1
|
Vannah S, Stiehl ID, Gleiser M. An Informational-Entropic Approach to Exoplanet Characterization. ENTROPY (BASEL, SWITZERLAND) 2025; 27:385. [PMID: 40282620 PMCID: PMC12025435 DOI: 10.3390/e27040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
In the past, measures of the "Earth-likeness" of exoplanets have been qualitative, considering an abiotic Earth, or requiring discretionary choices of what parameters make a planet Earth-like. With the advent of high-resolution exoplanet spectroscopy, there is a growing need for a method of quantifying the Earth-likeness of a planet that addresses these issues while making use of the data available from modern telescope missions. In this work, we introduce an informational-entropic metric that makes use of the spectrum of an exoplanet to directly quantify how Earth-like the planet is. To illustrate our method, we generate simulated transmission spectra of a series of Earth-like and super-Earth exoplanets, as well as an exoJupiter and several gas giant exoplanets. As a proof of concept, we demonstrate the ability of the information metric to evaluate how similar a planet is to Earth, making it a powerful tool in the search for a candidate Earth 2.0.
Collapse
Affiliation(s)
- Sara Vannah
- Atmospheric and Environmental Research, Inc., Lexington, MA 02421, USA
| | - Ian D. Stiehl
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA (M.G.)
| | - Marcelo Gleiser
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA (M.G.)
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| |
Collapse
|
2
|
Larkum AWD, Falkowski PG, Edwards D, Osmond CB, Lambers H, Sanchez-Baracaldo P, Ritchie RJ, Runcie JW, Ralph PJ, Westoby M, Maberly S, Griffiths H, Smith FA, Beardall J. John Raven, FRS, FRSE: a truly great innovator in plant physiology, photosynthesis and much more. PHOTOSYNTHESIS RESEARCH 2025; 163:18. [PMID: 39961891 PMCID: PMC11832558 DOI: 10.1007/s11120-025-01139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025]
Abstract
This is a tribute to a truly inspirational plant biologist, Prof. John A. Raven, FRS, FRSE (25th June 1941- 23rd May 2024), who died at the age of 82. He was a leader in the field of evolution and physiology of algae and land plants. His research touched on many areas including photosynthesis, ion transport, carbon utilisation, mineral use, such as silicon, iron and molybdenum, the evolution of phytoplankton, the evolution of root systems, the impact of global change, especially on the acidification of the oceans, carbon gain and water use in early land plants, and ways of detecting extraterrestrial photosynthesis. Beginning his research career in the Botany School, University of Cambridge, John studied ion uptake in a giant algal cell. This was at the time of great strides brought about by Peter Mitchell (1920-1992) in elucidating the role of energy generation in mitochondria and chloroplasts and the coupling of ion transport systems to energy generation. With Enid MacRobbie and Andrew Smith, John pioneered early work on the involvement of ion transport in the growth and metabolism of plant cells.On leaving Cambridge John took up a lectureship at the University of Dundee in 1971, where he was still attached upon his death. His primary focus over the years, with one of us (Paul Falkowski), was on phytoplankton, the photosynthetic microalgae of the oceans. Still, his publication list of 5 books and over 600 scientific papers spans a very broad range. The many highly cited papers (see Table 1) attest to an outstanding innovator, who influenced a multitude of students and coworkers and a very wide readership worldwide. At the personal level, John Raven was a wonderful human being; he had an extraordinary memory, dredging up facts and little-known scientific papers, like a scientific magician, but at the same time making humorous jokes and involving his colleagues in fun and sympathetic appreciation. Table 1 Ten best cited articles (from google scholar) Citations Date Aquatic Photosynthesis, 3rd Edition P.G. Falkowski & J.A. Raven Princeton University Press, 2013 3854 2013 The evolution of modern eukaryotic phytoplankton P.G. Falkowski, M.E. Katz, A.H. Knoll, A. Quigg, J.A. Raven, et al Science 305, 354-360 1790 2004 CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution M. Giordano, J. Beardall & J.A. Raven Annu. Rev. Plant Biol. 56 (1), 99-131 1648 2005 Algae as nutritional food sources: revisiting our understanding