1
|
Hickman-Lewis K, Moore KR, Hollis JJR, Tuite ML, Beegle LW, Bhartia R, Grotzinger JP, Brown AJ, Shkolyar S, Cavalazzi B, Smith CL. In Situ Identification of Paleoarchean Biosignatures Using Colocated Perseverance Rover Analyses: Perspectives for In Situ Mars Science and Sample Return. ASTROBIOLOGY 2022; 22:1143-1163. [PMID: 35862422 PMCID: PMC9508457 DOI: 10.1089/ast.2022.0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The NASA Mars 2020 Perseverance rover is currently exploring Jezero crater, a Noachian-Hesperian locality that once hosted a delta-lake system with high habitability and biosignature preservation potential. Perseverance conducts detailed appraisals of rock targets using a synergistic payload capable of geological characterization from kilometer to micron scales. The highest-resolution textural and chemical information will be provided by correlated WATSON (imaging), SHERLOC (deep-UV Raman and fluorescence spectroscopy), and PIXL (X-ray lithochemistry) analyses, enabling the distributions of organic and mineral phases within rock targets to be comprehensively established. Herein, we analyze Paleoarchean microbial mats from the ∼3.42 Ga Buck Reef Chert (Barberton greenstone belt, South Africa)-considered astrobiological analogues for a putative ancient martian biosphere-following a WATSON-SHERLOC-PIXL protocol identical to that conducted by Perseverance on Mars during all sampling activities. Correlating deep-UV Raman and fluorescence spectroscopic mapping with X-ray elemental mapping, we show that the Perseverance payload has the capability to detect thermally and texturally mature organic materials of biogenic origin and can highlight organic-mineral interrelationships and elemental colocation at fine spatial scales. We also show that the Perseverance protocol obtains very similar results to high-performance laboratory imaging, Raman spectroscopy, and μXRF instruments. This is encouraging for the prospect of detecting microscale organic-bearing textural biosignatures on Mars using the correlative micro-analytical approach enabled by WATSON, SHERLOC, and PIXL; indeed, laminated, organic-bearing samples such as those studied herein are considered plausible analogues of biosignatures from a potential Noachian-Hesperian biosphere. Were similar materials discovered at Jezero crater, they would offer opportunities to reconstruct aspects of the early martian carbon cycle and search for potential fossilized traces of life in ancient paleoenvironments. Such samples should be prioritized for caching and eventual return to Earth.
Collapse
Affiliation(s)
- Keyron Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Kelsey R. Moore
- NASA Jet Propulsion Laboratory, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | | | | | | | | | - John P. Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | | | - Svetlana Shkolyar
- Department of Astronomy, University of Maryland, College Park, Maryland, USA
- Planetary Geology, Geophysics and Geochemistry Lab, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Barbara Cavalazzi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Caroline L. Smith
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Cavalazzi B, Lemelle L, Simionovici A, Cady SL, Russell MJ, Bailo E, Canteri R, Enrico E, Manceau A, Maris A, Salomé M, Thomassot E, Bouden N, Tucoulou R, Hofmann A. Cellular remains in a ~3.42-billion-year-old subseafloor hydrothermal environment. SCIENCE ADVANCES 2021; 7:eabf3963. [PMID: 34261651 PMCID: PMC8279515 DOI: 10.1126/sciadv.abf3963] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/28/2021] [Indexed: 05/15/2023]
Abstract
Subsurface habitats on Earth host an extensive extant biosphere and likely provided one of Earth's earliest microbial habitats. Although the site of life's emergence continues to be debated, evidence of early life provides insights into its early evolution and metabolic affinity. Here, we present the discovery of exceptionally well-preserved, ~3.42-billion-year-old putative filamentous microfossils that inhabited a paleo-subseafloor hydrothermal vein system of the Barberton greenstone belt in South Africa. The filaments colonized the walls of conduits created by low-temperature hydrothermal fluid. Combined with their morphological and chemical characteristics as investigated over a range of scales, they can be considered the oldest methanogens and/or methanotrophs that thrived in an ultramafic volcanic substrate.
