the original microglia pool, depending on the lesion stage. Most microglia and macrophages revealed a pro‐inflammatory activation pattern, expressing molecules involved in phagocytosis, oxidative injury, antigen presentation and iron metabolism and had partially lost the expression of P2RY12, an antigen expressed on homeostatic (“resting”) microglia in rodents. At later lesion stages, the majority of macrophages showed intermediate activation patterns, expressing pro‐inflammatory and anti‐inflammatory markers. Microglia in the normal white matter of controls and stroke patients were already partly activated toward a pro‐inflammatory phenotype. Our data suggest that the direct contribution of lymphocytes and granulocytes to active tissue injury in human ischemic infarct lesions is limited and that stroke therapy that targets pro‐inflammatory microglia and macrophage activation may be effective.
Collapse
Affiliation(s)
- Tobias Zrzavy
- Center for Brain Research, Medical University of Vienna, Austria
| | | | - Sheren Christine
- Center for Brain Research, Medical University of Vienna, Austria
| | - Christoph Baumgartner
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Sigmund Freud University, Vienna, Austria
| | - Howard L Weiner
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Oleg Butovsky
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Austria
| |
Collapse
|
46
|
Vodovotz Y, Simmons RL, Gandhi CR, Barclay D, Jefferson BS, Huang C, Namas R, El-Dehaibi F, Mi Q, Billiar TR, Zamora R. "Thinking" vs. "Talking": Differential Autocrine Inflammatory Networks in Isolated Primary Hepatic Stellate Cells and Hepatocytes under Hypoxic Stress. Front Physiol 2017; 8:1104. [PMID: 29312006 PMCID: PMC5743931 DOI: 10.3389/fphys.2017.01104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/14/2017] [Indexed: 12/23/2022] Open
Abstract
We hypothesized that isolated primary mouse hepatic stellate cells (HSC) and hepatocytes (HC) would elaborate different inflammatory responses to hypoxia with or without reoxygenation. We further hypothesized that intracellular information processing (“thinking”) differs from extracellular information transfer (“talking”) in each of these two liver cell types. Finally, we hypothesized that the complexity of these autocrine responses might only be defined in the absence of other non-parenchymal cells or trafficking leukocytes. Accordingly, we assayed 19 inflammatory mediators in the cell culture media (CCM) and whole cell lysates (WCLs) of HSC and HC during hypoxia with and without reoxygenation. We applied a unique set of statistical and data-driven modeling techniques including Two-Way ANOVA, hierarchical clustering, Principal Component Analysis (PCA) and Network Analysis to define the inflammatory responses of these isolated cells to stress. HSC, under hypoxic and reoxygenation stresses, both expressed and secreted larger quantities of nearly all inflammatory mediators as compared to HC. These differential responses allowed for segregation of HSC from HC by hierarchical clustering. PCA suggested, and network analysis supported, the hypothesis that above a certain threshold of cellular stress, the inflammatory response becomes focused on a limited number of functions in both HSC and HC, but with distinct characteristics in each cell type. Network analysis of separate extracellular and intracellular inflammatory responses, as well as analysis of the combined data, also suggested the presence of more complex inflammatory “talking” (but not “thinking”) networks in HSC than in HC. This combined network analysis also suggested an interplay between intracellular and extracellular mediators in HSC under more conditions than that observed in HC, though both cell types exhibited a qualitatively similar phenotype under hypoxia/reoxygenation. Our results thus suggest that a stepwise series of computational and statistical analyses may help decipher how cells respond to environmental stresses, both within the cell and in its secretory products, even in the absence of cooperation from other cells in the liver.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Chao Huang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rami Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qi Mi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
47
|