M.L. Wells, P. Potin, J.S. Craigie, J.A. Raven, S.S. Merchant, et al Journal of applied phycology 29, 949-982 1527 2017 Plant Nutrient acquisition strategies change with soil age H. Lambers, J.A. Raven, G.R. Shaver & S.E. Smith Trends in ecology & evolution 23, 95-103 1488 2008 Ocean acidification due to increasing atmospheric carbon dioxide J. Raven, K. Caldeira, H. Elderfield, O. Hoegh-Guldberg, P. Liss, et al The Royal Society, Policy Document, June 2005 1470 2005 Phytoplankton in a changing world: cell size and elemental stoichiometry Z.V. Finkel, J. Beardall, K.J. Flynn, A. Quigg, T.A.V. Rees & J.A. Raven Journal of plankton research 32, 119-137 1198 2010 Opportunities for improving phosphorus efficiency in crop plants E.J. Veneklaas, H. Lambers, J. Bragg, P.M. Finnegan, C.E. Lovelock, et al New phytologist 195, 306-320 951 2012 Adaptation of unicellular algae to irradiance: an analysis of strategies K. Richardson, J. Beardall & J.A. Raven New Phytologist 93, 157-191 914 1983 Nitrogen assimilation and transport in vascular land plants in relation to Intracellular pH regulation J.A. Raven & F.A. Smith New Phytologist 76, 415-431 893 1976 Temperature and algal growth J.A. Raven & R.J. Geider New phytologist 110, 441-461 867 1988 The role of trace metals in photosynthetic electron transport in O2 -evolving organisms J.A. Raven, M.C.W. Evans & R.E. Korb Photosynthesis Research 60, 111-150 840 1999.
Collapse
Affiliation(s)
- A W D Larkum
- Climate Change Cluster, University of Technology Sydney, Building 7, Thomas St, Broadway, Ultimo, NSW, 2009, Australia.
| | - P G Falkowski
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | | | - C B Osmond
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - H Lambers
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - P Sanchez-Baracaldo
- School of Geographical Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - R J Ritchie
- Techology and Environment, Prince of Songkla University Phuket, Phuket, 83120, Thailand
| | - J W Runcie
- Aquation Pty Ltd, PO Box 3146, Umina Beach, NSW, 2257, Australia
| | - P J Ralph
- Climate Change Cluster, University of Technology Sydney, Building 7, Thomas St, Broadway, Ultimo, NSW, 2009, Australia
| | - M Westoby
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, 2109, Australia
| | - S Maberly
- Centre for Ecology & Hydrology, Lancaster University, Lancaster, LA1 4YW, UK
| | - H Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 1TN, UK
| | - F A Smith
- University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - J Beardall
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
3
|
Schwieterman EW, Kiang NY, Parenteau MN, Harman CE, DasSarma S, Fisher TM, Arney GN, Hartnett HE, Reinhard CT, Olson SL, Meadows VS, Cockell CS, Walker SI, Grenfell JL, Hegde S, Rugheimer S, Hu R, Lyons TW. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. ASTROBIOLOGY 2018; 18:663-708. [PMID: 29727196 PMCID: PMC6016574 DOI: 10.1089/ast.2017.1729] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/10/2017] [Indexed: 05/04/2023]
Abstract
In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earth's biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere. Considering the insights gained from modern and ancient Earth, and the broader array of hypothetical exoplanet possibilities, we have compiled a comprehensive overview of our current understanding of potential exoplanet biosignatures, including gaseous, surface, and temporal biosignatures. We additionally survey biogenic spectral features that are well known in the specialist literature but have not yet been robustly vetted in the context of exoplanet biosignatures. We briefly review advances in assessing biosignature plausibility, including novel methods for determining chemical disequilibrium from remotely obtainable data and assessment tools for determining the minimum biomass required to maintain short-lived biogenic gases as atmospheric signatures. We focus particularly on advances made since the seminal review by Des Marais et al. The purpose of this work is not to propose new biosignature strategies, a goal left to companion articles in this series, but to review the current literature, draw meaningful connections between seemingly disparate areas, and clear the way for a path forward. Key Words: Exoplanets-Biosignatures-Habitability markers-Photosynthesis-Planetary surfaces-Atmospheres-Spectroscopy-Cryptic biospheres-False positives. Astrobiology 18, 663-708.
