1
|
Murakami A, Komatsu Y, Takizawa K. Remote Detection of Red Edge Spectral Characteristics in Floating Aquatic Vegetation. ASTROBIOLOGY 2025; 25:209-224. [PMID: 39989105 DOI: 10.1089/ast.2024.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The vegetation red edge of terrestrial plants is a key biosignature for the detection of life on Earth-like habitable exoplanets. Although water is essential for plants, an excess of water can limit the distribution of terrestrial vegetation. On planets with extensive water coverage and limited land, floating vegetation on the water's surface could serve as a crucial indicator of life. This study examined the spectral reflectance of floating plants across various scales, from individual leaves to lake-wide vegetation coverage. Our comparisons between individual leaves revealed that the red edge of floating plants was equivalent to or even more pronounced than that of terrestrial plants. Although water can reduce plant reflectance, the naturally low reflectance of water enhances the detection sensitivity for floating vegetation. Our observations of seasonal changes, such as the proliferation of floating plants in summer and their decline in winter, revealed significant variations in lake reflectance. By analyzing satellite images of lakes and marshes over a 5-year period, we confirmed that these seasonal variations in reflectance reliably indicated the presence of floating vegetation. The seasonal signal showed robustness to the effects of clouds, which pose another challenge on water-rich planets. We propose that floating vegetation be considered alongside, or even in place of, terrestrial vegetation in the search for extraterrestrial life.
Collapse
Affiliation(s)
- Aoi Murakami
- National Institute for Basic Biology, Okazaki, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
- Astrobiology Center, Mitaka, Japan
| | - Yu Komatsu
- Astrobiology Center, Mitaka, Japan
- National Astronomical Observatory of Japan, Mitaka, Japan
| | - Kenji Takizawa
- National Institute for Basic Biology, Okazaki, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
- Astrobiology Center, Mitaka, Japan
| |
Collapse
|
2
|
Chitnavis S, Gray C, Rousouli I, Gillen E, Mullineaux CW, Haworth TJ, Duffy CDP. Optimizing photosynthetic light-harvesting under stars: simple and general antenna models. PHOTOSYNTHESIS RESEARCH 2024; 162:75-92. [PMID: 39256265 DOI: 10.1007/s11120-024-01118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
In the next 10-20 years, several observatories will aim to detect the signatures of oxygenic photosynthesis on exoplanets, though targets must be carefully selected. Most known potentially habitable exo-planets orbit cool M-dwarf stars, which have limited emission in the photosynthetically active region of the spectrum (PAR, 400 < λ < 700 nm) used by Earth's oxygenic photoautotrophs. Still, recent experiments have shown that model cyanobacteria, algae, and non-vascular plants grow comfortably under simulated M-dwarf light, though vascular plants struggle. Here, we hypothesize that this is partly due to the different ways they harvest light, reflecting some general rule that determines how photosynthetic antenna structures may evolve under different stars. We construct a simple thermodynamic model of an oxygenic antenna-reaction centre supercomplex and determine the optimum structure, size and absorption spectrum under light from several star types. For the hotter G (e.g. the Sun) and K-stars, a small modular antenna is optimal and qualitatively resembles the PSII-LHCII supercomplex of higher plants. For the cooler M-dwarfs, a very large antenna with a steep 'energy funnel' is required, resembling the cyanobacterial phycobilisome. For the coolest M-dwarfs an upper limit is reached, where increasing antenna size further is subject to steep diminishing returns in photosynthetic output. We conclude that G- and K-stars could support a range of niches for oxygenic photo-autotrophs, including high-light adapted canopy vegetation that may generate detectable bio-signatures. M-dwarfs may only be able to support low light-adapted organisms that have to invest considerable resources in maintaining a large antenna. This may negatively impact global coverage and therefore detectability.
Collapse
Affiliation(s)
- Samir Chitnavis
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End, London, E1 4NS, UK
- Digital Environment Research Institute, Queen Mary University of London, Empire House Whitechapel, London, E1 1HH, UK
| | - Callum Gray
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End, London, E1 4NS, UK
- Digital Environment Research Institute, Queen Mary University of London, Empire House Whitechapel, London, E1 1HH, UK
| | - Ifigeneia Rousouli
- Astronomy Unit, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Edward Gillen
- Astronomy Unit, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End, London, E1 4NS, UK
| | - Thomas J Haworth
- Astronomy Unit, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Christopher D P Duffy
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End, London, E1 4NS, UK.
- Digital Environment Research Institute, Queen Mary University of London, Empire House Whitechapel, London, E1 1HH, UK.
| |
Collapse
|
3
|
Cockell CS. Astrobiology by Gavriil Tikhov. ASTROBIOLOGY 2024; 24:643-668. [PMID: 38917420 DOI: 10.1089/ast.2024.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
| |
Collapse
|
4
|
Case N, Johnston N, Nadeau J. Fluorescence Microscopy with Deep UV, Near UV, and Visible Excitation for In Situ Detection of Microorganisms. ASTROBIOLOGY 2024; 24:300-317. [PMID: 38507693 PMCID: PMC10979697 DOI: 10.1089/ast.2023.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/02/2024] [Indexed: 03/22/2024]
Abstract
We report a simple, inexpensive design of a fluorescence microscope with light-emitting diode (LED) excitation for detection of labeled and unlabeled microorganisms in mineral substrates. The use of deep UV (DUV) excitation with visible emission requires no specialized optics or slides and can be implemented easily and inexpensively using an oblique illumination geometry. DUV excitation (<280 nm) is preferable to near UV (365 nm) for avoidance of mineral autofluorescence. When excited with DUV, unpigmented bacteria show two emission peaks: one in the near UV ∼320 nm, corresponding to proteins, and another peak in the blue to green range, corresponding to flavins and/or reduced nicotinamide adenine dinucleotide (NADH). Many commonly used dyes also show secondary excitation peaks in the DUV, with identical emission spectra and quantum yields as their primary peak. However, DUV fails to excite key biosignature molecules, especially chlorophyll in cyanobacteria. Visible excitation (violet to blue) also results in less mineral autofluorescence than near UV, and most autofluorescence in the minerals seen here is green, so that red dyes and red autofluorescence of chlorophyll and porphyrins are readily distinguished. The pairing of DUV and near UV or visible excitation, with emission across the visible, represents the most thorough approach to detection of labeled and unlabeled bacteria in soil and rock.
Collapse
Affiliation(s)
- Noel Case
- Department of Physics, Portland State University, Portland, Oregon, USA
| | - Nikki Johnston
- Department of Physics, Portland State University, Portland, Oregon, USA
| | - Jay Nadeau
- Department of Physics, Portland State University, Portland, Oregon, USA
| |
Collapse
|
5
|
Borges SR, Jones GG, Robinson TD. Detectability of Surface Biosignatures for Directly Imaged Rocky Exoplanets. ASTROBIOLOGY 2024; 24:283-299. [PMID: 38377582 DOI: 10.1089/ast.2023.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Modeling the detection of life has never been more opportune. With next-generation space telescopes, such as the currently developing Habitable Worlds Observatory (HWO) concept, we will begin to characterize rocky exoplanets potentially similar to Earth. However, few realistic planetary spectra containing surface biosignatures have been paired with direct imaging telescope instrument models. Therefore, we use a HWO instrument noise model to assess the detection of surface biosignatures affiliated with oxygenic, anoxygenic, and nonphotosynthetic extremophiles. We pair the HWO telescope model to a one-dimensional radiative transfer model to estimate the required exposure times necessary for detecting each biosignature on planets with global microbial coverage and varying atmospheric water vapor concentrations. For modeled planets with 0-50% cloud coverage, we determine pigments and the red edge could be detected within 1000 hr (100 hr) at distances within 15 pc (11 pc). However, tighter telescope inner working angles (2.5 λ/D) would allow surface biosignature detection at further distances. Anoxygenic photosynthetic biosignatures could also be more easily detectable than nonphotosynthetic pigments and the photosynthetic red edge when compared against a false positive iron oxide slope. Future life detection missions should evaluate the influence of false positives on the detection of multiple surface biosignatures.
Collapse
Affiliation(s)
- Schuyler R Borges
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, Arizona, USA
- Habitability, Atmospheres, and Biosignatures Laboratory, University of Arizona, Tucson, Arizona, USA
| | - Gabrielle G Jones
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, Arizona, USA
- Habitability, Atmospheres, and Biosignatures Laboratory, University of Arizona, Tucson, Arizona, USA
| | - Tyler D Robinson
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, Arizona, USA
- Habitability, Atmospheres, and Biosignatures Laboratory, University of Arizona, Tucson, Arizona, USA
- Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA
- NASA Nexus for Exoplanet System Science Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Chou L, Grefenstette N, Borges S, Caro T, Catalano E, Harman CE, McKaig J, Raj CG, Trubl G, Young A. Chapter 8: Searching for Life Beyond Earth. ASTROBIOLOGY 2024; 24:S164-S185. [PMID: 38498822 DOI: 10.1089/ast.2021.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The search for life beyond Earth necessitates a rigorous and comprehensive examination of biosignatures, the types of observable imprints that life produces. These imprints and our ability to detect them with advanced instrumentation hold the key to our understanding of the presence and abundance of life in the universe. Biosignatures are the chemical or physical features associated with past or present life and may include the distribution of elements and molecules, alone or in combination, as well as changes in structural components or physical processes that would be distinct from an abiotic background. The scientific and technical strategies used to search for life on other planets include those that can be conducted in situ to planetary bodies and those that could be observed remotely. This chapter discusses numerous strategies that can be employed to look for biosignatures directly on other planetary bodies using robotic exploration including those that have been deployed to other planetary bodies, are currently being developed for flight, or will become a critical technology on future missions. Search strategies for remote observations using current and planned ground-based and space-based telescopes are also described. Evidence from spectral absorption, emission, or transmission features can be used to search for remote biosignatures and technosignatures. Improving our understanding of biosignatures, their production, transformation, and preservation on Earth can enhance our search efforts to detect life on other planets.
