1
|
Liu Y, Fleishman JS, Wang H, Huo L. Pharmacologically Targeting Ferroptosis and Cuproptosis in Neuroblastoma. Mol Neurobiol 2025; 62:3863-3876. [PMID: 39331355 PMCID: PMC11790790 DOI: 10.1007/s12035-024-04501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Neuroblastoma is a deadly pediatric cancer that originates from the neural crest and frequently develops in the abdomen or adrenal gland. Although multiple approaches, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy, are recommended for treating neuroblastoma, the tumor will eventually develop resistance, leading to treatment failure and cancer relapse. Therefore, a firm understanding of the molecular mechanisms underlying therapeutic resistance is vital for the development of new effective therapies. Recent research suggests that cancer-specific modifications to multiple subtypes of nonapoptotic regulated cell death (RCD), such as ferroptosis and cuproptosis, contribute to therapeutic resistance in neuroblastoma. Targeting these specific types of RCD may be viable novel targets for future drug discovery in the treatment of neuroblastoma. In this review, we summarize the core mechanisms by which the inability to properly execute ferroptosis and cuproptosis can enhance the pathogenesis of neuroblastoma. Therefore, we focus on emerging therapeutic compounds that can induce ferroptosis or cuproptosis, delineating their beneficial pharmacodynamic effects in neuroblastoma treatment. Cumulatively, we suggest that the pharmacological stimulation of ferroptosis and ferroptosis may be a novel and therapeutically viable strategy to target neuroblastoma.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pediatrics, The Fourth Affiliated Hospital of China Medical University, Shenyang, 100012, China.
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China.
| |
Collapse
|
2
|
Liu Y, Feng Q, Zou L, Zhu C, Xia W. Oligoasthenozoospermia is alleviated in a mouse model by [Gly14]-humanin-mediated attenuation of oxidative stress and ferroptosis. Andrology 2024. [PMID: 39435863 DOI: 10.1111/andr.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Oligoasthenozoospermia is a common cause of male infertility, for which effective treatments are urgently needed. Humanin (HN) is a peptide associated with this condition. OBJECTIVES To investigate the ameliorative effect of [Gly14]-Humanin (HNG) on oligoasthenozoospermia and the mechanisms. MATERIALS AND METHODS Mice were treated with cyclophosphamide (CP) to construct a mice model of oligoasthenozoospermia. The resulting model mice were treated with saline or HNG. Subsequently, the testis weights, organ indices, testicular structure, sperm counts and motilities, litter sizes, and serum testosterone concentrations of the mice were determined. Differential gene expression in testicular tissues was determined by RNA sequencing. TM3, TM4, GC1, and GC2 cells were exposed to erastin to induce ferroptosis, followed by treatment with HNG or HNG + ML385 (a nuclear factor erythroid 2-related factor 2 inhibitor). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and ferrous ions (Fe2+) were determined and their expression of ferroptosis-related proteins was determined by immunofluorescence and western blot. RESULTS The HNG treatment improved testis and sperm parameters and increased litter size and serum testosterone concentrations in model mice. Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analysis revealed significant differential expression of ferroptosis-related genes. The expression of ferroptosis-related proteins increased in testicular tissues after the HNG treatment. The concentrations of ROS, MDA, and Fe2+ decreased and the concentrations of GSH increased in testicular tissues and in TM3 and TM4 cells after HNG treatment. In vitro experiments confirmed that HNG activated the nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4 (Nrf2/GPX4) pathway. However, these effects of HNG were blocked by ML385 treatment. DISCUSSION AND CONCLUSION HNG demonstrated a therapeutic effect on oligoasthenozoospermia in a mouse model by reducing oxidative stress and ferroptosis. In TM3 and TM4 cells, HNG attenuated cellular oxidative stress and inhibited ferroptosis via the Nrf2/GPX4 pathway.