Collapse
Affiliation(s)
- Edward W. Schwieterman
- Department of Earth Sciences, University of California, Riverside, California
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, Maryland
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Blue Marble Space Institute of Science, Seattle, Washington
| | - Nancy Y. Kiang
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- NASA Goddard Institute for Space Studies, New York, New York
| | - Mary N. Parenteau
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- NASA Ames Research Center, Exobiology Branch, Mountain View, California
| | - Chester E. Harman
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- NASA Goddard Institute for Space Studies, New York, New York
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, Maryland
| | - Theresa M. Fisher
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - Giada N. Arney
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Hilairy E. Hartnett
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| | - Christopher T. Reinhard
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Stephanie L. Olson
- Department of Earth Sciences, University of California, Riverside, California
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
| | - Victoria S. Meadows
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- Astronomy Department, University of Washington, Seattle, Washington
| | - Charles S. Cockell
- University of Edinburgh School of Physics and Astronomy, Edinburgh, United Kingdom
- UK Centre for Astrobiology, Edinburgh, United Kingdom
| | - Sara I. Walker
- Blue Marble Space Institute of Science, Seattle, Washington
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona
- ASU-Santa Fe Institute Center for Biosocial Complex Systems, Arizona State University, Tempe, Arizona
| | - John Lee Grenfell
- Institut für Planetenforschung (PF), Deutsches Zentrum für Luft und Raumfahrt (DLR), Berlin, Germany
| | - Siddharth Hegde
- Carl Sagan Institute, Cornell University, Ithaca, New York
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York
| | - Sarah Rugheimer
- Department of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - Renyu Hu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| | - Timothy W. Lyons
- Department of Earth Sciences, University of California, Riverside, California
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
| |
Collapse
|
4
|
Krissansen-Totton J, Olson S, Catling DC. Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. SCIENCE ADVANCES 2018; 4:eaao5747. [PMID: 29387792 PMCID: PMC5787383 DOI: 10.1126/sciadv.aao5747] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/19/2017] [Indexed: 05/04/2023]
Abstract
Chemical disequilibrium in planetary atmospheres has been proposed as a generalized method for detecting life on exoplanets through remote spectroscopy. Among solar system planets with substantial atmospheres, the modern Earth has the largest thermodynamic chemical disequilibrium due to the presence of life. However, how this disequilibrium changed over time and, in particular, the biogenic disequilibria maintained in the anoxic Archean or less oxic Proterozoic eons are unknown. We calculate the atmosphere-ocean disequilibrium in the Precambrian using conservative proxy- and model-based estimates of early atmospheric and oceanic compositions. We omit crustal solids because subsurface composition is not detectable on exoplanets, unlike above-surface volatiles. We find that (i) disequilibrium increased through time in step with the rise of oxygen; (ii) both the Proterozoic and Phanerozoic may have had remotely detectable biogenic disequilibria due to the coexistence of O2, N2, and liquid water; and (iii) the Archean had a biogenic disequilibrium caused by the coexistence of N2, CH4, CO2, and liquid water, which, for an exoplanet twin, may be remotely detectable. On the basis of this disequilibrium, we argue that the simultaneous detection of abundant CH4 and CO2 in a habitable exoplanet's atmosphere is a potential biosignature. Specifically, we show that methane mixing ratios greater than 10-3 are potentially biogenic, whereas those exceeding 10-2 are likely biogenic due to the difficulty in maintaining large abiotic methane fluxes to support high methane levels in anoxic atmospheres. Biogenicity would be strengthened by the absence of abundant CO, which should not coexist in a biological scenario.