Collapse
Affiliation(s)
- Barbara Cavalazzi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy.
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | | | - Alexandre Simionovici
- ISTerre, University of Grenoble-Alpes, CNRS, Grenoble, France
- Institut Universitaire de France, Paris, France
| | - Sherry L Cady
- Pacific Northwest National Laboratory, EMSL, Richland, WA, USA
| | - Michael J Russell
- Dipartimento di Chimica, Università degli Studi di Torino, Torino, Italy
| | | | | | - Emanuele Enrico
- INRiM, Istituto Nazionale di Ricerca Metrologica, Torino, Italy
| | - Alain Manceau
- ISTerre, University of Grenoble-Alpes, CNRS, Grenoble, France
| | - Assimo Maris
- Dipartimento di Chimica "Giacomo Ciamician," Università di Bologna, Bologna, Italy
| | | | | | | | - Rémi Tucoulou
- European Synchrotron Radiation Facility, Grenoble, France
| | - Axel Hofmann
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
3
|
Metallomics in deep time and the influence of ocean chemistry on the metabolic landscapes of Earth's earliest ecosystems. Sci Rep 2020; 10:4965. [PMID: 32188894 PMCID: PMC7080831 DOI: 10.1038/s41598-020-61774-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/02/2020] [Indexed: 11/24/2022] Open
Abstract
Modern biological dependency on trace elements is proposed to be a consequence of their enrichment in the habitats of early life together with Earth’s evolving physicochemical conditions; the resulting metallic biological complement is termed the metallome. Herein, we detail a protocol for describing metallomes in deep time, with applications to the earliest fossil record. Our approach extends the metallome record by more than 3 Ga and provides a novel, non-destructive method of estimating biogenicity in the absence of cellular preservation. Using microbeam particle-induced X-ray emission (µPIXE), we spatially quantify transition metals and metalloids within organic material from 3.33 billion-year-old cherts of the Barberton greenstone belt, and demonstrate that elements key to anaerobic prokaryotic molecular nanomachines, including Fe, V, Ni, As and Co, are enriched within carbonaceous material. Moreover, Mo and Zn, likely incorporated into enzymes only after the Great Oxygenation Event, are either absent or present at concentrations below the limit of detection of µPIXE, suggesting minor biological utilisation in this environmental setting. Scanning and transmission electron microscopy demonstrates that metal enrichments do not arise from accumulation in nanomineral phases and thus unambiguously reflect the primary composition of the carbonaceous material. This carbonaceous material also has δ13C between −41.3‰ and 0.03‰, dominantly −21.0‰ to −11.5‰, consistent with biological fractionation and mostly within a restricted range inconsistent with abiotic processes. Considering spatially quantified trace metal enrichments and negative δ13C fractionations together, we propose that, although lacking cellular preservation, this organic material has biological origins and, moreover, that its precursor metabolism may be estimated from the fossilised “palaeo-metallome”. Enriched Fe, V, Ni and Co, together with petrographic context, suggests that this kerogen reflects the remnants of a lithotrophic or organotrophic consortium cycling methane or nitrogen. Palaeo-metallome compositions could be used to deduce the metabolic networks of Earth’s earliest ecosystems and, potentially, as a biosignature for evaluating the origin of preserved organic materials found on Mars.
