1
|
Chahat, Kumar B, Gupta S, Wahajuddin M, Joshi G. Reconnecting the roots of hydrogen sulfide (H 2S) with medicinal chemistry: Lessons accomplished and challenges so far. Bioorg Chem 2025; 161:108569. [PMID: 40359841 DOI: 10.1016/j.bioorg.2025.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/14/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Previously known for its unpleasant odour and mortality in elevated concentrations, hydrogen sulfide (H2S) is currently considered a complex molecule having significant physiological advantages. After nitric oxide (NO) and carbon monoxide (CO), H2S is regarded as the third endogenous gasotransmitter, performing many biological functions in the human body. The essential functions include but are not limited to regulating inflammation, maintaining the redox potential, cellular signalling, and metabolic processes. Moreover, an imbalance in its expression or dysfunction of its precursors and associated enzymes in its biosynthesis leads to multiple pathological conditions, including cancer, diabetes, neurodegenerative disorders, COVID-19, etc. Nonetheless, its upregulation is also reported to dysregulate normal physiological conditions and precipitate different diseases and cancer, thus acting as a "Double-edged sword." Despite this, H2S is still being widely explored for its therapeutic potential in various disease states. The present review is put forth to focus on hydrogen sulfide's dichotomous properties, emphasising its critical functions and therapeutic applications. This compilation provides a state-of-the-art analysis of the broad application of H2S donors in developing therapeutic interventions, release mechanisms, and their use in numerous diseases and disorders. Furthermore, various analytical techniques for detecting and quantifying the H2S release in biological samples via the hybrid donors are also discussed. We herein expect that an in-depth comprehension of the multiple activities of H2S can aid in discovering novel therapeutic interventions critical for holistic disease management measures in the future.
Collapse
Affiliation(s)
- Chahat
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar 246174,Dist Garhwal, (Uttarakhand), India
| | - Bhupinder Kumar
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar 246174,Dist Garhwal, (Uttarakhand), India
| | - Shankar Gupta
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar 246174,Dist Garhwal, (Uttarakhand), India
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, United Kingdom.
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar 246174,Dist Garhwal, (Uttarakhand), India; Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, United Kingdom.
| |
Collapse
|
2
|
Sun D, Wang L, Wu Y, Yu Y, Yao Y, Yang H, Hao C. Lipid metabolism in ferroptosis: mechanistic insights and therapeutic potential. Front Immunol 2025; 16:1545339. [PMID: 40134420 PMCID: PMC11932849 DOI: 10.3389/fimmu.2025.1545339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, plays a pivotal role in various physiological and pathological processes. In this review, we summarize the core mechanisms of ferroptosis, emphasizing its intricate connections to lipid metabolism, including fatty acid synthesis, phospholipid remodeling, and oxidation dynamics. We further highlight advancements in detection technologies, such as fluorescence imaging, lipidomics, and in vivo PET imaging, which have deepened our understanding of ferroptotic regulation. Additionally, we discuss the role of ferroptosis in human diseases, where it acts as a double-edged sword, contributing to cancer cell death while also driving ischemia-reperfusion injury and neurodegeneration. Finally, we explore therapeutic strategies aimed at either inducing or inhibiting ferroptosis, including iron chelation, antioxidant modulation, and lipid-targeted interventions. By integrating mechanistic insights, disease relevance, and therapeutic potential, this review provides a comprehensive perspective on ferroptosis as a crucial interface between lipid metabolism and oxidative stress.
Collapse
Affiliation(s)
- Daoyun Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Zhengzhou, Henan, China
| | - Longfei Wang
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Zhengzhou, Henan, China
| | - Yufan Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hongju Yang
- Division of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chunlin Hao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Dvorak T, Hernandez-Sandoval H, Cheku S, Mora Valencia González M, Borer L, Grieser R, Carlson KA, Cao H. Development of a Rapid-Response Fluorescent Probe for H 2S: Mechanism Elucidation and Biological Applications. BIOSENSORS 2025; 15:174. [PMID: 40136971 PMCID: PMC11940642 DOI: 10.3390/bios15030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
Hydrogen sulfide (H2S) is an important signaling molecule involved in various physiological and pathological processes, making its accurate detection in biological systems highly desirable. In this study, two fluorescent probes (M1 and M2) based on 1,8-naphthalimide were developed for H2S detection via a nucleophilic aromatic substitution. M1 demonstrated high sensitivity and selectivity for H2S in aqueous media, with a detection limit of 0.64 µM and a strong linear fluorescence response in the range of 0-22 µM of NaHS. The reaction kinetics revealed a rapid response, with a reaction rate constant of 7.56 × 102 M-1 s-1, and M1 was most effective in the pH range of 6-10. Mechanism studies using 1H NMR titration confirmed the formation of 4-hydroxyphenyl-1,8-naphthalimide as the product of H2S-triggered nucleophilic substitution. M1 was applied in MDA-MB-231 cells for cell imaging, in which M1 provided significant fluorescence enhancement upon NaHS treatment, confirming its applicability for detecting H2S in biological environments. In comparison, M2, designed with extended conjugation for red-shifted emission, exhibited weaker sensitivity due to the reduced stability of its naphtholate product and lower solubility. These results demonstrate that M1 is a highly effective and selective fluorescent probe for detecting H2S, providing a valuable resource for investigating the biological roles of H2S in health and disease.