Collapse
Affiliation(s)
- Joshua Krissansen-Totton
- Department of Earth and Space Sciences/Astrobiology Program, University of Washington, Seattle, WA 98195, USA
- Virtual Planetary Laboratory, University of Washington, Seattle, WA 98195, USA
| | - Stephanie Olson
- Department of Earth Sciences and NASA Astrobiology Institute, University of California, Riverside, Riverside, CA 92521, USA
| | - David C. Catling
- Department of Earth and Space Sciences/Astrobiology Program, University of Washington, Seattle, WA 98195, USA
- Virtual Planetary Laboratory, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Cataldi G, Brandeker A, Thébault P, Singer K, Ahmed E, de Vries BL, Neubeck A, Olofsson G. Searching for Biosignatures in Exoplanetary Impact Ejecta. ASTROBIOLOGY 2017; 17:721-746. [PMID: 28692303 DOI: 10.1089/ast.2015.1437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With the number of confirmed rocky exoplanets increasing steadily, their characterization and the search for exoplanetary biospheres are becoming increasingly urgent issues in astrobiology. To date, most efforts have concentrated on the study of exoplanetary atmospheres. Instead, we aim to investigate the possibility of characterizing an exoplanet (in terms of habitability, geology, presence of life, etc.) by studying material ejected from the surface during an impact event. For a number of impact scenarios, we estimate the escaping mass and assess its subsequent collisional evolution in a circumstellar orbit, assuming a Sun-like host star. We calculate the fractional luminosity of the dust as a function of time after the impact event and study its detectability with current and future instrumentation. We consider the possibility to constrain the dust composition, giving information on the geology or the presence of a biosphere. As examples, we investigate whether calcite, silica, or ejected microorganisms could be detected. For a 20 km diameter impactor, we find that the dust mass escaping the exoplanet is roughly comparable to the zodiacal dust, depending on the exoplanet's size. The collisional evolution is best modeled by considering two independent dust populations, a spalled population consisting of nonmelted ejecta evolving on timescales of millions of years, and dust recondensed from melt or vapor evolving on much shorter timescales. While the presence of dust can potentially be inferred with current telescopes, studying its composition requires advanced instrumentation not yet available. The direct detection of biological matter turns out to be extremely challenging. Despite considerable difficulties (small dust masses, noise such as exozodiacal dust, etc.), studying dusty material ejected from an exoplanetary surface might become an interesting complement to atmospheric studies in the future. Key Words: Biosignatures-Exoplanets-Impacts-Interplanetary dust-Remote sensing. Astrobiology 17, 721-746.
Collapse
Affiliation(s)
- Gianni Cataldi
- 1 AlbaNova University Centre, Stockholm University , Department of Astronomy, Stockholm, Sweden
- 2 Stockholm University Astrobiology Centre , Stockholm, Sweden
| | - Alexis Brandeker
- 1 AlbaNova University Centre, Stockholm University , Department of Astronomy, Stockholm, Sweden
- 2 Stockholm University Astrobiology Centre , Stockholm, Sweden
| | - Philippe Thébault
- 3 LESIA-Observatoire de Paris, UPMC Univ. Paris 06, Univ. Paris-Diderot , Paris, France
| | - Kelsi Singer
- 4 Southwest Research Institute , Boulder, Colorado, USA
| | - Engy Ahmed
- 2 Stockholm University Astrobiology Centre , Stockholm, Sweden
- 5 Royal Institute of Technology (KTH) , Science for Life Laboratory, Solna, Sweden
- 6 Stockholm University , Department of Geological Sciences, Stockholm, Sweden
| | - Bernard L de Vries
- 1 AlbaNova University Centre, Stockholm University , Department of Astronomy, Stockholm, Sweden
- 2 Stockholm University Astrobiology Centre , Stockholm, Sweden
- 7 Scientific Support Office, Directorate of Science, European Space Research and Technology Centre (ESA/ESTEC) , Noordwijk, The Netherlands
| | - Anna Neubeck
- 2 Stockholm University Astrobiology Centre , Stockholm, Sweden
- 6 Stockholm University , Department of Geological Sciences, Stockholm, Sweden
| | - Göran Olofsson
- 1 AlbaNova University Centre, Stockholm University , Department of Astronomy, Stockholm, Sweden
- 2 Stockholm University Astrobiology Centre , Stockholm, Sweden
| |
Collapse
|
6
|
Krissansen-Totton J, Bergsman DS, Catling DC. On Detecting Biospheres from Chemical Thermodynamic Disequilibrium in Planetary Atmospheres. ASTROBIOLOGY 2016; 16:39-67. [PMID: 26789355 DOI: 10.1089/ast.2015.1327] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Atmospheric chemical disequilibrium has been proposed as a method for detecting extraterrestrial biospheres from exoplanet observations. Chemical disequilibrium is potentially a generalized biosignature since it makes no assumptions about particular biogenic gases or metabolisms. Here, we present the first rigorous calculations of the thermodynamic chemical disequilibrium in Solar System atmospheres, in which we quantify the available Gibbs energy: the Gibbs free energy of an observed atmosphere minus that of atmospheric gases reacted to equilibrium. The purely gas phase disequilibrium in Earth's atmosphere is mostly attributable to O2 and CH4. The available Gibbs energy is not unusual compared to other Solar System atmospheres and smaller than that of Mars. However, Earth's fluid envelope contains an ocean, allowing gases to react with water and requiring a multiphase calculation with aqueous species. The disequilibrium in Earth's atmosphere-ocean system (in joules per mole of atmosphere) ranges from ∼20 to 2 × 10(6) times larger than the disequilibria of other atmospheres in the Solar System, where Mars is second to Earth. Only on Earth is the chemical disequilibrium energy comparable to the thermal energy per mole of atmosphere (excluding comparison to Titan with lakes, where quantification is precluded because the mean lake composition is unknown). Earth's disequilibrium is biogenic, mainly caused by the coexistence of N2, O2, and liquid water instead of more stable nitrate. In comparison, the O2-CH4 disequilibrium is minor, although kinetics requires a large CH4 flux into the atmosphere. We identify abiotic processes that cause disequilibrium in the other atmospheres. Our metric requires minimal assumptions and could potentially be calculated from observations of exoplanet atmospheres. However, further work is needed to establish whether thermodynamic disequilibrium is a practical exoplanet biosignature, requiring an assessment of false positives, noisy observations, and other detection challenges. Our Matlab code and databases for these calculations are available, open source.