Collapse
Affiliation(s)
- Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Georgetown University, Washington, DC, USA
| | - Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | | | - Tristan Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Enrico Catalano
- Sant'Anna School of Advanced Studies, The BioRobotics Institute, Pisa, Italy
| | | | - Jordan McKaig
- Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Gareth Trubl
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Amber Young
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
7
|
Glidden A, Seager S, Petkowski JJ, Ono S. Can Isotopologues Be Used as Biosignature Gases in Exoplanet Atmospheres? Life (Basel) 2023; 13:2325. [PMID: 38137926 PMCID: PMC10744769 DOI: 10.3390/life13122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
Isotopologue ratios are anticipated to be one of the most promising signs of life that can be observed remotely. On Earth, carbon isotopes have been used for decades as evidence of modern and early metabolic processes. In fact, carbon isotopes may be the oldest evidence for life on Earth, though there are alternative geological processes that can lead to the same magnitude of fractionation. However, using isotopologues as biosignature gases in exoplanet atmospheres presents several challenges. Most significantly, we will only have limited knowledge of the underlying abiotic carbon reservoir of an exoplanet. Atmospheric carbon isotope ratios will thus have to be compared against the local interstellar medium or, better yet, their host star. A further substantial complication is the limited precision of remote atmospheric measurements using spectroscopy. The various metabolic processes that cause isotope fractionation cause less fractionation than anticipated measurement precision (biological fractionation is typically 2 to 7%). While this level of precision is easily reachable in the laboratory or with special in situ instruments, it is out of reach of current telescope technology to measure isotope ratios for terrestrial exoplanet atmospheres. Thus, gas isotopologues are poor biosignatures for exoplanets given our current and foreseeable technological limitations.
Collapse
Affiliation(s)
- Ana Glidden
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Janusz J. Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- JJ Scientific, Mazowieckie, 02-792 Warsaw, Poland
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Shuhei Ono
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Battistuzzi M, Cocola L, Liistro E, Claudi R, Poletto L, La Rocca N. Growth and Photosynthetic Efficiency of Microalgae and Plants with Different Levels of Complexity Exposed to a Simulated M-Dwarf Starlight. Life (Basel) 2023; 13:1641. [PMID: 37629498 PMCID: PMC10455698 DOI: 10.3390/life13081641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Oxygenic photosynthetic organisms (OPOs) are primary producers on Earth and generate surface and atmospheric biosignatures, making them ideal targets to search for life from remote on Earth-like exoplanets orbiting stars different from the Sun, such as M-dwarfs. These stars emit very low light in the visible and most light in the far-red, an issue for OPOs, which mostly utilize visible light to photosynthesize and grow. After successfully testing procaryotic OPOs (cyanobacteria) under a simulated M-dwarf star spectrum (M7, 365-850 nm) generated through a custom-made lamp, we tested several eukaryotic OPOs: microalgae (Dixoniella giordanoi, Microchloropsis gaditana, Chromera velia, Chlorella vulgaris), a non-vascular plant (Physcomitrium patens), and a vascular plant (Arabidopsis thaliana). We assessed their growth and photosynthetic efficiency under three light conditions: M7, solar (SOL) simulated spectra, and far-red light (FR). Microalgae grew similarly in SOL and M7, while the moss P. patens showed slower growth in M7 with respect to SOL. A. thaliana grew similarly in SOL and M7, showing traits typical of shade-avoidance syndrome. Overall, the synergistic effect of visible and far-red light, also known as the Emerson enhancing effect, could explain the growth in M7 for all organisms. These results lead to reconsidering the possibility and capability of the growth of OPOs and are promising for finding biosignatures on exoplanets orbiting the habitable zone of distant stars.
Collapse
Affiliation(s)
- Mariano Battistuzzi
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), 35131 Padua, Italy; (L.C.)
- Department of Biology, University of Padua, 35121 Padua, Italy (N.L.R.)
- Center for Space Studies and Activities (CISAS), University of Padua, 35131 Padua, Italy
| | - Lorenzo Cocola
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), 35131 Padua, Italy; (L.C.)
| | | | - Riccardo Claudi
- National Institute for Astrophysics (INAF), Astronomical Observatory of Padua, 35122 Padua, Italy
- Department of Mathematics and Physics, University Roma Tre, 00146 Rome, Italy
| | - Luca Poletto
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), 35131 Padua, Italy; (L.C.)
| | - Nicoletta La Rocca
- Department of Biology, University of Padua, 35121 Padua, Italy (N.L.R.)
- Center for Space Studies and Activities (CISAS), University of Padua, 35131 Padua, Italy
| |
Collapse
|
9
|
Battistuzzi M, Cocola L, Claudi R, Pozzer AC, Segalla A, Simionato D, Morosinotto T, Poletto L, La Rocca N. Oxygenic photosynthetic responses of cyanobacteria exposed under an M-dwarf starlight simulator: Implications for exoplanet's habitability. FRONTIERS IN PLANT SCIENCE 2023; 14:1070359. [PMID: 36824196 PMCID: PMC9941696 DOI: 10.3389/fpls.2023.1070359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The search for life on distant exoplanets is expected to rely on atmospheric biosignatures detection, such as oxygen of biological origin. However, it is not demonstrated how much oxygenic photosynthesis, which on Earth depends on visible light, could work under spectral conditions simulating exoplanets orbiting the Habitable Zone of M-dwarf stars, which have low light emission in the visible and high light emission in the far-red/near-infrared. By utilizing cyanobacteria, the first organisms to evolve oxygenic photosynthesis on our planet, and a starlight simulator capable of accurately reproducing the emission spectrum of an M-dwarf in the range 350-900 nm, we could answer this question. METHODS We performed experiments with the cyanobacterium Chlorogloeopsis fritschii PCC6912, capable of Far-Red Light Photoacclimation (FaRLiP), which allows the strain to harvest far-red in addition to visible light for photosynthesis, and Synechocystis sp. PCC6803, a species unable to perform this photoacclimation, comparing their responses when exposed to three simulated light spectra: M-dwarf, solar and far-red. We analysed growth and photosynthetic acclimation features in terms of pigment composition and photosystems organization. Finally, we determined the oxygen production of the strains directly exposed to the different spectra. RESULTS Both cyanobacteria were shown to grow and photosynthesize similarly under M-dwarf and solar light conditions: Synechocystis sp. by utilizing the few photons in the visible, C. fritschii by harvesting both visible and far-red light, activating the FaRLiP response. DISCUSSION Our results experimentally show that an M-dwarf light spectrum could support a biological oxygen production similar to that in solar light at the tested light intensities, suggesting the possibility to discover such atmospheric biosignatures on those exoplanets if other boundary conditions are met.
Collapse
Affiliation(s)
- Mariano Battistuzzi
- Department of Biology, University of Padua, Padua, Italy
- Center for Space Studies and Activities (CISAS), University of Padua, Padua, Italy
| | - Lorenzo Cocola
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
| | - Riccardo Claudi
- National Institute for Astrophysics, Astronomical Observatory of Padua (INAF-OAPD), Padua, Italy
| | - Anna Caterina Pozzer
- Department of Biology, University of Padua, Padua, Italy
- National Institute for Astrophysics, Astronomical Observatory of Padua (INAF-OAPD), Padua, Italy
| | - Anna Segalla
- Department of Biology, University of Padua, Padua, Italy
| | | | - Tomas Morosinotto
- Department of Biology, University of Padua, Padua, Italy
- Center for Space Studies and Activities (CISAS), University of Padua, Padua, Italy
| | - Luca Poletto
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
| | - Nicoletta La Rocca
- Department of Biology, University of Padua, Padua, Italy
- Center for Space Studies and Activities (CISAS), University of Padua, Padua, Italy
| |
Collapse
|
10
|
Lazar D, Stirbet A, Björn L, Govindjee G. Light quality, oxygenic photosynthesis and more. PHOTOSYNTHETICA 2022; 60:25-28. [PMID: 39648998 PMCID: PMC11559484 DOI: 10.32615/ps.2021.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/10/2024]
Abstract
Oxygenic photosynthesis takes place in thylakoid membranes (TM) of cyanobacteria, algae, and higher plants. It begins with light absorption by pigments in large (modular) assemblies of pigment-binding proteins, which then transfer excitation energy to the photosynthetic reaction centers of photosystem (PS) I and PSII. In green algae and plants, these light-harvesting protein complexes contain chlorophylls (Chls) and carotenoids (Cars). However, cyanobacteria, red algae, and glaucophytes contain, in addition, phycobiliproteins in phycobilisomes that are attached to the stromal surface of TM, and transfer excitation energy to the reaction centers via the Chl a molecules in the inner antennas of PSI and PSII. The color and the intensity of the light to which these photosynthetic organisms are exposed in their environment have a great influence on the composition and the structure of the light-harvesting complexes (the antenna) as well as the rest of the photosynthetic apparatus, thus affecting the photosynthetic process and even the entire organism. We present here a perspective on 'Light Quality and Oxygenic Photosynthesis', in memory of George Christos Papageorgiou (9 May 1933-21 November 2020; see notes a and b). Our review includes (1) the influence of the solar spectrum on the antenna composition, and the special significance of Chl a; (2) the effects of light quality on photosynthesis, measured using Chl a fluorescence; and (3) the importance of light quality, intensity, and its duration for the optimal growth of photosynthetic organisms.
Collapse
Affiliation(s)
- D. Lazar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - A. Stirbet
- Anne Burras Lane, Newport News, 23606 Virginia, USA
| | - L.O. Björn
- Department of Biology, Molecular Cell Biology, Lund University, Sölvegatan 35, SE-22462 Lund, Sweden
| | - G. Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Journot G, Neier R, Gualandi A. Hydrogenation of Calix[4]pyrrole: From the Formation to the Synthesis of Calix[4]pyrrolidine. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Reinhard Neier
- Department of Chemistry University of Neuchâtel Avenue Bellevaux 51 2000 Neuchâtel Switzerland
| | - Andrea Gualandi
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 I-40126 Bologna Italy
| |
Collapse
|
12
|
Komatsu Y, Takizawa K. A quantum chemical study on the effects of varying the central metal in extended photosynthetic pigments. Phys Chem Chem Phys 2021; 23:14404-14414. [PMID: 34180470 DOI: 10.1039/d1cp00760b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a certain period of Earth's history, chlorophylls with Mg as their central metal would have been selected as the major photosynthetic pigments, reflecting the radiation in habitats. Assuming evolution in different light and material environments, different photosynthetic pigments would occur. This study is the first attempt to evaluate the physical and chemical properties of model photosynthetic pigments and their potential to function in a variety of light environments using quantum chemistry calculations. Specifically, bacteriochlorophyll b (Bchl b), phthalocyanine (Pht) and meso-dibenzoporphycene (mDBPc) were selected as template molecules, while Be, Mg, Ca, Ni, Zn, Sr, Pd, Cd, Ba, Pt, Hg, Pb and H2 were examined as the central metals in each molecule in various solvents. The results showed that the light absorption by each of these compounds varied over a range of 100 nm depending on the central metal and the surrounding solvent, and Pb produced the largest red shift in the absorption bands of all three photosynthetic pigments. The Pht molecules showed similar redox properties to the chlorophylls, suggesting that these derivatives could be substituted for the special pairs in reaction centers, while the mDBPc molecules appear to be more suitable as accessory pigments due to their extraordinarily broad absorption ranges of approximately 500 nm depending on the conditions.