Collapse
Affiliation(s)
- Yumeng Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiwen Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Liping Zou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
3
|
Zhang Y, Yu C, Peng C, Peng F. Potential Roles and Mechanisms of Curcumin and its Derivatives in the Regulation of Ferroptosis. Int J Biol Sci 2024; 20:4838-4852. [PMID: 39309443 PMCID: PMC11414380 DOI: 10.7150/ijbs.90798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/25/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a recently discovered iron-dependent mode of oxidatively regulated cell death. It is not only associated with a wide range of diseases, but it is also a key component of many signaling pathways. In general, ferroptosis is a double-edged sword. On one hand, it induces nonapoptotic destruction of cancer cells, but on the other, it may lead to organ damage. Therefore, ferroptosis can be drug-targeted as a novel means of therapy. The properties of curcumin have been known for many years. It has a positive impact on the treatment of diseases such as cancer and inflammation. In this review, we focus on the regulation of ferroptosis by curcumin and its derivatives and review the main mechanisms by which curcumin affects ferroptosis. In conclusion, curcumin is a ferroptosis inducer with excellent anticancer efficacy, although it also exhibits organ protective and reparative effects by acting as a ferroptosis inhibitor. The differential regulation of ferroptosis by curcumin may be related to dose and cell type.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenghao Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Kang H, Meng F, Liu F, Xie M, Lai H, Li P, Zhang X. Nanomedicines Targeting Ferroptosis to Treat Stress-Related Diseases. Int J Nanomedicine 2024; 19:8189-8210. [PMID: 39157732 PMCID: PMC11328858 DOI: 10.2147/ijn.s476948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
Ferroptosis, a unique form of regulated cell death driven by iron-dependent lethal lipid peroxidation, is implicated in various stress-related diseases like neurodegeneration, vasculopathy, and metabolic disturbance. Stress-related diseases encompass widespread medical disorders that are influenced or exacerbated by stress. These stressors can manifest in various organ or tissue systems and have significant implications for human overall health. Understanding ferroptosis in these diseases offers insights for therapeutic strategies targeting relevant pathways. This review explores ferroptosis mechanisms, its role in pathophysiology, its connection to stress-related diseases, and the potential of ferroptosis-targeted nanomedicines in treating conditions. This monograph also delves into the engineering of ferroptosis-targeted nanomedicines for tackling stress-related diseases, including cancer, cardia-cerebrovascular, neurodegenerative, metabolic and inflammatory diseases. Anyhow, nanotherapy targeting ferroptosis holds promise by both promoting and suppressing ferroptosis for managing stress-related diseases.
Collapse
Affiliation(s)
- Hao Kang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, Anhui College of Traditional Chinese Medicine, Wuhu, People’s Republic of China
- Wuhu Modern Technology Research and Development Center of Chinese Medicine and Functional Food, Wuhu, People’s Republic of China
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, People’s Republic of China
| | - Fengjie Liu
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Mengjie Xie
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Haibiao Lai
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, People’s Republic of China
| | - Pengfei Li