Collapse
Affiliation(s)
- Joshua Krissansen-Totton
- 1 Department of Earth and Space Sciences/Astrobiology Program, University of Washington , Seattle, Washington
| | - David S Bergsman
- 2 Department of Chemical Engineering, Stanford University , Stanford, California
| | - David C Catling
- 1 Department of Earth and Space Sciences/Astrobiology Program, University of Washington , Seattle, Washington
| |
Collapse
|
7
|
Harman CE, Schwieterman EW, Schottelkotte JC, Kasting JF. ABIOTIC O2LEVELS ON PLANETS AROUND F, G, K, AND M STARS: POSSIBLE FALSE POSITIVES FOR LIFE? ACTA ACUST UNITED AC 2015. [DOI: 10.1088/0004-637x/812/2/137] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Schwieterman EW, Cockell CS, Meadows VS. Nonphotosynthetic pigments as potential biosignatures. ASTROBIOLOGY 2015; 15:341-61. [PMID: 25941875 PMCID: PMC4442567 DOI: 10.1089/ast.2014.1178] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Previous work on possible surface reflectance biosignatures for Earth-like planets has typically focused on analogues to spectral features produced by photosynthetic organisms on Earth, such as the vegetation red edge. Although oxygenic photosynthesis, facilitated by pigments evolved to capture photons, is the dominant metabolism on our planet, pigmentation has evolved for multiple purposes to adapt organisms to their environment. We present an interdisciplinary study of the diversity and detectability of nonphotosynthetic pigments as biosignatures, which includes a description of environments that host nonphotosynthetic biologically pigmented surfaces, and a lab-based experimental analysis of the spectral and broadband color diversity of pigmented organisms on Earth. We test the utility of broadband color to distinguish between Earth-like planets with significant coverage of nonphotosynthetic pigments and those with photosynthetic or nonbiological surfaces, using both 1-D and 3-D spectral models. We demonstrate that, given sufficient surface coverage, nonphotosynthetic pigments could significantly impact the disk-averaged spectrum of a planet. However, we find that due to the possible diversity of organisms and environments, and the confounding effects of the atmosphere and clouds, determination of substantial coverage by biologically produced pigments would be difficult with broadband colors alone and would likely require spectrally resolved data.
Collapse
Affiliation(s)
- Edward W. Schwieterman
- University of Washington Astronomy Department, Seattle, Washington, USA
- NAI Virtual Planetary Laboratory, Seattle, Washington, USA
- University of Washington Astrobiology Program, Seattle, Washington, USA
| | - Charles S. Cockell
- University of Edinburgh School of Physics and Astronomy, Edinburgh, UK
- UK Centre for Astrobiology, Edinburgh, UK
| | - Victoria S. Meadows
- University of Washington Astronomy Department, Seattle, Washington, USA
- NAI Virtual Planetary Laboratory, Seattle, Washington, USA
- University of Washington Astrobiology Program, Seattle, Washington, USA
| |
Collapse
|
9
|
Snellen I. High-dispersion spectroscopy of extrasolar planets: from CO in hot Jupiters to O2 in exo-Earths. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20130075. [PMID: 24664914 DOI: 10.1098/rsta.2013.0075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ground-based high-dispersion spectroscopy could reveal molecular oxygen as a biomarker gas in the atmospheres of twin-Earths transiting red dwarf stars within the next 25 years. The required contrasts are only a factor of 3 lower than that already achieved for carbon monoxide in hot Jupiter atmospheres today but will need much larger telescopes because the target stars will be orders of magnitude fainter. If extraterrestrial life is very common and can therefore be found on planets around the most nearby red dwarf stars, it may be detectable via transmission spectroscopy with the next-generation extremely large telescopes. However, it is likely that significantly more collecting area is required for this. This can be achieved through the development of low-cost flux collector technology, which combines a large collecting area with a low but sufficient image quality for high-dispersion spectroscopy of bright stars.
