1
|
McSween HY, Hamilton VE, Farley KA. Perspectives on Mars Sample Return: A critical resource for planetary science and exploration. Proc Natl Acad Sci U S A 2025; 122:e2404248121. [PMID: 39761404 PMCID: PMC11745396 DOI: 10.1073/pnas.2404248121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Mars Sample Return (MSR) has been the highest flagship mission priority in the last two Planetary Decadal Surveys of the National Academies of Science, Engineering, and Medicine (hereafter, "the National Academies") and was the highest priority flagship for Mars in the Decadal Survey that preceded them. This inspirational and challenging campaign, like the Apollo program's returned lunar samples, will potentially revolutionize our understanding of Mars and help inform how other planets are explored. MSR's technological advances will keep the NASA and European Space Agency at the forefront of planetary exploration, and data on returned samples will fill knowledge gaps for future human exploration. Investigations of the ancient rocks collected in and around Jezero crater, as well as samples of the regolith and atmosphere, will be fundamentally different in scope, depth, and certainty from what is achievable with spaceborne observations. Returned Mars samples can address critical science issues including the discovery and characterization of ancient extraterrestrial life, prebiotic organic chemistry, the history of habitable planetary environments, planetary geological, geochemical, and geophysical evolution, orbital dynamics of bodies in the early Solar System, and the formation and evolution of atmospheres.
Collapse
Affiliation(s)
- Harry Y. McSween
- Department of Earth, Environmental, and Planetary Sciences, University of Tennessee, Knoxville, TN37996-1526
| | - Victoria E. Hamilton
- Solar System Science and Exploration Division, Southwest Research Institute, Boulder, CO80302
| | - Kenneth A. Farley
- Division of Earth and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
2
|
Sephton MA, Freeman K, Hays L, Thiessen F, Benison K, Carrier B, Dworkin JP, Glamoclija M, Gough R, Onofri S, Peterson R, Quinn R, Russell S, Stüeken EE, Velbel M, Zolotov M. Thresholds of Temperature and Time for Mars Sample Return: Final Report of the Mars Sample Return Temperature-Time Tiger Team. ASTROBIOLOGY 2024; 24:443-488. [PMID: 38768433 DOI: 10.1089/ast.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Mark A Sephton
- Imperial College London, Earth Science and Engineering, South Kensington Campus, London, UK
| | - Kate Freeman
- The Pennsylvania State University, Geosciences, University Park, Pennsylvania, USA
| | - Lindsay Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - Fiona Thiessen
- European Space Research and Technology Centre, Noordwijk, South Holland, Netherlands
| | - Kathleen Benison
- West Virginia University, Department of Geology and Geography, Morgantown, West Virginia, USA
| | - Brandi Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jason P Dworkin
- NASA Goddard Space Flight Center, Astrochemistry, Greenbelt, Maryland, USA
| | - Mihaela Glamoclija
- Rutgers University Newark College of Arts and Sciences, Earth and Environmental Sciences, Newark, New Jersey, USA
| | - Raina Gough
- University of Colorado, Department of Chemistry and Biochemistry, Boulder, Colorado, USA
| | - Silvano Onofri
- University of Tuscia, Department of Ecological and Biological Sciences, Largo dell'Università snc Viterbo, Italy
| | | | - Richard Quinn
- NASA Ames Research Center, Moffett Field, California, USA
| | - Sara Russell
- Natural History Museum, Department of Earth Sciences, London, UK
| | - Eva E Stüeken
- University of St Andrews, School of Earth and Environmental Sciences, St Andrews, Fife, UK
| | - Michael Velbel
- Michigan State University, Earth and Environmental Sciences, East Lansing, Michigan, USA
- Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington, DC, USA
| | - Mikhail Zolotov
- Arizona State University, School of Earth and Space Exploration, Tempe, Arizona, USA
| |
Collapse
|
3
|
Chou L, Grefenstette N, Borges S, Caro T, Catalano E, Harman CE, McKaig J, Raj CG, Trubl G, Young A. Chapter 8: Searching for Life Beyond Earth. ASTROBIOLOGY 2024; 24:S164-S185. [PMID: 38498822 DOI: 10.1089/ast.2021.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The search for life beyond Earth necessitates a rigorous and comprehensive examination of biosignatures, the types of observable imprints that life produces. These imprints and our ability to detect them with advanced instrumentation hold the key to our understanding of the presence and abundance of life in the universe. Biosignatures are the chemical or physical features associated with past or present life and may include the distribution of elements and molecules, alone or in combination, as well as changes in structural components or physical processes that would be distinct from an abiotic background. The scientific and technical strategies used to search for life on other planets include those that can be conducted in situ to planetary bodies and those that could be observed remotely. This chapter discusses numerous strategies that can be employed to look for biosignatures directly on other planetary bodies using robotic exploration including those that have been deployed to other planetary bodies, are currently being developed for flight, or will become a critical technology on future missions. Search strategies for remote observations using current and planned ground-based and space-based telescopes are also described. Evidence from spectral absorption, emission, or transmission features can be used to search for remote biosignatures and technosignatures. Improving our understanding of biosignatures, their production, transformation, and preservation on Earth can enhance our search efforts to detect life on other planets.