- Department of Oncology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Ou Z, Deng Y, Wu Y, Wang Y, Zhao Y, Liu C, Wang Z, Liu M, Hu X, Fang L, Chen J. Tongqiao Huoxue Decoction inhibits ferroptosis by facilitating ACSL4 ubiquitination degradation for neuroprotection against cerebral ischemia-reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155701. [PMID: 38788392 DOI: 10.1016/j.phymed.2024.155701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury (CIRI) refers to brain tissue injury caused by the temporary interruption of cerebral blood flow ischemia followed by the restoration of reperfusion, which is the main cause of post-stroke brain injury. A traditional Chinese herbal preparation called Tongqiao Huoxue Decoction (TQHX) has shown promise in reducing CIRI in rats. However, the mechanism of this herbal preparation for CIRI remains unclear. PURPOSE This study aimed to evaluate the therapeutic effect of TQHX extract on rats with CIRI and to further explore the underlying mechanisms. METHODS The active ingredients of TQHX extract were quantified by the high-performance liquid chromatography (HPLC) condition. We conducted thorough investigations to assess the effects of TQHX on CIRI and ferroptosis using oxygen-glucose deprivation/reperfusion (OGD/R)-treated PC12 cells as an in vitro model and transient middle cerebral artery occlusion (tMCAO) animals as an in vivo model. The neurological score assessment was performed to evaluate the neuroprotective effects of TQHX extract on tMCAO rats. Using histologic methods to study the extent of cerebral infarction, blood-brain barrier, and rat brain tissue. We examined the impact of TQHX on ferroptosis-related markers of Fe2+, superoxide dismutase (SOD), reactive oxygen species (ROS), and malondialdehyde (MDA) in the brain tissue. In addition, the expression of key proteins and markers of ferroptosis, as well as key factors associated with Acyl-CoA synthetase long-chain family member 4 (ACSL4) were detected by Western blot and quantitative real-time PCR (RT-qPCR). RESULTS TQHX extract could decrease the Longa score and extent of cerebral infarction of tMCAO rats, which exerted the function of neuroprotection. Additionally, TQHX treatment efficiently decreased levels of MDA and ROS while increasing the expression of SOD and ferroptosis-related proteins including ferritin heavy chain 1 (FTH1) and glutathione peroxidase 4 (GPX4) at the transcription and translation level. Meanwhile, TQHX provided strong protection against oxidative stress and ferritin accumulation by increasing the ubiquitination and degradation of ACSL4. The injection of OE-ACSL4 reversed the effects of TQHX on neuroprotection and ferroptosis inhibition in PC12 cells. The injection of shACSL4 reversely validate the crucial role of ACSL4 in CIRI rat treatment. CONCLUSION This work shows that TQHX promotes the ubiquitination-mediated degradation of ACSL4, which improves oxidative stress and inhibits the beginning of ferroptosis in cells. TQHX provides a possible path for additional research in CIRI therapies, advancing translational investigations.
Collapse
Affiliation(s)
- Zhijie Ou
- Changshu Hospital of Traditional Chinese Medicine, 162 Huanghe Road, Changshu City, Suzhou City, Changshu, Jiangsu Province 215516, China
| | - Yanting Deng
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Yan Wu
- Changshu Hospital of Traditional Chinese Medicine, 162 Huanghe Road, Changshu City, Suzhou City, Changshu, Jiangsu Province 215516, China
| | - Yuanqi Wang
- Changshu Hospital of Traditional Chinese Medicine, 162 Huanghe Road, Changshu City, Suzhou City, Changshu, Jiangsu Province 215516, China
| | - Yijing Zhao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Chang Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Zhuoyu Wang
- Changshu Hospital of Traditional Chinese Medicine, 162 Huanghe Road, Changshu City, Suzhou City, Changshu, Jiangsu Province 215516, China
| | - Manhua Liu
- Changshu Hospital of Traditional Chinese Medicine, 162 Huanghe Road, Changshu City, Suzhou City, Changshu, Jiangsu Province 215516, China
| | - Xin Hu
- Changshu Hospital of Traditional Chinese Medicine, 162 Huanghe Road, Changshu City, Suzhou City, Changshu, Jiangsu Province 215516, China
| | - Li Fang
- Changshu Hospital of Traditional Chinese Medicine, 162 Huanghe Road, Changshu City, Suzhou City, Changshu, Jiangsu Province 215516, China
| | - Juping Chen
- Changshu Hospital of Traditional Chinese Medicine, 162 Huanghe Road, Changshu City, Suzhou City, Changshu, Jiangsu Province 215516, China.