Collapse
Affiliation(s)
- Ignas Snellen
- Leiden Observatory, Leiden University, , Postbus 9513, 2300 RA Leiden, The Netherlands
| |
Collapse
|
10
|
|
11
|
Edwards HGM, Hutchinson I, Ingley R. The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype. Anal Bioanal Chem 2012; 404:1723-31. [DOI: 10.1007/s00216-012-6285-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/25/2012] [Accepted: 07/18/2012] [Indexed: 11/30/2022]
|
12
|
Vukotić B, Ćirković MM. Astrobiological complexity with probabilistic cellular automata. ORIGINS LIFE EVOL B 2012; 42:347-71. [PMID: 22832998 DOI: 10.1007/s11084-012-9293-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/14/2012] [Indexed: 11/30/2022]
Abstract
The search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling the astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous space of the input parameters. We perform a simple clustering analysis of typical astrobiological histories with "Copernican" choice of input parameters and discuss the relevant boundary conditions of practical importance for planning and guiding empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.
Collapse
Affiliation(s)
- Branislav Vukotić
- Astronomical Observatory Belgrade, Volgina 7, 11160 Belgrade-74, Serbia.
| | | |
Collapse
|
13
|
Martin S, Booth A, Liewer K, Raouf N, Loya F, Tang H. High performance testbed for four-beam infrared interferometric nulling and exoplanet detection. APPLIED OPTICS 2012; 51:3907-3921. [PMID: 22695670 DOI: 10.1364/ao.51.003907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/01/2012] [Indexed: 06/01/2023]
Abstract
Technology development for a space-based infrared nulling interferometer capable of earthlike exoplanet detection and characterization started in earnest in the last 10 years. At the Jet Propulsion Laboratory, the planet detection testbed was developed to demonstrate the principal components of the beam combiner train for a high performance four-beam nulling interferometer. Early in the development of the testbed, the importance of "instability noise" for nulling interferometer sensitivity was recognized, and the four-beam testbed would produce this noise, allowing investigation of methods for mitigating this noise source. The testbed contains the required features of a four-beam combiner for a space interferometer and performs at a level matching that needed for the space mission. This paper describes in detail the design, functions, and controls of the testbed.
Collapse
Affiliation(s)
- Stefan Martin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Menor-Salván C, Marín-Yaseli MR. Prebiotic chemistry in eutectic solutions at the water-ice matrix. Chem Soc Rev 2012; 41:5404-15. [PMID: 22660387 DOI: 10.1039/c2cs35060b] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A crystalline ice matrix at subzero temperatures can maintain a liquid phase where organic solutes and salts concentrate to form eutectic solutions. This concentration effect converts the confined reactant solutions in the ice matrix, sometimes making condensation and polymerisation reactions occur more favourably. These reactions occur at significantly high rates from a prebiotic chemistry standpoint, and the labile products can be protected from degradation. The experimental study of the synthesis of nitrogen heterocycles at the ice-water system showed the efficiency of this scenario and could explain the origin of nucleobases in the inner Solar System bodies, including meteorites and extra-terrestrial ices, and on the early Earth. The same conditions can also favour the condensation of monomers to form ribonucleic acid and peptides. Together with the synthesis of these monomers, the ice world (i.e., the chemical evolution in the range between the freezing point of water and the limit of stability of liquid brines, 273 to 210 K) is an under-explored experimental model in prebiotic chemistry.
Collapse
Affiliation(s)
- César Menor-Salván
- Centro de Astrobiología (INTA-CSIC), INTA, E-28850 Torrejón de Ardoz, Spain.
| | | |
Collapse
|
15
|
Abstract
The biological record suggests that life on Earth arose as soon as conditions were favorable, which indicates that life either originated quickly, or arrived from elsewhere to seed Earth. Experimental research under the theme of “astrobiology” has produced data that some view as strong evidence for the second possibility, known as the panspermia hypothesis. While it is not unreasonable to consider the possibility that Earth’s life originated elsewhere and potentially much earlier, we conclude that the current literature offers no definitive evidence to support this hypothesis.