Collapse
Affiliation(s)
- Yu Komatsu
- AstroBiology Center, Osawa 2-21-1, Mitaka, Tokyo, Japan. and National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo, Japan
| | - Kenji Takizawa
- AstroBiology Center, Osawa 2-21-1, Mitaka, Tokyo, Japan. and National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, Japan
| |
Collapse
|
13
|
Possibilities for an Aerial Biosphere in Temperate Sub Neptune-Sized Exoplanet Atmospheres. UNIVERSE 2021. [DOI: 10.3390/universe7060172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The search for signs of life through the detection of exoplanet atmosphere biosignature gases is gaining momentum. Yet, only a handful of rocky exoplanet atmospheres are suitable for observation with planned next-generation telescopes. To broaden prospects, we describe the possibilities for an aerial, liquid water cloud-based biosphere in the atmospheres of sub Neptune-sized temperate exoplanets, those receiving Earth-like irradiation from their host stars. One such planet is known (K2-18b) and other candidates are being followed up. Sub Neptunes are common and easier to study observationally than rocky exoplanets because of their larger sizes, lower densities, and extended atmospheres or envelopes. Yet, sub Neptunes lack any solid surface as we know it, so it is worthwhile considering whether their atmospheres can support an aerial biosphere. We review, synthesize, and build upon existing research. Passive microbial-like life particles must persist aloft in a region with liquid water clouds for long enough to metabolize, reproduce, and spread before downward transport to lower altitudes that may be too hot for life of any kind to survive. Dynamical studies are needed to flesh out quantitative details of life particle residence times. A sub Neptune would need to be a part of a planetary system with an unstable asteroid belt in order for meteoritic material to provide nutrients, though life would also need to efficiently reuse and recycle metals. The origin of life may be the most severe limiting challenge. Regardless of the uncertainties, we can keep an open mind to the search for biosignature gases as a part of general observational studies of sub Neptune exoplanets.
Collapse
|
14
|
Barták M, Hájek J, Orekhova A, Villagra J, Marín C, Palfner G, Casanova-Katny A. Inhibition of Primary Photosynthesis in Desiccating Antarctic Lichens Differing in Their Photobionts, Thallus Morphology, and Spectral Properties. Microorganisms 2021; 9:microorganisms9040818. [PMID: 33924436 PMCID: PMC8070113 DOI: 10.3390/microorganisms9040818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Five macrolichens of different thallus morphology from Antarctica (King George Island) were used for this ecophysiological study. The effect of thallus desiccation on primary photosynthetic processes was examined. We investigated the lichens' responses to the relative water content (RWC) in their thalli during the transition from a wet (RWC of 100%) to a dry state (RWC of 0%). The slow Kautsky kinetics of chlorophyll fluorescence (ChlF) that was recorded during controlled dehydration (RWC decreased from 100 to 0%) and supplemented with a quenching analysis revealed a polyphasic species-specific response of variable fluorescence. The changes in ChlF at a steady state (Fs), potential and effective quantum yields of photosystem II (FV/FM, ΦPSII), and nonphotochemical quenching (NPQ) reflected a desiccation-induced inhibition of the photosynthetic processes. The dehydration-dependent fall in FV/FM and ΦPSII was species-specific, starting at an RWC range of 22-32%. The critical RWC for ΦPSII was below 5%. The changes indicated the involvement of protective mechanisms in the chloroplastic apparatus of lichen photobionts at RWCs of below 20%. In both the wet and dry states, the spectral reflectance curves (SRC) (wavelength 400-800 nm) and indices (NDVI, PRI) of the studied lichen species were measured. Black Himantormia lugubris showed no difference in the SRCs between wet and dry state. Other lichens showed a higher reflectance in the dry state compared to the wet state. The lichen morphology and anatomy data, together with the ChlF and spectral reflectance data, are discussed in relation to its potential for ecophysiological studies in Antarctic lichens.
Collapse
Affiliation(s)
- Miloš Barták
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Building A13/119, 625 00 Brno, Czech Republic; (M.B.); (J.H.); (A.O.)
| | - Josef Hájek
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Building A13/119, 625 00 Brno, Czech Republic; (M.B.); (J.H.); (A.O.)
| | - Alla Orekhova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Building A13/119, 625 00 Brno, Czech Republic; (M.B.); (J.H.); (A.O.)
| | - Johana Villagra
- Laboratory of Plant Ecophysiology, Faculty of Natural Resources, Campus Luis Rivas del Canto, Catholic University of Temuco, Rudecindo Ortega #03694, 4780000 Temuco, Chile;
| | - Catalina Marín
- Laboratory of Mycology and Mycorrhiza, Faculty of Natural Sciences and Oceanography, Campus Concepción, Concepción University, 4030000 Concepción, Chile; (C.M.); (G.P.)
| | - Götz Palfner
- Laboratory of Mycology and Mycorrhiza, Faculty of Natural Sciences and Oceanography, Campus Concepción, Concepción University, 4030000 Concepción, Chile; (C.M.); (G.P.)
| | - Angélica Casanova-Katny
- Laboratory of Plant Ecophysiology, Faculty of Natural Resources, Campus Luis Rivas del Canto, Catholic University of Temuco, Rudecindo Ortega #03694, 4780000 Temuco, Chile;
- Correspondence: ; Tel.: +56-96-209-7709
| |
Collapse
|
15
|
Super-Earths, M Dwarfs, and Photosynthetic Organisms: Habitability in the Lab. Life (Basel) 2020; 11:life11010010. [PMID: 33374408 PMCID: PMC7823553 DOI: 10.3390/life11010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/26/2022] Open
Abstract
In a few years, space telescopes will investigate our Galaxy to detect evidence of life, mainly by observing rocky planets. In the last decade, the observation of exoplanet atmospheres and the theoretical works on biosignature gasses have experienced a considerable acceleration. The most attractive feature of the realm of exoplanets is that 40% of M dwarfs host super-Earths with a minimum mass between 1 and 30 Earth masses, orbital periods shorter than 50 days, and radii between those of the Earth and Neptune (1–3.8 R⊕). Moreover, the recent finding of cyanobacteria able to use far-red (FR) light for oxygenic photosynthesis due to the synthesis of chlorophylls d and f, extending in vivo light absorption up to 750 nm, suggests the possibility of exotic photosynthesis in planets around M dwarfs. Using innovative laboratory instrumentation, we exposed different cyanobacteria to an M dwarf star simulated irradiation, comparing their responses to those under solar and FR simulated lights. As expected, in FR light, only the cyanobacteria able to synthesize chlorophyll d and f could grow. Surprisingly, all strains, both able or unable to use FR light, grew and photosynthesized under the M dwarf generated spectrum in a similar way to the solar light and much more efficiently than under the FR one. Our findings highlight the importance of simulating both the visible and FR light components of an M dwarf spectrum to correctly evaluate the photosynthetic performances of oxygenic organisms exposed under such an exotic light condition.
Collapse
|
16
|
Estrela R, Palit S, Valio A. Surface and Oceanic Habitability of Trappist-1 Planets under the Impact of Flares. ASTROBIOLOGY 2020; 20:1465-1475. [PMID: 33320780 DOI: 10.1089/ast.2019.2126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The discovery of potentially habitable planets around the ultracool dwarf star Trappist-1 naturally poses the question: could Trappist-1 planets be home to life? These planets orbit very close to the host star and are most susceptible to the UV radiation emitted by the intense and frequent flares of Trappist-1. Here, we calculate the UV spectra (100-450 nm) of a superflare observed on Trappist-1 with the K2 mission. We couple radiative transfer models to this spectra to estimate the UV surface flux on planets in the habitable zone of Trappist-1 (planets e, f, and g), assuming atmospheric scenarios based on a prebiotic and an oxygenic atmosphere. We quantify the impact of the UV radiation on living organisms on the surface and on a hypothetical planet ocean. Finally, we find that for non-oxygenic planets, UV-resistant life-forms would survive on the surface of planets f and g. Nevertheless, more fragile organisms (i.e., Escherichia coli) could be protected from the hazardous UV effects at ocean depths greater than 8 m. If the planets have an ozone layer, any life-forms studied here would survive in the habitable zone planets.
Collapse
Affiliation(s)
- Raissa Estrela
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Center for Radioastronomy and Astrophysics Mackenzie, Sao Paulo, Brazil
| | - Sourav Palit
- Center for Radioastronomy and Astrophysics Mackenzie, Sao Paulo, Brazil
- Department of Physics, Indian Institute of Technology Bombay (IITB), Mumbai, India
| | - Adriana Valio
- Center for Radioastronomy and Astrophysics Mackenzie, Sao Paulo, Brazil
| |
Collapse
|
17
|
Testing Earthlike Atmospheric Evolution on Exo-Earths through Oxygen Absorption: Required Sample Sizes and the Advantage of Age-based Target Selection. ACTA ACUST UNITED AC 2020. [DOI: 10.3847/1538-4357/ab8fad] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
|
19
|
Haqq-Misra J. Does the Evolution of Complex Life Depend on the Stellar Spectral Energy Distribution? ASTROBIOLOGY 2019; 19:1292-1299. [PMID: 31429585 DOI: 10.1089/ast.2018.1946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article presents the proportional evolutionary time (PET) hypothesis, which posits that the mean time required for the evolution of complex life is a function of stellar mass. The "biological available window" is defined as the region of a stellar spectrum between 200 and 1200 nm that generates free energy for life. Over the ∼4 Gyr history of Earth, the total energy incident at the top of the atmosphere and within the biological available window is ∼1034 J. The hypothesis assumes that the rate of evolution from the origin of life to complex life is proportional to this total energy, which would suggest that planets orbiting other stars should not show signs of complex life if the total energy incident on the planet is below this energy threshold. The PET hypothesis predicts that late K- and M-dwarf stars (M < 0.7 [Formula: see text]) are too young to host any complex life at the present age of the Universe. F-, G-, and early K-dwarf stars (M > 0.7 [Formula: see text]) represent the best targets for the next generation of space telescopes to search for spectroscopic biosignatures indicative of complex life.