| |
Collapse
|
6
|
Mielke Cabello LA, Meresman G, Darici D, Carnovale N, Heitkötter B, Schulte M, Espinoza-Sánchez NA, Le QK, Kiesel L, Schäfer SD, Götte M. Assessment of the Ferroptosis Regulators: Glutathione Peroxidase 4, Acyl-Coenzyme A Synthetase Long-Chain Family Member 4, and Transferrin Receptor 1 in Patient-Derived Endometriosis Tissue. Biomolecules 2024; 14:876. [PMID: 39062590 PMCID: PMC11274870 DOI: 10.3390/biom14070876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Ferroptosis, an iron-dependent form of non-apoptotic cell death, plays a pivotal role in various diseases and is gaining considerable attention in the realm of endometriosis. Considering the classical pathomechanism theories, we hypothesized that ferroptosis, potentially driven by increased iron content at ectopic sites, may contribute to the progression of endometriosis. This retrospective case-control study provides a comprehensive immunohistochemical assessment of the expression and tissue distribution of established ferroptosis markers: GPX4, ACSL4, and TfR1 in endometriosis patients. The case group consisted of 38 women with laparoscopically and histologically confirmed endometriosis and the control group consisted of 18 women with other gynecological conditions. Our study revealed a significant downregulation of GPX4 in stromal cells of endometriosis patients (M = 59.7% ± 42.4 versus 90.0% ± 17.5 in the control group, t (54) = -2.90, p = 0.005). This finding aligned with slightly, but not significantly, higher iron levels detected in the blood of endometriosis patients, using hemoglobin as an indirect predictor (Hb 12.8 (12.2-13.5) g/dL versus 12.5 (12.2-13.4) g/dL in the control group; t (54) = -0.897, p = 0.374). Interestingly, there was no concurrent upregulation of TfR1 (M = 0.7 ± 1.2 versus 0.2 ± 0.4 for EM, t (54) = 2.552, p = 0.014), responsible for iron uptake into cells. Our empirical findings provide support for the involvement of ferroptosis in the context of endometriosis. However, variances in expression patterns within stromal and epithelial cellular subsets call for further in-depth investigations.
Collapse
Affiliation(s)
- Lidia A. Mielke Cabello
- Department of Gynecology and Obstetrics, University Hospital of Muenster, 48149 Muenster, Germany (L.K.); (S.D.S.)
| | - Gabriela Meresman
- Institute of Biology and Experimental Medicine IBYME-CONICET, Buenos Aires C1428, Argentina; (G.M.)
| | - Dogus Darici
- Institute of Anatomy and Molecular Neurobiology, University Hospital of Muenster, 48149 Muenster, Germany
| | - Noelia Carnovale
- Institute of Biology and Experimental Medicine IBYME-CONICET, Buenos Aires C1428, Argentina; (G.M.)
| | - Birthe Heitkötter
- Gerhard-Domagk-Institute of Pathology, University Hospital of Muenster, 48149 Muenster, Germany
| | - Miriam Schulte
- Gerhard-Domagk-Institute of Pathology, University Hospital of Muenster, 48149 Muenster, Germany
| | - Nancy A. Espinoza-Sánchez
- Department of Gynecology and Obstetrics, University Hospital of Muenster, 48149 Muenster, Germany (L.K.); (S.D.S.)
| | - Quang-Khoi Le
- Department of Gynecology and Obstetrics, University Hospital of Muenster, 48149 Muenster, Germany (L.K.); (S.D.S.)
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, University Hospital of Muenster, 48149 Muenster, Germany (L.K.); (S.D.S.)
| | - Sebastian D. Schäfer
- Department of Gynecology and Obstetrics, University Hospital of Muenster, 48149 Muenster, Germany (L.K.); (S.D.S.)
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital of Muenster, 48149 Muenster, Germany (L.K.); (S.D.S.)