Collapse
Affiliation(s)
- Trevor Dvorak
- Department of Chemistry, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA
| | - Haley Hernandez-Sandoval
- Department of Chemistry, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA
| | - Sunayn Cheku
- Department of Biology, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA (K.A.C.)
| | - Marijose Mora Valencia González
- Facultad de Medicina Región Veracruz, Universidad Veracruzana, C. Agustín de Iturbide S/N, Zona Centro, Veracruz 91700, Mexico
| | - Linus Borer
- Department of Chemistry, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA
| | - Riley Grieser
- Department of Chemistry, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA
| | - Kimberly A. Carlson
- Department of Biology, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA (K.A.C.)
| | - Haishi Cao
- Department of Chemistry, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA
| |
Collapse
|
4
|
Song D, He J, Cheng T, Jin L, Li S, Chen B, Li Y, Liao C. Cystathionine γ-lyase contributes to exacerbation of periodontal destruction in experimental periodontitis under hyperglycemia. J Periodontol 2025; 96:255-267. [PMID: 38937859 DOI: 10.1002/jper.23-0811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Diabetes is one of the major inflammatory comorbidities of periodontitis via 2-way interactions. Cystathionine γ-lyase (CTH) is a pivotal endogenous enzyme synthesizing hydrogen sulfide (H2S), and CTH/H2S is crucially implicated in modulating inflammation in various diseases. This study aimed to explore the potential role of CTH in experimental periodontitis under a hyperglycemic condition. METHODS CTH-silenced and normal human periodontal ligament cells (hPDLCs) were cultured in a high glucose and Porphyromonas gingivalis lipopolysaccharide (P.g-LPS) condition. The effects of CTH on hPDLCs were assessed by Cell Counting Kit 8 (CCK8), real-time quantitative polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA). The model of experimental periodontitis under hyperglycemia was established on both Cth-/- and wild-type (WT) mice, and the extent of periodontal destruction was assessed by micro-CT, histology, RNA-Seq, Western blot, tartrate-resistant acid phosphatase (TRAP) staining and immunostaining. RESULTS CTH mRNA expression increased in hPDLCs in response to increasing concentration of P.g-LPS stimulation in a high glucose medium. With reference to WT mice, Cth-/- mice with experimental periodontitis under hyperglycemia exhibited reduced bone loss, decreased leukocyte infiltration and hindered osteoclast formation, along with reduced expression of proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in periodontal tissue. RNA-seq-enriched altered NF-κB pathway signaling in healthy murine gingiva with experimental periodontitis mice under hyperglycemia. Accordingly, phosphorylation of p65 (P-p65) was alleviated in CTH-silenced hPDLCs, leading to decreased expression of IL6 and TNF. CTH knockdown inhibited activation of nuclear factor kappa-B (NF-κB) pathway and decreased production of proinflammatory cytokines under high glucose and P.g-LPS treatment. CONCLUSION The present findings suggest the potential of CTH as a therapeutic target for tackling periodontitis in diabetic patients.
Collapse
Affiliation(s)
- Danni Song
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Jiangfeng He
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Tianfan Cheng
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Lijian Jin
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Sijin Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Beibei Chen
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Yongming Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Chongshan Liao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| |
Collapse
|
5
|
González-Alfonso WL, Petrosyan P, Del Razo LM, Sánchez-Peña LC, Tapia-Rodríguez M, Hernández-Muñoz R, Gonsebatt ME. Chronic Exposure to Arsenic and Fluoride Starting at Gestation Alters Liver Mitochondrial Protein Expression and Induces Early Onset of Liver Fibrosis in Male Mouse Offspring. Biol Trace Elem Res 2025; 203:930-943. [PMID: 38676876 PMCID: PMC11750905 DOI: 10.1007/s12011-024-04198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
The presence of arsenic (As) and fluoride (F-) in drinking water is of concern due to the enormous number of individuals exposed to this condition worldwide. Studies in cultured cells and animal models have shown that As- or F-induced hepatotoxicity is primarily associated with redox disturbance and altered mitochondrial homeostasis. To explore the hepatotoxic effects of chronic combined exposure to As and F- in drinking water, pregnant CD-1 mice were exposed to 2 mg/L As (sodium arsenite) and/or 25 mg/L F- (sodium fluoride). The male offspring continued the exposure treatment up to 30 (P30) or 90 (P90) postnatal days. GSH levels, cysteine synthesis enzyme activities, and cysteine transporter levels were investigated in liver homogenates, as well as the expression of biomarkers of ferroptosis and mitochondrial biogenesis-related proteins. Serum transaminase levels and Hematoxylin-Eosin and Masson trichrome-stained liver tissue slices were examined. Combined exposure at P30 significantly reduced GSH levels and the mitochondrial transcription factor A (TFAM) expression while increasing lipid peroxidation, free Fe 2+, p53 expression, and serum ALT activity. At P90, the upregulation of cysteine uptake and synthesis was associated with a recovery of GSH levels. Nevertheless, the downregulation of TFAM continued and was now associated with a downstream inhibition of the expression of MT-CO2 and reduced levels of mtDNA and fibrotic liver damage. Our experimental approach using human-relevant doses gives evidence of the increased risk for early liver damage associated with elevated levels of As and F- in the diet during intrauterine and postnatal period.