Collapse
|
20
|
Abstract
In a multiverse context, determining the probability of being in our particular universe depends on estimating its overall habitability compared to other universes with different values of the fundamental constants. One of the most important factors in determining this is the fraction of planets that actually develop life, and how this depends on planetary conditions. Many proposed possibilities for this are incompatible with the multiverse: if the emergence of life depends on the lifetime of its host star, the size of the habitable planet, or the amount of material processed, the chances of being in our universe would be very low. If the emergence of life depends on the entropy absorbed by the planet, however, our position in this universe is very natural. Several proposed models for the subsequent development of life, including the hard step model and several planetary oxygenation models, are also shown to be incompatible with the multiverse. If any of these are observed to play a large role in determining the distribution of life throughout our universe, the multiverse hypothesis will be ruled out to high significance.
Collapse
|
21
|
Multiverse Predictions for Habitability: The Number of Stars and Their Properties. UNIVERSE 2019. [DOI: 10.3390/universe5060149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In a multiverse setting, we expect to be situated in a universe that is exceptionally good at producing life. Though the conditions for what life needs to arise and thrive are currently unknown, many will be tested in the coming decades. Here we investigate several different habitability criteria, and their influence on multiverse expectations: Does complex life need photosynthesis? Is there a minimum timescale necessary for development? Can life arise on tidally locked planets? Are convective stars habitable? Variously adopting different stances on each of these criteria can alter whether our observed values of the fine structure constant, the electron to proton mass ratio, and the strength of gravity are typical to high significance. This serves as a way of generating predictions for the requirements of life that can be tested with future observations, any of which could falsify the multiverse scenario.
Collapse
|
22
|
Mishra KB, Vítek P, Barták M. A correlative approach, combining chlorophyll a fluorescence, reflectance, and Raman spectroscopy, for monitoring hydration induced changes in Antarctic lichen Dermatocarpon polyphyllizum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 208:13-23. [PMID: 30282060 DOI: 10.1016/j.saa.2018.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/06/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Lichens are successful colonizers in extreme environments worldwide, and they are considered to have played an important role during the evolution of life. Here, we have used a correlative approach, combining three optical signals (chlorophyll a fluorescence (ChlF), reflectance, and Raman spectra), to monitor hydration induced changes in photosynthetic properties of an Antarctic chlorolichen Dermatocarpon polyphyllizum. We measured these three signals from this lichen at different stages (after 4 h, 24 h, and 48 h) of hydration, and compared the data obtained from this lichen in "dry state" as well as in different "hydrated state". We found that dry state of this lichen has: (1) no variable ChlF, (2) high reflectance, with no red-edge and almost zero photochemical reflectance index (PRI), and (3) low-intensity Raman bands of their carotenoids. Furthermore, 4 h of hydration, increased its relative water content (RWC) by 93%, showed red-edge in reflectance spectra, and changed the maximum quantum yield of PSII photochemistry (Fv/Fm) from 0 to 0.57 ± 0.01. We found that reflectance indices, normalized difference index (NDVI) and PRI, significantly differed between brown and black/green surface areas, at all hydration stages; whereas, a shift in the Raman ν1(CC) band, between brown and black/green surface areas, occurred in 24 h or 48 h hydrated samples. These data indicate that hydration shortly (within 4 h) activated functions of photosynthetic apparatus, and the de novo synthesis of carotenoids occured in 24 h or 48 h. Furthermore, exposure to high irradiance (2000 μmol photons m-2 s-1), in 48 h hydrated lichen, significantly reduced Fv/Fm (signifies photoinhibition) and increased PRI (represents changes in xanthophyll pigments). We conclude that the implication of such a correlative approach is highly useful for understanding survival and protective mechanisms on extremophile photosynthetic organisms.
Collapse
Affiliation(s)
- Kumud Bandhu Mishra
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
| | - Petr Vítek
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Miloš Barták
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
23
|
Radioprotective role of cyanobacterial phycobilisomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:121-128. [PMID: 30465750 DOI: 10.1016/j.bbabio.2018.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/07/2018] [Accepted: 11/18/2018] [Indexed: 11/20/2022]
Abstract
Cyanobacteria are thought to be responsible for pioneering dioxygen production and the so-called "Great Oxygenation Event" that determined the formation of the ozone layer and the ionosphere restricting ionizing radiation levels reaching our planet, which increased biological diversity but also abolished the necessity of radioprotection. We speculated that ancient protection mechanisms could still be present in cyanobacteria and studied the effect of ionizing radiation and space flight during the Foton-M4 mission on Synechocystis sp. PCC6803. Spectral and functional characteristics of photosynthetic membranes revealed numerous similarities of the effects of α-particles and space flight, which both interrupted excitation energy transfer from phycobilisomes to the photosystems and significantly reduced the concentration of phycobiliproteins. Although photosynthetic activity was severely suppressed, the effect was reversible, and the cells could rapidly recover from the stress. We suggest that the actual existence and the uncoupling of phycobilisomes may play a specific role not only in photo-, but also in radioprotection, which could be crucial for the early evolution of Life on Earth.
Collapse
|
24
|
Neveu M, Hays LE, Voytek MA, New MH, Schulte MD. The Ladder of Life Detection. ASTROBIOLOGY 2018; 18:1375-1402. [PMID: 29862836 PMCID: PMC6211372 DOI: 10.1089/ast.2017.1773] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/23/2018] [Indexed: 05/04/2023]
Abstract
We describe the history and features of the Ladder of Life Detection, a tool intended to guide the design of investigations to detect microbial life within the practical constraints of robotic space missions. To build the Ladder, we have drawn from lessons learned from previous attempts at detecting life and derived criteria for a measurement (or suite of measurements) to constitute convincing evidence for indigenous life. We summarize features of life as we know it, how specific they are to life, and how they can be measured, and sort these features in a general sense based on their likelihood of indicating life. Because indigenous life is the hypothesis of last resort in interpreting life-detection measurements, we propose a small but expandable set of decision rules determining whether the abiotic hypothesis is disproved. In light of these rules, we evaluate past and upcoming attempts at life detection. The Ladder of Life Detection is not intended to endorse specific biosignatures or instruments for life-detection measurements, and is by no means a definitive, final product. It is intended as a starting point to stimulate discussion, debate, and further research on the characteristics of life, what constitutes a biosignature, and the means to measure them.
Collapse
Affiliation(s)
- Marc Neveu
- NASA Postdoctoral Management Program Fellow, Universities Space Research Association, Columbia, Maryland
- NASA Headquarters, Washington, DC
| | - Lindsay E. Hays
- NASA Headquarters, Washington, DC
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | | |
Collapse
|
25
|
Hanczarek I, Kenna AJ, Lindensmith C, Nadeau J. Performance of Fluorescent Cell-Labeling Dyes under Simulated Europa Mission Radiation Doses. Radiat Res 2018; 190:634. [PMID: 30325265 DOI: 10.1667/rr15187.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We investigated the performance of several commonly used fluorescent dyes after exposure to a simulated Europa mission total ionizing radiation dose of 300 krad (3 kGy) applied using a 60Co source. Dyes irradiated in aqueous solution or as lyophilized powders were evaluated for absorbance and emission spectra, quantum yield, and where appropriate, ability to label cells or nucleic acids. Although some dyes showed significant increase or decrease in quantum yield with the dose, their spectra and cell-labeling properties remained essentially unchanged after irradiation in powder form. Irradiation in aqueous solution led to significantly greater changes, including a large blue shift in the DNA intercalator propidium iodide. These results suggest that many fluorescent probes are appropriate for use in astrobiological missions to Europa, but that SYTO9 and propidium iodide should be used with caution or not mixed with each other, as is commonly done in "Live/Dead" labeling applications.
Collapse
Affiliation(s)
- Iulia Hanczarek
- a Department of Physics, Portland State University, Portland, Oregon 97201
| | - Aaron J Kenna
- b Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109
| | - Chris Lindensmith
- b Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109
| | - Jay Nadeau
- a Department of Physics, Portland State University, Portland, Oregon 97201
| |
Collapse
|
26
|
Abstract
The habitable zone (HZ) is the circular region around a star(s) where standing bodies of water could exist on the surface of a rocky planet. Space missions employ the HZ to select promising targets for follow-up habitability assessment. The classical HZ definition assumes that the most important greenhouse gases for habitable planets orbiting main-sequence stars are CO2 and H2O. Although the classical HZ is an effective navigational tool, recent HZ formulations demonstrate that it cannot thoroughly capture the diversity of habitable exoplanets. Here, I review the planetary and stellar processes considered in both classical and newer HZ formulations. Supplementing the classical HZ with additional considerations from these newer formulations improves our capability to filter out worlds that are unlikely to host life. Such improved HZ tools will be necessary for current and upcoming missions aiming to detect and characterize potentially habitable exoplanets.
Collapse
|
27
|
Gebauer S, Grenfell JL, Lehmann R, Rauer H. Evolution of Earth-like Planetary Atmospheres around M Dwarf Stars: Assessing the Atmospheres and Biospheres with a Coupled Atmosphere Biogeochemical Model. ASTROBIOLOGY 2018; 18:856-872. [PMID: 30035637 DOI: 10.1089/ast.2017.1723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Earth-like planets orbiting M dwarfs are prominent targets when searching for life outside the Solar System. We apply our Coupled Atmosphere Biogeochemical model to investigate the coupling between the biosphere, geosphere, and atmosphere in order to gain insight into the atmospheric evolution of Earth-like planets orbiting M dwarfs and to understand the processes affecting biosignatures and climate on such worlds. This is the first study applying an automated chemical pathway analysis quantifying the production and destruction pathways of molecular oxygen (O2) for an Earth-like planet with an Archean O2 concentration orbiting in the habitable zone of the M dwarf star AD Leonis, which we take as a type-case of an active M dwarf. The main production arises in the upper atmosphere from carbon dioxide photolysis followed by catalytic hydrogen oxide radical (HOx) reactions. The strongest destruction does not take place in the troposphere, as was the case in Gebauer et al. ( 2017 ) for an early Earth analog planet around the Sun, but instead in the middle atmosphere where water photolysis is the strongest. Results further suggest that these atmospheres are in absolute terms less destructive for O2 than for early Earth analog planets around the Sun despite higher concentrations of reduced gases such as molecular hydrogen, methane, and carbon monoxide. Hence smaller amounts of net primary productivity are required to oxygenate the atmosphere due to a change in the atmospheric oxidative capacity, driven by the input stellar spectrum resulting in shifts in the intrafamily HOx partitioning. Under the assumption that an atmosphere of an Earth-like planet survived and evolved during the early high-activity phase of an M dwarf to an Archean-type composition, a possible "Great Oxidation Event," analogous to that on Early Earth, would have occurred earlier in time after the atmospheric composition was reached, assuming the same atmospheric O2 sources and sinks as on early Earth. Key Words: Earth-like-Oxygen-M dwarf stars-Atmosphere-Biogeochemistry-Photochemistry-Biosignatures-Earth-like planets. Astrobiology 18, 856-872.