Collapse
|
4
|
Olsson-Francis K, Pearson VK, Steer ED, Schwenzer SP. Determination of Geochemical Bio-Signatures in Mars-Like Basaltic Environments. Front Microbiol 2017; 8:1668. [PMID: 28943863 PMCID: PMC5596621 DOI: 10.3389/fmicb.2017.01668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/17/2017] [Indexed: 11/28/2022] Open
Abstract
Bio-signatures play a central role in determining whether life existed on early Mars. Using a terrestrial basalt as a compositional analog for the martian surface, we applied a combination of experimental microbiology and thermochemical modeling techniques to identify potential geochemical bio-signatures for life on early Mars. Laboratory experiments were used to determine the short-term effects of biota on the dissolution of terrestrial basalt, and the formation of secondary alteration minerals. The chemoorganoheterotrophic bacterium, Burkholderia sp. strain B_33, was grown in a minimal growth medium with and without terrestrial basalt as the sole nutrient source. No growth was detected in the absence of the basalt. In the presence of basalt, during exponential growth, the pH decreased rapidly from pH 7.0 to 3.6 and then gradually increased to a steady-state of equilibrium of between 6.8 and 7.1. Microbial growth coincided with an increase in key elements in the growth medium (Si, K, Ca, Mg, and Fe). Experimental results were compared with theoretical thermochemical modeling to predict growth of secondary alteration minerals, which can be used as bio-signatures, over a geological timescale. We thermochemically modeled the dissolution of the basalt (in the absence of biota) in very dilute brine at 25°C, 1 bar; the pH was buffered by the mineral dissolution and precipitation reactions. Preliminary results suggested that at the water to rock ratio of 1 × 107, zeolite, hematite, chlorite, kaolinite, and apatite formed abiotically. The biotic weathering processes were modeled by varying the pH conditions within the model to adjust for biologic influence. The results suggested that, for a basaltic system, the microbially-mediated dissolution of basalt would result in “simpler” secondary alteration, consisting of Fe-hydroxide and kaolinite, under conditions where the abiotic system would also form chlorite. The results from this study demonstrate that, by using laboratory-based experiments and thermochemical modeling, it is possible to identify secondary alteration minerals that could potentially be used to distinguish between abiotic and biotic weathering processes on early Mars. This work will contribute to the interpretation of data from past, present, and future life detection missions to Mars.
Collapse
Affiliation(s)
- Karen Olsson-Francis
- School of Environment, Earth and Ecosystem Sciences, Open UniversityMilton Keynes, United Kingdom
| | - Victoria K Pearson
- School of Physical Sciences, Open UniversityMilton Keynes, United Kingdom
| | - Elisabeth D Steer
- School of Physical Sciences, Open UniversityMilton Keynes, United Kingdom.,Nanoscale and Microscale Research Centre, University of NottinghamNottingham, United Kingdom
| | - Susanne P Schwenzer
- School of Environment, Earth and Ecosystem Sciences, Open UniversityMilton Keynes, United Kingdom
| |
Collapse
|
5
|
Lemelle L, Simionovici A, Schoonjans T, Tucoulou R, Enrico E, Salomé M, Hofmann A, Cavalazzi B. Analytical requirements for quantitative X-ray fluorescence nano-imaging of metal traces in solid samples. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
|
7
|
Bailey JV, Orphan VJ, Joye SB, Corsetti FA. Chemotrophic microbial mats and their potential for preservation in the rock record. ASTROBIOLOGY 2009; 9:843-859. [PMID: 19968462 DOI: 10.1089/ast.2008.0314] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Putative microbialites are commonly regarded to have formed in association with photosynthetic microorganisms, such as cyanobacteria. However, many modern microbial mat ecosystems are dominated by chemotrophic bacteria and archaea. Like phototrophs, filamentous sulfur-oxidizing bacteria form large mats at the sediment/water interface that can act to stabilize sediments, and their metabolic activities may mediate the formation of marine phosphorites. Similarly, bacteria and archaea associated with the anaerobic oxidation of methane (AOM) catalyze the precipitation of seafloor authigenic carbonates. When preserved, lipid biomarkers, isotopic signatures, body fossils, and lithological indicators of the local depositional environment may be used to identify chemotrophic mats in the rock record. The recognition of chemotrophic communities in the rock record has the potential to transform our understanding of ancient microbial ecologies, evolution, and geochemical conditions. Chemotrophic microbes on Earth occupy naturally occurring interfaces between oxidized and reduced chemical species and thus may provide a new set of search criteria to target life-detection efforts on other planets.
Collapse
Affiliation(s)
- Jake V Bailey
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | |
Collapse
|