Collapse
Affiliation(s)
- Wendy L González-Alfonso
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, México
| | - Pavel Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, México
| | - Luz M Del Razo
- Departamento de Toxicología, Centro de Investigación y Estudios Avanzados, 07360, Mexico City, Mexico
| | - Luz C Sánchez-Peña
- Departamento de Toxicología, Centro de Investigación y Estudios Avanzados, 07360, Mexico City, Mexico
| | - Miguel Tapia-Rodríguez
- Unidad de Microscopia, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, 04510, México
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, México.
| |
Collapse
|
6
|
Kieronska-Rudek A, Ascencao K, Chlopicki S, Szabo C. Increased hydrogen sulfide turnover serves a cytoprotective role during the development of replicative senescence. Biochem Pharmacol 2024; 230:116595. [PMID: 39454733 DOI: 10.1016/j.bcp.2024.116595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/15/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The mammalian gasotransmitter hydrogen sulfide (H2S) is produced by enzymes such as cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (3-MST). Prior studies suggest that H2S may have cytoprotective and anti-aging effects. This project explores the regulation and role of endogenous H2S in a murine model of replicative senescence. H2S and polysulfide levels in RAW 264.7 murine macrophages (control cells: passage 5-10; senescent cells: passage 30-40) were measured using fluorescent probes. The expression of H2S-related enzymes and the activity of senescence marker beta-galactosidase (SA-β-Gal) were also analyzed. CBS, CSE, and 3-MST were inhibited using selective pharmacological inhibitors. Senescence led to a moderate upregulation of CBS and in a significant increase in CSE and 3-MST. H2S degradation enzymes were also elevated in senescence. Inhibition of H2S-producing enzymes reduced H2S levels but increased polysulfides. Inhibition of H2S production during senescence suppressed cell proliferation, and elevated SA-β-Gal and p21 levels. Comparing young and old mice spleens revealed downregulation of CBS and ETHE1 and upregulation of rhodanese and SUOX in older mice. The results demonstrate that increased reactive sulfur turnover occurs in senescent macrophages and that reactive sulfur species support cell proliferation and regulate cellular senescence.
Collapse
Affiliation(s)
- Anna Kieronska-Rudek
- Chair of Pharmacology, Department of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Cracow, Poland
| | - Kelly Ascencao
- Chair of Pharmacology, Department of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Cracow, Poland; Jagiellonian University Medical College, Chair of Pharmacology, Faculty of Medicine, Cracow, Poland
| | - Csaba Szabo
- Chair of Pharmacology, Department of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
7
|
Mao Y, Li Y, Wang H, Sun Y, Yu S, Niu H, Ye T, Guo L, Li L, Wang J. Near-infrared fluorescent probe based on the regulatory dye pKa for imaging of H 2S in rice roots and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124762. [PMID: 38959687 DOI: 10.1016/j.saa.2024.124762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Hydrogen sulfide (H2S) is a key factor in various biological processes such as plant grow and its response to environmental stress. Here, we develop a novel near-infrared (NIR) fluorescent probe for detecting hydrogen sulfide based on the regulatory NIR dye pKa values. After triggering the H2S substitution response, probe A with introducing the cyano moiety not only exhibits a significant near-infrared emission (Emax: 724 nm) response in physiological environments, but also shows a fast response, high selectivity, and sensitivity (LOD as 0.52 µM). In addition, probe A with low biological cytotoxicity is successfully used for imaging detection of cellular exogenous and endogenous hydrogen sulfide. More importantly, in situ imaging of probe A tracks the H2S fluctuations in the rice root system and its response to environmental stress. Hence, this work offers a new NIR fluorescence imaging monitoring tool for hydrogen sulfide in biological systems.