Collapse
Affiliation(s)
- S Gebauer
- 1 Zentrum für Astronomie und Astrophysik (ZAA), Technische Universität Berlin (TUB) , Berlin, Germany
- 2 Institut für Planetenforschung (PF) , Abteilung Eaxtrasolare Planeten und Atmosphären (EPA), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - J L Grenfell
- 2 Institut für Planetenforschung (PF) , Abteilung Eaxtrasolare Planeten und Atmosphären (EPA), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - R Lehmann
- 3 Alfred-Wegener Institut , Helmholtz-Zentrum für Polar- und Meeresforschung, Potsdam, Germany
| | - H Rauer
- 1 Zentrum für Astronomie und Astrophysik (ZAA), Technische Universität Berlin (TUB) , Berlin, Germany
- 2 Institut für Planetenforschung (PF) , Abteilung Eaxtrasolare Planeten und Atmosphären (EPA), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| |
Collapse
|
28
|
Walker SI, Bains W, Cronin L, DasSarma S, Danielache S, Domagal-Goldman S, Kacar B, Kiang NY, Lenardic A, Reinhard CT, Moore W, Schwieterman EW, Shkolnik EL, Smith HB. Exoplanet Biosignatures: Future Directions. ASTROBIOLOGY 2018; 18:779-824. [PMID: 29938538 PMCID: PMC6016573 DOI: 10.1089/ast.2017.1738] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/13/2018] [Indexed: 05/08/2023]
Abstract
We introduce a Bayesian method for guiding future directions for detection of life on exoplanets. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from better understanding stellar environment, planetary climate and geophysics, geochemical cycling, the universalities of physics and chemistry, the contingencies of evolutionary history, the properties of life as an emergent complex system, and the mechanisms driving the emergence of life. We provide examples for how the Bayesian formalism could guide future search strategies, including determining observations to prioritize or deciding between targeted searches or larger lower resolution surveys to generate ensemble statistics and address how a Bayesian methodology could constrain the prior probability of life with or without a positive detection. Key Words: Exoplanets-Biosignatures-Life detection-Bayesian analysis. Astrobiology 18, 779-824.
Collapse
Affiliation(s)
- Sara I. Walker
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona
- ASU-Santa Fe Institute Center for Biosocial Complex Systems, Arizona State University, Tempe, Arizona
- Blue Marble Space Institute of Science, Seattle, Washington
| | - William Bains
- EAPS (Earth, Atmospheric and Planetary Science), MIT, Cambridge, Massachusetts
- Rufus Scientific Ltd., Royston, United Kingdom
| | - Leroy Cronin
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sebastian Danielache
- Department of Materials and Life Science, Faculty of Science and Technology, Sophia University, Tokyo, Japan
- Earth Life Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Shawn Domagal-Goldman
- NASA Goddard Space Flight Center, Greenbelt, Maryland
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, University of Washington, Seattle, Washington
| | - Betul Kacar
- Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- NASA Astrobiology Institute, Reliving the Past Team, University of Montana, Missoula, Montana
- Department of Molecular and Cell Biology, University of Arizona, Tucson, Arizona
- Department of Astronomy and Steward Observatory, University of Arizona, Tucson, Arizona
| | - Nancy Y. Kiang
- NASA Goddard Institute for Space Studies, New York, New York
| | - Adrian Lenardic
- Department of Earth Science, Rice University, Houston, Texas
| | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
- NASA Astrobiology Institute, Alternative Earths Team, University of California, Riverside, California
| | - William Moore
- Department of Atmospheric and Planetary Sciences, Hampton University, Hampton, Virginia
- National Institute of Aerospace, Hampton, Virginia
| | - Edward W. Schwieterman
- Blue Marble Space Institute of Science, Seattle, Washington
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, University of Washington, Seattle, Washington
- NASA Astrobiology Institute, Alternative Earths Team, University of California, Riverside, California
- Department of Earth Sciences, University of California, Riverside, California
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, Maryland
| | - Evgenya L. Shkolnik
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - Harrison B. Smith
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| |
Collapse
|
29
|
Catling DC, Krissansen-Totton J, Kiang NY, Crisp D, Robinson TD, DasSarma S, Rushby AJ, Del Genio A, Bains W, Domagal-Goldman S. Exoplanet Biosignatures: A Framework for Their Assessment. ASTROBIOLOGY 2018; 18:709-738. [PMID: 29676932 PMCID: PMC6049621 DOI: 10.1089/ast.2017.1737] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/05/2017] [Indexed: 05/04/2023]
Abstract
Finding life on exoplanets from telescopic observations is an ultimate goal of exoplanet science. Life produces gases and other substances, such as pigments, which can have distinct spectral or photometric signatures. Whether or not life is found with future data must be expressed with probabilities, requiring a framework of biosignature assessment. We present a framework in which we advocate using biogeochemical "Exo-Earth System" models to simulate potential biosignatures in spectra or photometry. Given actual observations, simulations are used to find the Bayesian likelihoods of those data occurring for scenarios with and without life. The latter includes "false positives" wherein abiotic sources mimic biosignatures. Prior knowledge of factors influencing planetary inhabitation, including previous observations, is combined with the likelihoods to give the Bayesian posterior probability of life existing on a given exoplanet. Four components of observation and analysis are necessary. (1) Characterization of stellar (e.g., age and spectrum) and exoplanetary system properties, including "external" exoplanet parameters (e.g., mass and radius), to determine an exoplanet's suitability for life. (2) Characterization of "internal" exoplanet parameters (e.g., climate) to evaluate habitability. (3) Assessment of potential biosignatures within the environmental context (components 1-2), including corroborating evidence. (4) Exclusion of false positives. We propose that resulting posterior Bayesian probabilities of life's existence map to five confidence levels, ranging from "very likely" (90-100%) to "very unlikely" (<10%) inhabited. Key Words: Bayesian statistics-Biosignatures-Drake equation-Exoplanets-Habitability-Planetary science. Astrobiology 18, 709-738.
Collapse
Affiliation(s)
- David C. Catling
- Astrobiology Program, Department of Earth and Space Sciences, University of Washington, Seattle, Washington
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington
| | - Joshua Krissansen-Totton
- Astrobiology Program, Department of Earth and Space Sciences, University of Washington, Seattle, Washington
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington
| | - Nancy Y. Kiang
- NASA Goddard Institute for Space Studies, New York, New York
| | - David Crisp
- MS 233-200, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Tyler D. Robinson
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, California
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University of Maryland, Baltimore, Maryland
| | | | | | - William Bains
- Department of Earth, Atmospheric and Planetary Science, Cambridge, Massachusetts
| | | |
Collapse
|
30
|
Meadows VS, Reinhard CT, Arney GN, Parenteau MN, Schwieterman EW, Domagal-Goldman SD, Lincowski AP, Stapelfeldt KR, Rauer H, DasSarma S, Hegde S, Narita N, Deitrick R, Lustig-Yaeger J, Lyons TW, Siegler N, Grenfell JL. Exoplanet Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its Environment. ASTROBIOLOGY 2018; 18:630-662. [PMID: 29746149 PMCID: PMC6014580 DOI: 10.1089/ast.2017.1727] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 05/04/2023]
Abstract
We describe how environmental context can help determine whether oxygen (O2) detected in extrasolar planetary observations is more likely to have a biological source. Here we provide an in-depth, interdisciplinary example of O2 biosignature identification and observation, which serves as the prototype for the development of a general framework for biosignature assessment. Photosynthetically generated O2 is a potentially strong biosignature, and at high abundance, it was originally thought to be an unambiguous indicator for life. However, as a biosignature, O2 faces two major challenges: (1) it was only present at high abundance for a relatively short period of Earth's history and (2) we now know of several potential planetary mechanisms that can generate abundant O2 without life being present. Consequently, our ability to interpret both the presence and absence of O2 in an exoplanetary spectrum relies on understanding the environmental context. Here we examine the coevolution of life with the early Earth's environment to identify how the interplay of sources and sinks may have suppressed O2 release into the atmosphere for several billion years, producing a false negative for biologically generated O2. These studies suggest that planetary characteristics that may enhance false negatives should be considered when selecting targets for biosignature searches. We review the most recent knowledge of false positives for O2, planetary processes that may generate abundant atmospheric O2 without a biosphere. We provide examples of how future photometric, spectroscopic, and time-dependent observations of O2 and other aspects of the planetary environment can be used to rule out false positives and thereby increase our confidence that any observed O2 is indeed a biosignature. These insights will guide and inform the development of future exoplanet characterization missions. Key Words: Biosignatures-Oxygenic photosynthesis-Exoplanets-Planetary atmospheres. Astrobiology 18, 630-662.