Haller JM, Marchand L, Rothberg DL, Kubiak EN, Higgins TF. Inflammatory cytokine response is greater in acute tibial plafond fractures than acute tibial plateau fractures. J Orthop Res 2017; 35:2613-2619. [PMID: 28370304 DOI: 10.1002/jor.23567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/28/2017] [Indexed: 02/04/2023]
Abstract
The purpose of the study was to compare the inflammatory cytokine and matrix metalloproteinase (MMP) concentrations in synovial fluid after acute plafond fracture with acute tibial plateau fracture. Between December 2011 and August 2014, we prospectively enrolled patients with acute tibial plateau and plafond fractures. Synovial fluid aspirations were obtained from injured and uninjured joints. The concentrations of IL-1β, IL-1RA, IL-6, IL-8, IL-10, MCP-1, TNF-α, MMP-1, -3, -9, -10, -12, and -13 were quantified using multiplex assays. A Bonferroni correction was used so that the adjusted alpha level for significance was p < 0.004. We enrolled 45 tibial plateau fractures and 19 plafond fractures. Mean patient age was 42 years (range, 20-60) and 64% were male patients. There were 24 low-energy (OTA 41B) plateau fractures and eight low-energy (OTA 43B) plafond fractures. There were 21 high-energy (6 OTA 41B3 and 15 OTA 41C) plateau fractures and 11 high-energy (OTA43C) plafond fractures. All cytokines and MMPs except MMP-13 were significantly elevated in plafond fractures compared to uninjured ankles. When comparing acutely injured joints, IL-8 (p < 0.001), IL-1β (p = 0.002), and MMP-12 (p = 0.001) were significantly higher in plafond fractures compared to plateau fractures. Concentrations of IL-1RA (p = 0.008) and MCP-1 (p = 0.005) were higher in plafond fractures, and MMP-10 (p = 0.01) was higher in plateau fractures, but these differences did not reach significance. In conclusion, several cytokines and MMPs were significantly elevated in acute plafond fractures as compared to acute tibial plateau fractures. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2613-2619, 2017.
Collapse
Affiliation(s)
- Justin M Haller
- Department of Orthopaedics, University of Utah School of Medicine, 590 Wakara Way, Salt Lake City, Utah 84108
| | - Lucas Marchand
- Department of Orthopaedics, University of Utah School of Medicine, 590 Wakara Way, Salt Lake City, Utah 84108
| | - David L Rothberg
- Department of Orthopaedics, University of Utah School of Medicine, 590 Wakara Way, Salt Lake City, Utah 84108
| | - Erik N Kubiak
- Department of Orthopedic Surgery, University of Nevada Las Vegas, Las Vegas, Nevada
| | - Thomas F Higgins
- Department of Orthopaedics, University of Utah School of Medicine, 590 Wakara Way, Salt Lake City, Utah 84108
| |
Collapse
|
48
|
The role of NIGMS P50 sponsored team science in our understanding of multiple organ failure. J Trauma Acute Care Surg 2017; 83:520-531. [PMID: 28538636 DOI: 10.1097/ta.0000000000001587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The history of the National Institute of General Medical Sciences (NIGMS) Research Centers in Peri-operative Sciences (RCIPS) is the history of clinical, translational, and basic science research into the etiology and treatment of posttraumatic multiple organ failure (MOF). Born out of the activism of trauma and burn surgeons after the Viet Nam War, the P50 trauma research centers have been a nidus of research advances in the field and the training of future academic physician-scientists in the fields of trauma, burns, sepsis, and critical illness. For over 40 years, research conducted under the aegis of this funding program has led to numerous contributions at both the bedside and at the bench. In fact, it has been this requirement for team science with a clinician-scientist working closely with basic scientists from multiple disciplines that has led the RCIPS to its unrivaled success in the field. This review will briefly highlight some of the major accomplishments of the RCIPS program since its inception, how they have both led and evolved as the field moved steadily forward, and how they are responsible for much of our current understanding of the etiology and pathology of MOF. This review is not intended to be all encompassing nor a historical reference. Rather, it serves as recognition to the foresight and support of many past and present individuals at the NIGMS and at academic institutions who have understood the cost of critical illness and MOF to the individual and to society.