Chladni’s view, that they fall from the skies, pronounced in 1795, was ridiculed by the learned men of the times. (Rachel, 1881) Evidence of life on Mars, even if only in the distant past, would finally answer the age-old question of whether living beings on Earth are alone in the universe. The magnitude of such a discovery is illustrated by President Bill Clinton’s appearance at a 1996 press conference to announce that proof had been found at last. A meteorite chipped from the surface of the Red Planet some 15 million years ago appeared to contain the fossil remains of tiny life-forms that indicated life had once existed on Mars. (Young and Martel, 2010)
Collapse
|
16
|
Léger A, Fontecave M, Labeyrie A, Samuel B, Demangeon O, Valencia D. Is the presence of oxygen on an exoplanet a reliable biosignature? ASTROBIOLOGY 2011; 11:335-41. [PMID: 21563960 DOI: 10.1089/ast.2010.0516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We revisit the validity of the presence of O(2) or O(3) in the atmosphere of a rocky planet as being a biosignature. Up to now, the false positive that has been identified applies to a planet during a hot greenhouse runaway, which is restricted to planets outside the habitable zone (HZ) of the star that are closer to the star. In this paper, we explore a new possibility based on abiotic photogeneration of O(2) at the surface of a planet that could occur inside the HZ. The search for such a process is an active field of laboratory investigation that has resulted from an ongoing interest in finding efficient systems with the capacity to harvest solar energy on Earth. Although such a process is energetically viable, we find it to be a very unlikely explanation for the observation of O(2) or O(3) in the atmosphere of a telluric exoplanet in the HZ. It requires an efficient photocatalyst to be present and abundant under natural planetary conditions, which appears unlikely according to our discussion of known mineral photochemical processes. In contrast, a biological system that synthesizes its constituents from abundant raw materials and energy has the inherent adaptation advantage to become widespread and dominant (Darwinist argument). Thus, O(2) appears to continue to be a good biosignature.
Collapse
Affiliation(s)
- A Léger
- 1 IAS, CNRS (UMR 8617), Université Paris-Sud, Orsay, France.
| | | | | | | | | | | |
Collapse
|
17
|
Fridlund M. Extra-terrestrial life in the European Space Agency's Cosmic Vision plan and beyond. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:582-593. [PMID: 21220282 DOI: 10.1098/rsta.2010.0233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Our exciting time allows us to contemplate the moment in the not-too-distant future when we can detect the presence of life on worlds orbiting stars other than our Sun. It will not be easy and will require the development and use of the very latest technologies. It also very probably demands deployment in space of relevant instrumentation in order to carry out these investigations. The European Space Agency has been involved in the studies and development of the required technologies for more than a decade and is currently formulating a roadmap for how to achieve the ultimate detection of signs of life as we know it on terrestrial exoplanets. The major elements of the roadmap consist of the following. First, the search for and detection of terrestrial exoplanets. Here, some progress has been made recently and is reported in this paper. Second, the more and more detailed study of the physical characteristics of such exoplanets. Finally, the search for biomarkers--indicators of biological activity--that can be observed at interstellar distances. The last is probably one of the most difficult problems ever contemplated by observational astronomy.
Collapse
Affiliation(s)
- Malcolm Fridlund
- European Space Agency, ESTEC, PO Box 299, 2200AG Noordwijk, The Netherlands.
| |
Collapse
|
18
|
Abstract
The Cassini-Huygens mission discovered an active "hydrologic cycle" on Saturn's giant moon Titan, in which methane takes the place of water. Shrouded by a dense nitrogen-methane atmosphere, Titan's surface is blanketed in the equatorial regions by dunes composed of solid organics, sculpted by wind and fluvial erosion, and dotted at the poles with lakes and seas of liquid methane and ethane. The underlying crust is almost certainly water ice, possibly in the form of gas hydrates (clathrate hydrates) dominated by methane as the included species. The processes that work the surface of Titan resemble in their overall balance no other moon in the solar system; instead, they are most like that of the Earth. The presence of methane in place of water, however, means that in any particular planetary system, a body like Titan will always be outside the orbit of an Earth-type planet. Around M-dwarfs, planets with a Titan-like climate will sit at 1 AU--a far more stable environment than the approximately 0.1 AU where Earth-like planets sit. However, an observable Titan-like exoplanet might have to be much larger than Titan itself to be observable, increasing the ratio of heat contributed to the surface atmosphere system from internal (geologic) processes versus photons from the parent star.