Collapse
Affiliation(s)
- Victoria S. Meadows
- Department of Astronomy, University of Washington, Seattle, Washington
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
| | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
| | - Giada N. Arney
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Mary N. Parenteau
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- NASA Ames Research Center, Exobiology Branch, Mountain View, California
| | - Edward W. Schwieterman
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Department of Earth Sciences, University of California, Riverside, California
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, Maryland
- Blue Marble Space Institute of Science, Seattle, Washington
| | - Shawn D. Domagal-Goldman
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Andrew P. Lincowski
- Department of Astronomy, University of Washington, Seattle, Washington
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
| | - Karl R. Stapelfeldt
- NASA Exoplanet Exploration Program, Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | - Heike Rauer
- German Aerospace Center, Institute of Planetary Research, Extrasolar Planets and Atmospheres, Berlin, Germany
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland
- Institute of Marine and Environmental Technology, University System of Baltimore, Maryland
| | - Siddharth Hegde
- Carl Sagan Institute, Cornell University, Ithaca, New York
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York
| | - Norio Narita
- Department of Astronomy, The University of Tokyo, Tokyo, Japan
- Astrobiology Center, NINS, Tokyo, Japan
- National Astronomical Observatory of Japan, NINS, Tokyo, Japan
| | - Russell Deitrick
- Department of Astronomy, University of Washington, Seattle, Washington
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
| | - Jacob Lustig-Yaeger
- Department of Astronomy, University of Washington, Seattle, Washington
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
| | - Timothy W. Lyons
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Department of Earth Sciences, University of California, Riverside, California
| | - Nicholas Siegler
- NASA Exoplanet Exploration Program, Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | - J. Lee Grenfell
- German Aerospace Center, Institute of Planetary Research, Extrasolar Planets and Atmospheres, Berlin, Germany
| |
Collapse
|
31
|
Kiang NY, Domagal-Goldman S, Parenteau MN, Catling DC, Fujii Y, Meadows VS, Schwieterman EW, Walker SI. Exoplanet Biosignatures: At the Dawn of a New Era of Planetary Observations. ASTROBIOLOGY 2018; 18:619-629. [PMID: 29741918 PMCID: PMC6014570 DOI: 10.1089/ast.2018.1862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/23/2018] [Indexed: 05/15/2023]
Abstract
The rapid rate of discoveries of exoplanets has expanded the scope of the science possible for the remote detection of life beyond Earth. The Exoplanet Biosignatures Workshop Without Walls (EBWWW) held in 2016 engaged the international scientific community across diverse scientific disciplines, to assess the state of the science and technology in the search for life on exoplanets, and to identify paths for progress. The workshop activities resulted in five major review papers, which provide (1) an encyclopedic review of known and proposed biosignatures and models used to ascertain them (Schwieterman et al., 2018 in this issue); (2) an in-depth review of O2 as a biosignature, rigorously examining the nuances of false positives and false negatives for evidence of life (Meadows et al., 2018 in this issue); (3) a Bayesian framework to comprehensively organize current understanding to quantify confidence in biosignature assessments (Catling et al., 2018 in this issue); (4) an extension of that Bayesian framework in anticipation of increasing planetary data and novel concepts of biosignatures (Walker et al., 2018 in this issue); and (5) a review of the upcoming telescope capabilities to characterize exoplanets and their environment (Fujii et al., 2018 in this issue). Because of the immense content of these review papers, this summary provides a guide to their complementary scope and highlights salient features. Strong themes that emerged from the workshop were that biosignatures must be interpreted in the context of their environment, and that frameworks must be developed to link diverse forms of scientific understanding of that context to quantify the likelihood that a biosignature has been observed. Models are needed to explore the parameter space where measurements will be widespread but sparse in detail. Given the technological prospects for large ground-based telescopes and space-based observatories, the detection of atmospheric signatures of a few potentially habitable planets may come before 2030. Key Words: Exoplanets-Biosignatures-Remote observation-Spectral imaging-Bayesian analysis. Astrobiology 18, 619-626.
Collapse
Affiliation(s)
- Nancy Y. Kiang
- NASA Goddard Institute for Space Studies (GISS), New York, New York, USA
- Nexus for Exoplanet System Science, ROCKE-3D Team, NASA GISS, USA
- NASA Astrobiology Institute, Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
| | - Shawn Domagal-Goldman
- Nexus for Exoplanet System Science, ROCKE-3D Team, NASA GISS, USA
- NASA Astrobiology Institute, Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Mary N. Parenteau
- NASA Astrobiology Institute, Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
- NASA Ames Research Center, Exobiology Branch, Mountain View, California, USA
| | - David C. Catling
- NASA Astrobiology Institute, Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
- Department of Earth and Space Sciences/Astrobiology Program, University of Washington, Seattle, Washington, USA
| | - Yuka Fujii
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, Japan
| | - Victoria S. Meadows
- NASA Astrobiology Institute, Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
- Astronomy Department, University of Washington, Seattle, Washington, USA
| | - Edward W. Schwieterman
- NASA Astrobiology Institute, Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
- Department of Earth Sciences, University of California, Riverside, California, USA
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, Maryland, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Sara I. Walker
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA
- ASU-Santa Fe Institute Center for Biosocial Complex Systems, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
32
|
Meadows VS, Arney GN, Schwieterman EW, Lustig-Yaeger J, Lincowski AP, Robinson T, Domagal-Goldman SD, Deitrick R, Barnes RK, Fleming DP, Luger R, Driscoll PE, Quinn TR, Crisp D. The Habitability of Proxima Centauri b: Environmental States and Observational Discriminants. ASTROBIOLOGY 2018; 18:133-189. [PMID: 29431479 PMCID: PMC5820795 DOI: 10.1089/ast.2016.1589] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/04/2017] [Indexed: 05/21/2023]
Abstract
Proxima Centauri b provides an unprecedented opportunity to understand the evolution and nature of terrestrial planets orbiting M dwarfs. Although Proxima Cen b orbits within its star's habitable zone, multiple plausible evolutionary paths could have generated different environments that may or may not be habitable. Here, we use 1-D coupled climate-photochemical models to generate self-consistent atmospheres for several evolutionary scenarios, including high-O2, high-CO2, and more Earth-like atmospheres, with both oxic and anoxic compositions. We show that these modeled environments can be habitable or uninhabitable at Proxima Cen b's position in the habitable zone. We use radiative transfer models to generate synthetic spectra and thermal phase curves for these simulated environments, and use instrument models to explore our ability to discriminate between possible planetary states. These results are applicable not only to Proxima Cen b but to other terrestrial planets orbiting M dwarfs. Thermal phase curves may provide the first constraint on the existence of an atmosphere. We find that James Webb Space Telescope (JWST) observations longward of 10 μm could characterize atmospheric heat transport and molecular composition. Detection of ocean glint is unlikely with JWST but may be within the reach of larger-aperture telescopes. Direct imaging spectra may detect O4 absorption, which is diagnostic of massive water loss and O2 retention, rather than a photosynthetic biosphere. Similarly, strong CO2 and CO bands at wavelengths shortward of 2.5 μm would indicate a CO2-dominated atmosphere. If the planet is habitable and volatile-rich, direct imaging will be the best means of detecting habitability. Earth-like planets with microbial biospheres may be identified by the presence of CH4-which has a longer atmospheric lifetime under Proxima Centauri's incident UV-and either photosynthetically produced O2 or a hydrocarbon haze layer. Key Words: Planetary habitability and biosignatures-Planetary atmospheres-Exoplanets-Spectroscopic biosignatures-Planetary science-Proxima Centauri b. Astrobiology 18, 133-189.
Collapse
Affiliation(s)
- Victoria S. Meadows
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Giada N. Arney
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Edward W. Schwieterman
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, Maryland
- Department of Earth Sciences, University of California at Riverside, Riverside, California
| | - Jacob Lustig-Yaeger
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Andrew P. Lincowski
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Tyler Robinson
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, California
| | - Shawn D. Domagal-Goldman
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Russell Deitrick
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Rory K. Barnes
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - David P. Fleming
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Rodrigo Luger
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Peter E. Driscoll
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC
| | - Thomas R. Quinn
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - David Crisp
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
33
|
Stelmach KB, Neveu M, Vick-Majors TJ, Mickol RL, Chou L, Webster KD, Tilley M, Zacchei F, Escudero C, Flores Martinez CL, Labrado A, Fernández EJG. Secondary Electrons as an Energy Source for Life. ASTROBIOLOGY 2018; 18:73-85. [PMID: 29314901 DOI: 10.1089/ast.2016.1510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Life on Earth is found in a wide range of environments as long as the basic requirements of a liquid solvent, a nutrient source, and free energy are met. Previous hypotheses have speculated how extraterrestrial microbial life may function, among them that particle radiation might power living cells indirectly through radiolytic products. On Earth, so-called electrophilic organisms can harness electron flow from an extracellular cathode to build biomolecules. Here, we describe two hypothetical mechanisms, termed "direct electrophy" and "indirect electrophy" or "fluorosynthesis," by which organisms could harness extracellular free electrons to synthesize organic matter, thus expanding the ensemble of potential habitats in which extraterrestrial organisms might be found in the Solar System and beyond. The first mechanism involves the direct flow of secondary electrons from particle radiation to a microbial cell to power the organism. The second involves the indirect utilization of impinging secondary electrons and a fluorescing molecule, either biotic or abiotic in origin, to drive photosynthesis. Both mechanisms involve the attenuation of an incoming particle's energy to create low-energy secondary electrons. The validity of the hypotheses is assessed through simple calculations showing the biomass density attainable from the energy supplied. Also discussed are potential survival strategies that could be used by organisms living in possible habitats with a plentiful supply of secondary electrons, such as near the surface of an icy moon. While we acknowledge that the only definitive test for the hypothesis is to collect specimens, we also describe experiments or terrestrial observations that could support or nullify the hypotheses. Key Words: Radiation-Electrophiles-Subsurface life. Astrobiology 18, 73-85.
Collapse
Affiliation(s)
- Kamil B Stelmach
- 1 Department of Chemistry and Biochemistry, George Mason University , Fairfax, Virginia, USA
| | - Marc Neveu
- 2 School of Earth and Space Exploration, Arizona State University , Tempe, Arizona, USA
| | - Trista J Vick-Majors
- 3 Department of Land Resources and Environmental Sciences, Montana State University , Bozeman, Montana, USA
- 4 Département des sciences biologiques, Université du Québec à Montréal , Montréal, Canada
| | - Rebecca L Mickol
- 5 Arkansas Center for Space and Planetary Sciences, University of Arkansas , Fayetteville, Arkansas, USA
| | - Luoth Chou
- 6 Department of Earth and Environmental Sciences, University of Illinois at Chicago , Chicago, Illinois, USA
| | - Kevin D Webster
- 7 Department of Ecology and Evolutionary Biology, University of Arizona , Tucson, Arizona, USA
- 8 School of Natural Resources and the Environment, University of Arizona , Tucson, Arizona, USA
| | - Matt Tilley
- 9 Department of Earth and Space Sciences, University of Washington , Seattle, Washington, USA
| | - Federica Zacchei
- 10 Instituut voor Sterrenkunde, University of Leuven , Leuven, Belgium
| | | | | | - Amanda Labrado
- 13 Department of Geosciences, The Pennsylvania State University , University Park, Pennsylvania, USA
| | | |
Collapse
|
34
|
Cui D, Tian F, Wang Y, Li C, Yu C, Yu L. On the Growth and Detectability of Land Plants on Habitable Planets around M Dwarfs. ASTROBIOLOGY 2017; 17:1219-1232. [PMID: 29148825 DOI: 10.1089/ast.2016.1617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
One signature of life on Earth is the vegetation red edge (VRE) feature of land plants, a dramatic change of reflectivity at wavelength near 0.7 μm. Potentially habitable planets around M dwarfs are tidally locked, which can limit the distribution of land plants. In this study, we used a biogeochemical model to investigate the distribution of land plants on potentially habitable planets around M dwarfs driven by climate data produced in a general circulation model (GCM). When considering the effects of clouds, the observation time needed for VRE detection on nearby p = 1 exoplanets around nearby M dwarfs is on the order of days using a 25 m2 telescope if a large continent faces Earth during observations. For p = 1.5 exoplanets, the detection time could be similar if land plants developed the capability to endure a dark/cold environment for extended periods of time and the continent configuration favors observations. Our analysis suggests that hypothetical exovegetation VRE features are easier to detect than Earth vegetation and that VRE detection is possible for nearby exoplanets even under cloudy conditions. Key Words: Vegetation red edge-Exoplanets-M dwarfs-Biosignature detection. Astrobiology 17, 1219-1232.