| |
Collapse
|
7
|
Soni P, Ammal Kaidery N, Sharma SM, Gazaryan I, Nikulin SV, Hushpulian DM, Thomas B. A critical appraisal of ferroptosis in Alzheimer's and Parkinson's disease: new insights into emerging mechanisms and therapeutic targets. Front Pharmacol 2024; 15:1390798. [PMID: 39040474 PMCID: PMC11260649 DOI: 10.3389/fphar.2024.1390798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Neurodegenerative diseases represent a pressing global health challenge, and the identification of novel mechanisms underlying their pathogenesis is of utmost importance. Ferroptosis, a non-apoptotic form of regulated cell death characterized by iron-dependent lipid peroxidation, has emerged as a pivotal player in the pathogenesis of neurodegenerative diseases. This review delves into the discovery of ferroptosis, the critical players involved, and their intricate role in the underlying mechanisms of neurodegeneration, with an emphasis on Alzheimer's and Parkinson's diseases. We critically appraise unsolved mechanistic links involved in the initiation and propagation of ferroptosis, such as a signaling cascade resulting in the de-repression of lipoxygenase translation and the role played by mitochondrial voltage-dependent anionic channels in iron homeostasis. Particular attention is given to the dual role of heme oxygenase in ferroptosis, which may be linked to the non-specific activity of P450 reductase in the endoplasmic reticulum. Despite the limited knowledge of ferroptosis initiation and progression in neurodegeneration, Nrf2/Bach1 target genes have emerged as crucial defenders in anti-ferroptotic pathways. The activation of Nrf2 and the inhibition of Bach1 can counteract ferroptosis and present a promising avenue for future therapeutic interventions targeting ferroptosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Priyanka Soni
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Navneet Ammal Kaidery
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Sudarshana M. Sharma
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Irina Gazaryan
- Department of Chemical Enzymology, School of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, Pleasantville, NY, United States
| | - Sergey V. Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
| | - Dmitry M. Hushpulian
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
- A.N.Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - Bobby Thomas
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
8
|
Long Z, Luo Y, Yu M, Wang X, Zeng L, Yang K. Targeting ferroptosis: a new therapeutic opportunity for kidney diseases. Front Immunol 2024; 15:1435139. [PMID: 39021564 PMCID: PMC11251909 DOI: 10.3389/fimmu.2024.1435139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Ferroptosis is a form of non-apoptotic regulated cell death (RCD) that depends on iron and is characterized by the accumulation of lipid peroxides to lethal levels. Ferroptosis involves multiple pathways including redox balance, iron regulation, mitochondrial function, and amino acid, lipid, and glycometabolism. Furthermore, various disease-related signaling pathways also play a role in regulating the process of iron oxidation. In recent years, with the emergence of the concept of ferroptosis and the in-depth study of its mechanisms, ferroptosis is closely associated with various biological conditions related to kidney diseases, including kidney organ development, aging, immunity, and cancer. This article reviews the development of the concept of ferroptosis, the mechanisms of ferroptosis (including GSH-GPX4, FSP1-CoQ1, DHODH-CoQ10, GCH1-BH4, and MBOAT1/2 pathways), and the latest research progress on its involvement in kidney diseases. It summarizes research on ferroptosis in kidney diseases within the frameworks of metabolism, reactive oxygen biology, and iron biology. The article introduces key regulatory factors and mechanisms of ferroptosis in kidney diseases, as well as important concepts and major open questions in ferroptosis and related natural compounds. It is hoped that in future research, further breakthroughs can be made in understanding the regulation mechanism of ferroptosis and utilizing ferroptosis to promote treatments for kidney diseases, such as acute kidney injury(AKI), chronic kidney disease (CKD), diabetic nephropathy(DN), and renal cell carcinoma. This paves the way for a new approach to research, prevent, and treat clinical kidney diseases.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanfang Luo
- Department of Nephrology, The Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Min Yu
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Wang
- Department of Nephrology, The Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
9
|
Xu W, Xie B, Wei D, Song X. Dissecting hair breakage in alopecia areata: the central role of dysregulated cysteine homeostasis. Amino Acids 2024; 56:36. [PMID: 38772922 PMCID: PMC11108903 DOI: 10.1007/s00726-024-03395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/16/2024] [Indexed: 05/23/2024]
Abstract