Collapse
Affiliation(s)
- Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Georgetown University, Washington, DC, USA
| | - Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | | | - Tristan Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Enrico Catalano
- Sant'Anna School of Advanced Studies, The BioRobotics Institute, Pisa, Italy
| | | | - Jordan McKaig
- Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Gareth Trubl
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Amber Young
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
4
|
The extraterrestrial search for our own chemical origins. Nat Commun 2023; 14:5794. [PMID: 37749087 PMCID: PMC10520022 DOI: 10.1038/s41467-023-41009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
|
5
|
Swindle TD, Atreya S, Busemann H, Cartwright JA, Mahaffy P, Marty B, Pack A, Schwenzer SP. Scientific Value of Including an Atmospheric Sample as Part of Mars Sample Return (MSR). ASTROBIOLOGY 2022; 22:S165-S175. [PMID: 34904893 DOI: 10.1089/ast.2021.0107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Perseverance rover is meant to collect samples of the martian surface for eventual return to Earth. The headspace gas present over the solid samples within the sample tubes will be of significant scientific interest for what it reveals about the interactions of the solid samples with the trapped atmosphere and for what it will reveal about the martian atmosphere itself. However, establishing the composition of the martian atmosphere will require other dedicated samples. The headspace gas as the sole atmospheric sample is problematic for many reasons. The quantity of gas present within the sample tube volume is insufficient for many investigations, and there will be exchange between solid samples, headspace gas, and tube walls. Importantly, the sample tube materials and preparation were not designed for optimal Mars atmospheric gas collection and storage as they were not sent to Mars in a degassed evacuated state and have been exposed to both Earth's and Mars' atmospheres. Additionally, there is a risk of unconstrained seal leakage in transit back to Earth, which would allow fractionation of the sample (leak-out) and contamination (leak-in). The science return can be improved significantly (and, in some cases, dramatically) by adding one or more of several strategies listed here in increasing order of effectiveness and difficulty of implementation: (1) Having Perseverance collect a gas sample in an empty sample tube, (2) Collecting gas in a newly-designed, valved, sample-tube-sized vessel that is flown on either the Sample Fetch Rover (SFR) or the Sample Retrieval Lander (SRL), (3) Adding a larger (50-100 cc) dedicated gas sampling volume to the Orbiting Sample container (OS), (4) Adding a larger (50-100 cc) dedicated gas sampling volume to the OS that can be filled with compressed martian atmosphere.
Collapse
Affiliation(s)
- Timothy D Swindle
- University of Arizona, Lunar and Planetary Laboratory, Tucson, Arizona, USA
| | | | - Henner Busemann
- ETH Zürich, Institute of Geochemistry and Petrology, Zürich, Switzerland
| | | | - Paul Mahaffy
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | | | | | | |
Collapse
|
6
|
Mangold N, Gupta S, Gasnault O, Dromart G, Tarnas JD, Sholes SF, Horgan B, Quantin-Nataf C, Brown AJ, Le Mouélic S, Yingst RA, Bell JF, Beyssac O, Bosak T, Calef F, Ehlmann BL, Farley KA, Grotzinger JP, Hickman-Lewis K, Holm-Alwmark S, Kah LC, Martinez-Frias J, McLennan SM, Maurice S, Nuñez JI, Ollila AM, Pilleri P, Rice JW, Rice M, Simon JI, Shuster DL, Stack KM, Sun VZ, Treiman AH, Weiss BP, Wiens RC, Williams AJ, Williams NR, Williford KH. Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars. Science 2021; 374:711-717. [PMID: 34618548 DOI: 10.1126/science.abl4051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- N Mangold
- Laboratoire Planétologie et Géodynamique, Centre National de Recherches Scientifiques, Université Nantes, Université Angers, Unité Mixte de Recherche 6112, 44322 Nantes, France
| | - S Gupta
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - O Gasnault
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, Université Paul Sabatier, Centre National de Recherches Scientifiques, Observatoire Midi-Pyrénées, 31400 Toulouse, France
| | - G Dromart
- Laboratoire de Géologie de Lyon-Terre Planètes Environnement, Univ Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure Lyon, Centre National de Recherches Scientifiques, 69622 Villeurbanne, France
| | - J D Tarnas
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - S F Sholes
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - B Horgan
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - C Quantin-Nataf
- Laboratoire de Géologie de Lyon-Terre Planètes Environnement, Univ Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure Lyon, Centre National de Recherches Scientifiques, 69622 Villeurbanne, France
| | - A J Brown
- Plancius Research, Severna Park, MD 21146, USA
| | - S Le Mouélic
- Laboratoire Planétologie et Géodynamique, Centre National de Recherches Scientifiques, Université Nantes, Université Angers, Unité Mixte de Recherche 6112, 44322 Nantes, France
| | - R A Yingst
- Planetary Science Institute, Tucson, AZ 85719, USA
| | - J F Bell
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - O Beyssac
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Unité Mixte de Recherche 7590, Centre National de Recherches Scientifiques, Sorbonne Université, Museum National d'Histoires Naturelles, 75005 Paris, France
| | - T Bosak
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - F Calef