Collapse
Affiliation(s)
- Duo Cui
- 1 Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University , Beijing, China
| | - Feng Tian
- 1 Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University , Beijing, China
| | - Yuwei Wang
- 2 Department of Atmospheric and Oceanic Sciences, McGill University , Montreal, Canada
| | - Changshen Li
- 3 Institute for the Study of Earth, Oceans, and Space, University of New Hampshire , Durham, New Hampshire, USA
| | - Chaoqing Yu
- 1 Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University , Beijing, China
| | - Le Yu
- 1 Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University , Beijing, China
| |
Collapse
|
35
|
Abstract
Oxygenic photosynthesis is Earth's dominant metabolism, having evolved to harvest the largest expected energy source at the surface of most terrestrial habitable zone planets. Using CO2 and H2O-molecules that are expected to be abundant and widespread on habitable terrestrial planets-oxygenic photosynthesis is plausible as a significant planetary process with a global impact. Photosynthetic O2 has long been considered particularly robust as a sign of life on a habitable exoplanet, due to the lack of known "false positives"-geological or photochemical processes that could also produce large quantities of stable O2. O2 has other advantages as a biosignature, including its high abundance and uniform distribution throughout the atmospheric column and its distinct, strong absorption in the visible and near-infrared. However, recent modeling work has shown that false positives for abundant oxygen or ozone could be produced by abiotic mechanisms, including photochemistry and atmospheric escape. Environmental factors for abiotic O2 have been identified and will improve our ability to choose optimal targets and measurements to guard against false positives. Most of these false-positive mechanisms are dependent on properties of the host star and are often strongest for planets orbiting M dwarfs. In particular, selecting planets found within the conservative habitable zone and those orbiting host stars more massive than 0.4 M⊙ (M3V and earlier) may help avoid planets with abundant abiotic O2 generated by water loss. Searching for O4 or CO in the planetary spectrum, or the lack of H2O or CH4, could help discriminate between abiotic and biological sources of O2 or O3. In advance of the next generation of telescopes, thorough evaluation of potential biosignatures-including likely environmental context and factors that could produce false positives-ultimately works to increase our confidence in life detection. Key Words: Biosignatures-Exoplanets-Oxygen-Photosynthesis-Planetary spectra. Astrobiology 17, 1022-1052.
Collapse
Affiliation(s)
- Victoria S Meadows
- 1 Department of Astronomy and Astrobiology Program, University of Washington , Seattle, Washington
- 2 NASA Astrobiology Institute-Virtual Planetary Laboratory , USA
| |
Collapse
|
36
|
Takizawa K, Minagawa J, Tamura M, Kusakabe N, Narita N. Red-edge position of habitable exoplanets around M-dwarfs. Sci Rep 2017; 7:7561. [PMID: 28790357 PMCID: PMC5548919 DOI: 10.1038/s41598-017-07948-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 07/07/2017] [Indexed: 11/09/2022] Open
Abstract
One of the possible signs of life on distant habitable exoplanets is the red-edge, which is a rise in the reflectivity of planets between visible and near-infrared (NIR) wavelengths. Previous studies suggested the possibility that the red-edge position for habitable exoplanets around M-dwarfs may be shifted to a longer wavelength than that for Earth. We investigated plausible red-edge position in terms of the light environment during the course of the evolution of phototrophs. We show that phototrophs on M-dwarf habitable exoplanets may use visible light when they first evolve in the ocean and when they first colonize the land. The adaptive evolution of oxygenic photosynthesis may eventually also use NIR radiation, by one of two photochemical reaction centers, with the other center continuing to use visible light. These “two-color” reaction centers can absorb more photons, but they will encounter difficulty in adapting to drastically changing light conditions at the boundary between land and water. NIR photosynthesis can be more productive on land, though its evolution would be preceded by the Earth-type vegetation. Thus, the red-edge position caused by photosynthetic organisms on habitable M-dwarf exoplanets could initially be similar to that on Earth and later move to a longer wavelength.
Collapse
Affiliation(s)
- Kenji Takizawa
- Astrobiology Center, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan.,National Institute for Basic Biology, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Jun Minagawa
- National Institute for Basic Biology, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Motohide Tamura
- Astrobiology Center, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan.,Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan
| | - Nobuhiko Kusakabe
- Astrobiology Center, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan.,National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan
| | - Norio Narita
- Astrobiology Center, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan. .,Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan.
| |
Collapse
|
37
|
Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets. ACTA ACUST UNITED AC 2017. [DOI: 10.3847/1538-4365/aa7a06] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
The Surface UV Environment on Planets Orbiting M Dwarfs: Implications for Prebiotic Chemistry and the Need for Experimental Follow-up. ACTA ACUST UNITED AC 2017. [DOI: 10.3847/1538-4357/aa773e] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Abstract
We present a simple model for estimating the probability of interplanetary panspermia in the recently discovered system of seven planets orbiting the ultracool dwarf star TRAPPIST-1 and find that panspermia is potentially orders of magnitude more likely to occur in the TRAPPIST-1 system compared with the Earth-to-Mars case. As a consequence, we argue that the probability of abiogenesis is enhanced on the TRAPPIST-1 planets compared with the solar system. By adopting models from theoretical ecology, we show that the number of species transferred and the number of life-bearing planets are also likely to be higher because of the increased rates of immigration. We propose observational metrics for evaluating whether life was initiated by panspermia on multiple planets in the TRAPPIST-1 system. These results are also applicable to habitable exoplanets and exomoons in other planetary systems.
Collapse
|
40
|
Abstract
Abstract
Technological civilizations may rely upon large-scale photovoltaic arrays to harness energy from their host star. Photovoltaic materials, such as silicon, possess distinctive spectral features, including an ‘artificial edge' that is characteristically shifted in wavelength shortwards of the ‘red edge' of vegetation. Future observations of reflected light from exoplanets would be able to detect both natural and artificial edges photometrically, if a significant fraction of the planet's surface is covered by vegetation or photovoltaic arrays, respectively. The stellar energy thus tapped can be utilized for terraforming activities by transferring heat and light from the day side to the night side on tidally locked exoplanets, thereby producing detectable artefacts.
Collapse
Affiliation(s)
- Manasvi Lingam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
| | - Abraham Loeb
- Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
| |
Collapse
|
41
|
Doughty CE, Wolf A. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth? PLoS One 2016; 11:e0167188. [PMID: 27973530 PMCID: PMC5156343 DOI: 10.1371/journal.pone.0167188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/09/2016] [Indexed: 12/04/2022] Open
Abstract
Sagan et al. (1993) used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993) could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993) noted a red edge in the reflectance spectrum, indicative of photosynthesis) as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position) which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0–20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary.
Collapse
Affiliation(s)
- Christopher E. Doughty
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States of America
- * E-mail:
| | - Adam Wolf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton NJ, United States of America
| |
Collapse
|
42
|
Puzachenko Y, Sandlersky R, Sankovski A. Analysis of spatial and temporal organization of biosphere using solar reflectance data from MODIS satellite. Ecol Modell 2016. [DOI: 10.1016/j.ecolmodel.2016.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee, Scholes GD. Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms. Chem Rev 2016; 117:249-293. [PMID: 27428615 DOI: 10.1021/acs.chemrev.6b00002] [Citation(s) in RCA: 653] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The process of photosynthesis is initiated by the capture of sunlight by a network of light-absorbing molecules (chromophores), which are also responsible for the subsequent funneling of the excitation energy to the reaction centers. Through evolution, genetic drift, and speciation, photosynthetic organisms have discovered many solutions for light harvesting. In this review, we describe the underlying photophysical principles by which this energy is absorbed, as well as the mechanisms of electronic excitation energy transfer (EET). First, optical properties of the individual pigment chromophores present in light-harvesting antenna complexes are introduced, and then we examine the collective behavior of pigment-pigment and pigment-protein interactions. The description of energy transfer, in particular multichromophoric antenna structures, is shown to vary depending on the spatial and energetic landscape, which dictates the relative coupling strength between constituent pigment molecules. In the latter half of the article, we focus on the light-harvesting complexes of purple bacteria as a model to illustrate the present understanding of the synergetic effects leading to EET optimization of light-harvesting antenna systems while exploring the structure and function of the integral chromophores. We end this review with a brief overview of the energy-transfer dynamics and pathways in the light-harvesting antennas of various photosynthetic organisms.