In the initial stages of Alopecia Areata (AA), the predominance of hair breakage or exclamation mark hairs serves as vital indicators of disease activity. These signs are non-invasive and are commonly employed in dermatoscopic examinations. Despite their clinical salience, the underlying etiology precipitating this hair breakage remains largely uncharted territory. Our exhaustive review of the existing literature points to a pivotal role for cysteine-a key amino acid central to hair growth-in these mechanisms. This review will probe and deliberate upon the implications of aberrant cysteine metabolism in the pathogenesis of AA. It will examine the potential intersections of cysteine metabolism with autophagy, ferroptosis, immunity, and psychiatric manifestations associated with AA. Such exploration could illuminate new facets of the disease's pathophysiology, potentially paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Wen Xu
- School of Medicine, Zhejiang University, Yuhangtang Rd 866, Hangzhou, 310009, People's Republic of China
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Dongfan Wei
- School of Medicine, Zhejiang University, Yuhangtang Rd 866, Hangzhou, 310009, People's Republic of China
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
10
|
Carvalho FV, Landis HE, Getachew B, Silva VDA, Ribeiro PR, Aschner M, Tizabi Y. Iron toxicity, ferroptosis and microbiota in Parkinson's disease: Implications for novel targets. ADVANCES IN NEUROTOXICOLOGY 2024; 11:105-132. [PMID: 38770370 PMCID: PMC11105119 DOI: 10.1016/bs.ant.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disease characterized by loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). Iron (Fe)-dependent programmed cell death known as ferroptosis, plays a crucial role in the etiology and progression of PD. Since SNpc is particularly vulnerable to Fe toxicity, a central role for ferroptosis in the etiology and progression of PD is envisioned. Ferroptosis, characterized by reactive oxygen species (ROS)-dependent accumulation of lipid peroxides, is tightly regulated by a variety of intracellular metabolic processes. Moreover, the recently characterized bi-directional interactions between ferroptosis and the gut microbiota, not only provides another window into the mechanistic underpinnings of PD but could also suggest novel interventions in this devastating disease. Here, following a brief discussion of PD, we focus on how our expanding knowledge of Fe-induced ferroptosis and its interaction with the gut microbiota may contribute to the pathophysiology of PD and how this knowledge may be exploited to provide novel interventions in PD.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona, Tucson, AZ, United States
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | | | - Paulo R. Ribeiro
- Metabolomics Research Group, Institute of Chemistry, Federal University of Bahia, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
11
|
Tang D, Kroemer G, Kang R. Ferroptosis in immunostimulation and immunosuppression. Immunol Rev 2024; 321:199-210. [PMID: 37424139 DOI: 10.1111/imr.13235] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023]
Abstract
Ferroptosis is a form of iron-dependent regulated cell death characterized by the accumulation of toxic lipid peroxides, particularly in the plasma membrane, leading to lytic cell death. While it plays a crucial role in maintaining the overall health and proper functioning of multicellular organisms, it can also contribute to tissue damage and pathological conditions. Although ferroptotic damage is generally recognized as an immunostimulatory process associated with the release of damage-associated molecular patterns (DAMPs), the occurrence of ferroptosis in immune cells or the release of immunosuppressive molecules can result in immune tolerance. Consequently, there is ongoing exploration of targeting the upstream signals or the machinery of ferroptosis to therapeutically enhance or inhibit the immune response. In addition to introducing the core molecular mechanisms of ferroptosis, we will focus on the immune characteristics of ferroptosis in pathological conditions, particularly in the context of infection, sterile inflammation, and tumor immunity.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Xue X, Wang M, Zhang X, Ma L, Wang J. PAR-CLIP Assay in Ferroptosis. Methods Mol Biol 2023; 2712:29-43. [PMID: 37578694 DOI: 10.1007/978-1-0716-3433-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Ferroptosis is a regulatory cell death process that is accompanied by large amounts of iron ion accumulation and lipid peroxidation. Photoactivated ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) is a method used to identify the binding sites of RNA-binding proteins (RBPs) on target RNAs with high resolution at the nucleotide level. By inserting photosensitive ribonucleoside analogs into new RNA transcripts of living cells, characteristic mutations can be generated during reverse transcription and be used to accurately locate the crosslinking position of RNAs and RBPs. The use of PAR-CLIP to detect interactions and determine precise crosslinking sites between RNAs and RBPs, or to search for RNAs upstream or downstream of ferroptosis pathways genes through known proteins, can help to clarify and verify the occurrence and regulation mechanisms of the various signaling pathways of ferroptosis. Furthermore, it may reveal new targets for ferroptosis detection and improve the treatment efficiency of ferroptosis-related diseases such as cancer and neurodegenerative diseases. Here, we introduce a specific PAR-CLIP protocol for monitoring the ferroptosis process.
Collapse
Affiliation(s)
- Xiangfei Xue
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manyuan Wang
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifang Ma
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|