Collapse
Affiliation(s)
- Yanyun Mao
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanbo Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Huajin Wang
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China.
| | - Yaxin Sun
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Silu Yu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Haiyi Niu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Tianqing Ye
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Jianbo Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
8
|
Tsou SH, Lin SC, Chen WJ, Hung HC, Liao CC, Kornelius E, Huang CN, Lin CL, Yang YS. Hydrogen-Rich Water (HRW) Reduces Fatty Acid-Induced Lipid Accumulation and Oxidative Stress Damage through Activating AMP-Activated Protein Kinase in HepG2 Cells. Biomedicines 2024; 12:1444. [PMID: 39062020 PMCID: PMC11274623 DOI: 10.3390/biomedicines12071444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by excessive fat accumulation in the liver. Intracellular oxidative stress induced by lipid accumulation leads to various hepatocellular injuries including fibrosis. However, no effective method for mitigating MASLD without substantial side effects currently exists. Molecular hydrogen (H2) has garnered attention due to its efficiency in neutralizing harmful reactive oxygen species (ROS) and its ability to penetrate cell membranes. Some clinical evidence suggests that H2 may alleviate fatty liver disease, but the precise molecular mechanisms, particularly the regulation of lipid droplet (LD) metabolism, remain unclear. This study utilized an in vitro model of hepatocyte lipid accumulation induced by free fatty acids (FFAs) to replicate MASLD in HepG2 cells. The results demonstrated a significant increase in LD accumulation due to elevated FFA levels. However, the addition of hydrogen-rich water (HRW) effectively reduced LD accumulation. HRW decreased the diameter of LDs and reduced lipid peroxidation and FFA-induced oxidative stress by activating the AMPK/Nrf2/HO-1 pathway. Overall, our findings suggest that HRW has potential as an adjunctive supplement in managing fatty liver disease by reducing LD accumulation and enhancing antioxidant pathways, presenting a novel strategy for impeding MASLD progression.
Collapse
Affiliation(s)
- Sing-Hua Tsou
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| | - Sheng-Chieh Lin
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (S.-C.L.); (E.K.)
- Department of Orthopaedics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Wei-Jen Chen
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Hui-Chih Hung
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan;
| | - Chun-Cheng Liao
- Department of Family Medicine, Taichung Armed Forces General Hospital, Taichung 411, Taiwan;
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Edy Kornelius
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (S.-C.L.); (E.K.)
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| | - Chien-Ning Huang
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chih-Li Lin
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Sun Yang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (S.-C.L.); (E.K.)
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| |
Collapse
|
9
|
Yu X, Li X, Yang H. Unraveling intestinal microbiota's dominance in polycystic ovary syndrome pathogenesis over vaginal microbiota. Front Cell Infect Microbiol 2024; 14:1364097. [PMID: 38606298 PMCID: PMC11007073 DOI: 10.3389/fcimb.2024.1364097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a prevalent endocrine disease in women, intricately linked to hormonal imbalances. The microbiota composition plays a pivotal role in influencing hormonal levels within the body. In this study, we utilized a murine model to investigate how intestinal and vaginal microbiota interact with hormones in the development of PCOS. Methods Twenty female mice were randomly assigned to the normal group (N) and the model group (P), where the latter received daily subcutaneous injections of 0.1 mL DHEA (6 mg/100 g). Throughout the experiment, we evaluated the PCOS mouse model by estrus cycle, serum total testosterone (T), prolactin (PRL) and luteinizing hormone (LH) levels, and ovarian pathological morphology. The microbial composition in both intestinal content and vaginal microbiota were studied by 16S rRNA gene high-throughput sequencing. Results Compared with the N group, the P group showed significant increases in body weight, T, and PRL, with significant decrease in LH. Ovaries exhibited polycystic changes, and the estrous cycle was disrupted. The intestinal microbiota result shows that Chao1, ACE, Shannon and Simpson indexes were decreased, Desulfobacterota and Acidobacteriota were increased, and Muribaculaceae, Limosilactobacillus and Lactobacillus were decreased in the P group. T was significantly positively correlated with Enterorhabdus, and LH was significantly positively correlated with Lactobacillus. The analysis of vaginal microbiota revealed no significant changes in Chao1, ACE, Shannon, and Simpson indices. However, there were increased in Firmicutes, Bacteroidota, Actinobacteriota, Streptococcus, and Muribaculaceae. Particularly, Rodentibacter displayed a robust negative correlation with other components of the vaginal microbiota. Conclusion Therefore, the response of the intestinal microbiota to PCOS is more significant than that of the vaginal microbiota. The intestinal microbiota is likely involved in the development of PCOS through its participation in hormonal regulation.
Collapse
Affiliation(s)
- Xia Yu
- Hunan Women and Children’s Hospital, Changsha, China
| | | | - Hui Yang
- Hunan Women and Children’s Hospital, Changsha, China
| |
Collapse
|