Collapse
|
49
|
Differential inflammatory networks distinguish responses to bone marrow-derived versus adipose-derived mesenchymal stem cell therapies in vascularized composite allotransplantation. J Trauma Acute Care Surg 2017; 83:S50-S58. [PMID: 28452881 DOI: 10.1097/ta.0000000000001489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Vascularized composite allotransplantation (VCA) is aimed at enabling injured individuals to return to their previous lifestyles. Unfortunately, VCA induces an immune/inflammatory response, which mandates lifelong, systemic immunosuppression, with attendant detrimental effects. Mesenchymal stem cells (MSC)-both adipose-derived (AD-MSC) and bone marrow-derived (BM-MSC)-can reprogram inflammation and have been suggested as an alternative to immunosuppression, but their mechanism of action is as yet not fully elucidated. We sought to gain insights into these mechanisms using a systems biology approach. METHODS PKH26 (red) dye-labeled AD-MSC or BM-MSC were administered intravenously to Lewis rat recipients of mismatched Brown-Norway hindlimb transplants. Short course tacrolimus (FK-506) monotherapy was withdrawn at postoperative day 21. Sera were collected at 4 weeks, 6 weeks, and 18 weeks; assayed for 29 inflammatory/immune mediators; and the resultant data were analyzed using Dynamic Network Analysis (DyNA), Dynamic Bayesian Network (DyBN) inference, and Principal Component Analysis. RESULTS DyNA network complexity decreased with time in AD-MSC rats, but increased in BM-MSC rats. DyBN and Principal Component Analysis suggested mostly different central nodes and principal characteristics, respectively, in AD-MSC versus BM-MSC rats. CONCLUSION AD-MSC and BM-MSC are associated with both overlapping and distinct dynamic networks and principal characteristics of inflammatory/immune mediators in VCA grafts with short-course tacrolimus induction therapy. The decreasing inflammatory complexity of dynamic networks in the presence of AD-MSC supports the previously suggested role for T regulatory cells induced by AD-MSC. The finding of some overlapping and some distinct central nodes and principal characteristics suggests the role of key mediators in the response to VCA in general, as well as potentially differential roles for other mediators ascribed to the actions of the different MSC populations. Thus, combined in vivo/in silico strategies may yield novel means of optimizing MSC therapy for VCA.
Collapse
|
50
|
Chemokines (CCL3, CCL4, and CCL5) Inhibit ATP-Induced Release of IL-1 β by Monocytic Cells. Mediators Inflamm 2017; 2017:1434872. [PMID: 28757683 PMCID: PMC5516742 DOI: 10.1155/2017/1434872] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 01/07/2023] Open
Abstract
Chemokines and ATP are among the mediators of inflammatory sites that can enter the circulation via damaged blood vessels. The main function of chemokines is leukocyte mobilization, and ATP typically triggers inflammasome assembly. IL-1β, a potent inflammasome-dependent cytokine of innate immunity, is essential for pathogen defense. However, excessive IL-1β may cause life-threatening systemic inflammation. Here, we hypothesize that chemokines control ATP-dependent secretion of monocytic IL-1β. Lipopolysaccharide-primed human monocytic U937 cells were stimulated with the P2X7 agonist BzATP for 30 min to induce IL-1β release. CCL3, CCL4, and CCL5 dose dependently inhibited BzATP-stimulated release of IL-1β, whereas CXCL16 was ineffective. The effect of CCL3 was confirmed for primary mononuclear leukocytes. It was blunted after silencing CCR1 or calcium-independent phospholipase A2 (iPLA2) by siRNA and was sensitive to antagonists of nicotinic acetylcholine receptors containing subunits α7 and α9. U937 cells secreted small factors in response to CCL3 that mediated the inhibition of IL-1β release. We suggest that CCL chemokines inhibit ATP-induced release of IL-1β from U937 cells by a triple-membrane-passing mechanism involving CCR, iPLA2, release of small mediators, and nicotinic acetylcholine receptor subunits α7 and α9. We speculate that whenever chemokines and ATP enter the circulation concomitantly, systemic release of IL-1β is minimized.
Collapse
|