Collapse
Affiliation(s)
- Tihana Mirkovic
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Evgeny E Ostroumov
- Department of Chemistry, Princeton University , Washington Road, Princeton, New Jersey 08544, United States
| | - Jessica M Anna
- Department of Chemistry, University of Pennsylvania , 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam , De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Govindjee
- Department of Biochemistry, Center of Biophysics & Quantitative Biology, and Department of Plant Biology, University of Illinois at Urbana-Champaign , 265 Morrill Hall, 505 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Gregory D Scholes
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Chemistry, Princeton University , Washington Road, Princeton, New Jersey 08544, United States
| |
Collapse
|
44
|
Cockell CS, Bush T, Bryce C, Direito S, Fox-Powell M, Harrison JP, Lammer H, Landenmark H, Martin-Torres J, Nicholson N, Noack L, O'Malley-James J, Payler SJ, Rushby A, Samuels T, Schwendner P, Wadsworth J, Zorzano MP. Habitability: A Review. ASTROBIOLOGY 2016; 16:89-117. [PMID: 26741054 DOI: 10.1089/ast.2015.1295] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Habitability is a widely used word in the geoscience, planetary science, and astrobiology literature, but what does it mean? In this review on habitability, we define it as the ability of an environment to support the activity of at least one known organism. We adopt a binary definition of "habitability" and a "habitable environment." An environment either can or cannot sustain a given organism. However, environments such as entire planets might be capable of supporting more or less species diversity or biomass compared with that of Earth. A clarity in understanding habitability can be obtained by defining instantaneous habitability as the conditions at any given time in a given environment required to sustain the activity of at least one known organism, and continuous planetary habitability as the capacity of a planetary body to sustain habitable conditions on some areas of its surface or within its interior over geological timescales. We also distinguish between surface liquid water worlds (such as Earth) that can sustain liquid water on their surfaces and interior liquid water worlds, such as icy moons and terrestrial-type rocky planets with liquid water only in their interiors. This distinction is important since, while the former can potentially sustain habitable conditions for oxygenic photosynthesis that leads to the rise of atmospheric oxygen and potentially complex multicellularity and intelligence over geological timescales, the latter are unlikely to. Habitable environments do not need to contain life. Although the decoupling of habitability and the presence of life may be rare on Earth, it may be important for understanding the habitability of other planetary bodies.
Collapse
Affiliation(s)
- C S Cockell
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - T Bush
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - C Bryce
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - S Direito
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - M Fox-Powell
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - J P Harrison
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - H Lammer
- 2 Austrian Academy of Sciences, Space Research Institute , Graz, Austria
| | - H Landenmark
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - J Martin-Torres
- 3 Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology , Kiruna, Sweden; and Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, Granada, Spain
| | - N Nicholson
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - L Noack
- 4 Department of Reference Systems and Planetology, Royal Observatory of Belgium , Brussels, Belgium
| | - J O'Malley-James
- 5 School of Physics and Astronomy, University of St Andrews , St Andrews, UK; now at the Carl Sagan Institute, Cornell University, Ithaca, NY, USA
| | - S J Payler
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - A Rushby
- 6 Centre for Ocean and Atmospheric Science (COAS), School of Environmental Sciences, University of East Anglia , Norwich, UK
| | - T Samuels
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - P Schwendner
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - J Wadsworth
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - M P Zorzano
- 3 Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology , Kiruna, Sweden; and Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, Granada, Spain
- 7 Centro de Astrobiología (CSIC-INTA) , Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
45
|
Figueredo F, Cortón E, Abrevaya XC. In Situ Search for Extraterrestrial Life: A Microbial Fuel Cell-Based Sensor for the Detection of Photosynthetic Metabolism. ASTROBIOLOGY 2015; 15:717-727. [PMID: 26325625 DOI: 10.1089/ast.2015.1288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microbial fuel cells (MFCs) are bioelectrochemical systems (BES) capable of harvesting electrons from redox reactions involved in metabolism. In a previous work, we used chemoorganoheterotrophic microorganisms from the three domains of life-Bacteria, Archaea, and Eukarya-to demonstrate that these BES could be applied to the in situ detection of extraterrestrial life. Since metabolism can be considered a common signature of life "as we know it," we extended in this study the ability to use MFCs as sensors for photolithoautotrophic metabolisms. To achieve this goal, two different photosynthetic microorganisms were used: the microalgae Parachlorella kessleri and the cyanobacterium Nostoc sp. MFCs were loaded with nonsterilized samples, sterilized samples, or sterilized culture medium of both microorganisms. Electric potential measurements were recorded for each group in single experiments or in continuum during light-dark cycles, and power and current densities were calculated. Our results indicate that the highest power and current density values were achieved when metabolically active microorganisms were present in the anode of the MFC. Moreover, when continuous measurements were performed during light-dark cycles, it was possible to see a positive response to light. Therefore, these BES could be used not only to detect chemoorganoheterotrophic metabolisms but also photolithoautotrophic metabolisms, in particular those involving oxygenic photosynthesis. Additionally, the positive response to light when using these BES could be employed to distinguish photosynthetic from nonphotosynthetic microorganisms in a sample.
Collapse
Affiliation(s)
- Federico Figueredo
- 1 Laboratorio de Biosensores y Bioanálisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA). Pabellón 2, Ciudad Universitaria , Ciudad Autónoma de Buenos Aires, Argentina
| | - Eduardo Cortón
- 1 Laboratorio de Biosensores y Bioanálisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA). Pabellón 2, Ciudad Universitaria , Ciudad Autónoma de Buenos Aires, Argentina
| | - Ximena C Abrevaya
- 2 Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA). Pabellón IAFE, Ciudad Universitaria , Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
46
|
Rugheimer S, Kaltenegger L, Segura A, Linsky J, Mohanty S. EFFECT OF UV RADIATION ON THE SPECTRAL FINGERPRINTS OF EARTH-LIKE PLANETS ORBITING M STARS. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/0004-637x/809/1/57] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Schwieterman EW, Cockell CS, Meadows VS. Nonphotosynthetic pigments as potential biosignatures. ASTROBIOLOGY 2015; 15:341-61. [PMID: 25941875 PMCID: PMC4442567 DOI: 10.1089/ast.2014.1178] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Previous work on possible surface reflectance biosignatures for Earth-like planets has typically focused on analogues to spectral features produced by photosynthetic organisms on Earth, such as the vegetation red edge. Although oxygenic photosynthesis, facilitated by pigments evolved to capture photons, is the dominant metabolism on our planet, pigmentation has evolved for multiple purposes to adapt organisms to their environment. We present an interdisciplinary study of the diversity and detectability of nonphotosynthetic pigments as biosignatures, which includes a description of environments that host nonphotosynthetic biologically pigmented surfaces, and a lab-based experimental analysis of the spectral and broadband color diversity of pigmented organisms on Earth. We test the utility of broadband color to distinguish between Earth-like planets with significant coverage of nonphotosynthetic pigments and those with photosynthetic or nonbiological surfaces, using both 1-D and 3-D spectral models. We demonstrate that, given sufficient surface coverage, nonphotosynthetic pigments could significantly impact the disk-averaged spectrum of a planet. However, we find that due to the possible diversity of organisms and environments, and the confounding effects of the atmosphere and clouds, determination of substantial coverage by biologically produced pigments would be difficult with broadband colors alone and would likely require spectrally resolved data.
Collapse
Affiliation(s)
- Edward W. Schwieterman
- University of Washington Astronomy Department, Seattle, Washington, USA
- NAI Virtual Planetary Laboratory, Seattle, Washington, USA
- University of Washington Astrobiology Program, Seattle, Washington, USA
| | - Charles S. Cockell
- University of Edinburgh School of Physics and Astronomy, Edinburgh, UK
- UK Centre for Astrobiology, Edinburgh, UK
| | - Victoria S. Meadows
- University of Washington Astronomy Department, Seattle, Washington, USA
- NAI Virtual Planetary Laboratory, Seattle, Washington, USA
- University of Washington Astrobiology Program, Seattle, Washington, USA
| |
Collapse
|
48
|
Lammer H, Schiefer SC, Juvan I, Odert P, Erkaev NV, Weber C, Kislyakova KG, Güdel M, Kirchengast G, Hanslmeier A. Origin and stability of exomoon atmospheres: implications for habitability. ORIGINS LIFE EVOL B 2014; 44:239-60. [PMID: 25515344 PMCID: PMC4669541 DOI: 10.1007/s11084-014-9377-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 11/18/2014] [Indexed: 11/30/2022]
Abstract
We study the origin and escape of catastrophically outgassed volatiles (H2O, CO2) from exomoons with Earth-like densities and masses of 0.1, 0.5 and 1 M⊕ orbiting an extra-solar gas giant inside the habitable zone of a young active solar-like star. We apply a radiation absorption and hydrodynamic upper atmosphere model to the three studied exomoon cases. We model the escape of hydrogen and dragged dissociation products O and C during the activity saturation phase of the young host star. Because the soft X-ray and EUV radiation of the young host star may be up to ~100 times higher compared to today’s solar value during the first 100 Myr after the system’s origin, an exomoon with a mass < 0.25 M⊕ located in the HZ may not be able to keep an atmosphere because of its low gravity. Depending on the spectral type and XUV activity evolution of the host star, exomoons with masses between ~0.25 and 0.5 M⊕ may evolve to Mars-like habitats. More massive bodies with masses >0.5 M⊕, however, may evolve to habitats that are a mixture of Mars-like and Earth-analogue habitats, so that life may originate and evolve at the exomoon’s surface.
Collapse
Affiliation(s)
- Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Graz, Austria,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bains W, Seager S, Zsom A. Photosynthesis in hydrogen-dominated atmospheres. Life (Basel) 2014; 4:716-44. [PMID: 25411926 PMCID: PMC4284464 DOI: 10.3390/life4040716] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022] Open
Abstract
The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life.
Collapse
Affiliation(s)
- William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| | - Andras Zsom
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
50
|
Cockell CS. Habitable worlds with no signs of life. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20130082. [PMID: 24664917 PMCID: PMC3982426 DOI: 10.1098/rsta.2013.0082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
'Most habitable worlds in the cosmos will have no remotely detectable signs of life' is proposed as a biological hypothesis to be tested in the study of exoplanets. Habitable planets could be discovered elsewhere in the Universe, yet there are many hypothetical scenarios whereby the search for life on them could yield negative results. Scenarios for habitable worlds with no remotely detectable signatures of life include: planets that are habitable, but have no biosphere (Uninhabited Habitable Worlds); planets with life, but lacking any detectable surface signatures of that life (laboratory examples are provided); and planets with life, where the concentrations of atmospheric gases produced or removed by biota are impossible to disentangle from abiotic processes because of the lack of detailed knowledge of planetary conditions (the 'problem of exoplanet thermodynamic uncertainty'). A rejection of the hypothesis would require that the origin of life usually occurs on habitable planets, that spectrally detectable pigments and/or metabolisms that produce unequivocal biosignature gases (e.g. oxygenic photosynthesis) usually evolve and that the organisms that harbour them usually achieve a sufficient biomass to produce biosignatures detectable to alien astronomers.
Collapse
Affiliation(s)
- Charles S. Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh EH10 4EP, UK
| |
Collapse
|