Collapse
Affiliation(s)
- Jonathan I Lunine
- Dipartimento di Fisica, University of Rome "Tor Vergata", Rome, Italy 00133.
| |
Collapse
|
19
|
Doughty CE, Wolf A. Detecting tree-like multicellular life on extrasolar planets. ASTROBIOLOGY 2010; 10:869-879. [PMID: 21118020 DOI: 10.1089/ast.2010.0495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Over the next two decades, NASA and ESA are planning a series of space-based observatories to find Earth-like planets and determine whether life exists on these planets. Previous studies have assessed the likelihood of detecting life through signs of biogenic gases in the atmosphere or a red edge. Biogenic gases and the red edge could be signs of either single-celled or multicellular life. In this study, we propose a technique with which to determine whether tree-like multicellular life exists on extrasolar planets. For multicellular photosynthetic organisms on Earth, competition for light and the need to transport water and nutrients has led to a tree-like body plan characterized by hierarchical branching networks. This design results in a distinct bidirectional reflectance distribution function (BRDF) that causes differing reflectance at different sun/view geometries. BRDF arises from the changing visibility of the shadows cast by objects, and the presence of tree-like structures is clearly distinguishable from flat ground with the same reflectance spectrum. We examined whether the BRDF could detect the existence of tree-like structures on an extrasolar planet by using changes in planetary albedo as a planet orbits its star. We used a semi-empirical BRDF model to simulate vegetation reflectance at different planetary phase angles and both simulated and real cloud cover to calculate disk and rotation-averaged planetary albedo for a vegetated and non-vegetated planet with abundant liquid water. We found that even if the entire planetary albedo were rendered to a single pixel, the rate of increase of albedo as a planet approaches full illumination would be comparatively greater on a vegetated planet than on a non-vegetated planet. Depending on how accurately planetary cloud cover can be resolved and the capabilities of the coronagraph to resolve exoplanets, this technique could theoretically detect tree-like multicellular life on exoplanets in 50 stellar systems.
Collapse
Affiliation(s)
- Christopher E Doughty
- Department of Global Ecology, Carnegie Institution, Stanford, California 92697-3100, USA.
| | | |
Collapse
|
20
|
Riehl WJ, Krapivsky PL, Redner S, Segrè D. Signatures of arithmetic simplicity in metabolic network architecture. PLoS Comput Biol 2010; 6:e1000725. [PMID: 20369010 PMCID: PMC2848538 DOI: 10.1371/journal.pcbi.1000725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 02/26/2010] [Indexed: 11/19/2022] Open
Abstract
Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that properties similar to those predicted for the artificial chemistry hold also for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity. Metabolism is the network of biochemical reactions that transforms available resources (“inputs”) into energy currency and building blocks (“outputs”). Different organisms have different assortments of metabolic pathways and input/output requirements, reflecting their adaptation to specific environments, and to specific strategies for reproduction and survival. Here we ask whether, beneath the intricate wiring of these networks, it is possible to discern signatures of optimal (i.e., shortest and maximally efficient) pathway architectures. A systematic search for such optimal pathways between all possible pairs of input and output molecules in real organic chemistry is computationally intractable. However, we can implement such a search in a simple artificial chemistry, which roughly resembles a single atom (e.g., carbon) version of real biochemistry. We find that optimal pathways in our idealized chemistry display a logarithmic dependence of pathway length on input/output molecule size. They also display recurring topologies, including autocatalytic cycles reminiscent of ancient and highly conserved cores of real biochemistry. Finally, across all optimal pathways, we identify universally important metabolites and reactions, as well as a characteristic distribution of reaction utilization. Similar features can be observed in real metabolic networks, suggesting that arithmetic simplicity may lie beneath some aspects of biochemical complexity.
Collapse
Affiliation(s)
- William J. Riehl
- Program in Bioinformatics and Systems Biology, Boston University, Boston, Massachusetts, United States of America
| | - Paul L. Krapivsky
- Department of Physics, Boston University, Boston, Massachusetts, United States of America
| | - Sidney Redner
- Department of Physics, Boston University, Boston, Massachusetts, United States of America
| | - Daniel Segrè
- Program in Bioinformatics and Systems Biology, Boston University, Boston, Massachusetts, United States of America
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|