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - B L Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - K A Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - J P Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - K Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, South Kensington, London SW7 5BD, UK.,Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, I-40126 Bologna, Italy
| | - S Holm-Alwmark
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark.,Department of Geology, Lund University, 22362 Lund, Sweden.,Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark
| | - L C Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - J Martinez-Frias
- Instituto de Geociencias, Consejo Superior de Investigaciones Cientificas, Universidad Complutense Madrid, 28040 Madrid, Spain
| | - S M McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - S Maurice
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, Université Paul Sabatier, Centre National de Recherches Scientifiques, Observatoire Midi-Pyrénées, 31400 Toulouse, France
| | - J I Nuñez
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - A M Ollila
- Space and Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - P Pilleri
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, Université Paul Sabatier, Centre National de Recherches Scientifiques, Observatoire Midi-Pyrénées, 31400 Toulouse, France
| | - J W Rice
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - M Rice
- Geology Department, College of Science and Engineering, Western Washington University, Bellingham, WA 98225, USA
| | - J I Simon
- Center for Isotope Cosmochemistry and Geochronology, Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, TX 77058, USA
| | - D L Shuster
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
| | - K M Stack
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - V Z Sun
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - A H Treiman
- Lunar and Planetary Institute, Universities Space Research Association, Houston, TX 77058, USA
| | - B P Weiss
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.,Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - R C Wiens
- Space and Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - A J Williams
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - N R Williams
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - K H Williford
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.,Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| |
Collapse
|
7
|
Neveu M, Hays LE, Voytek MA, New MH, Schulte MD. The Ladder of Life Detection. ASTROBIOLOGY 2018; 18:1375-1402. [PMID: 29862836 PMCID: PMC6211372 DOI: 10.1089/ast.2017.1773] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/23/2018] [Indexed: 05/04/2023]
Abstract
We describe the history and features of the Ladder of Life Detection, a tool intended to guide the design of investigations to detect microbial life within the practical constraints of robotic space missions. To build the Ladder, we have drawn from lessons learned from previous attempts at detecting life and derived criteria for a measurement (or suite of measurements) to constitute convincing evidence for indigenous life. We summarize features of life as we know it, how specific they are to life, and how they can be measured, and sort these features in a general sense based on their likelihood of indicating life. Because indigenous life is the hypothesis of last resort in interpreting life-detection measurements, we propose a small but expandable set of decision rules determining whether the abiotic hypothesis is disproved. In light of these rules, we evaluate past and upcoming attempts at life detection. The Ladder of Life Detection is not intended to endorse specific biosignatures or instruments for life-detection measurements, and is by no means a definitive, final product. It is intended as a starting point to stimulate discussion, debate, and further research on the characteristics of life, what constitutes a biosignature, and the means to measure them.
Collapse
Affiliation(s)
- Marc Neveu
- NASA Postdoctoral Management Program Fellow, Universities Space Research Association, Columbia, Maryland
- NASA Headquarters, Washington, DC
| | - Lindsay E. Hays
- NASA Headquarters, Washington, DC
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | | |
Collapse
|
8
|
Thompson DR, Candela A, Wettergreen DS, Dobrea EN, Swayze GA, Clark RN, Greenberger R. Spatial Spectroscopic Models for Remote Exploration. ASTROBIOLOGY 2018; 18:934-954. [PMID: 30035643 DOI: 10.1089/ast.2017.1782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ancient hydrothermal systems are a high-priority target for a future Mars sample return mission because they contain energy sources for microbes and can preserve organic materials (Farmer, 2000 ; MEPAG Next Decade Science Analysis Group, 2008 ; McLennan et al., 2012 ; Michalski et al., 2017 ). Characterizing these large, heterogeneous systems with a remote explorer is difficult due to communications bandwidth and latency; such a mission will require significant advances in spacecraft autonomy. Science autonomy uses intelligent sensor platforms that analyze data in real-time, setting measurement and downlink priorities to provide the best information toward investigation goals. Such automation must relate abstract science hypotheses to the measurable quantities available to the robot. This study captures these relationships by formalizing traditional "science traceability matrices" into probabilistic models. This permits experimental design techniques to optimize future measurements and maximize information value toward the investigation objectives, directing remote explorers that respond appropriately to new data. Such models are a rich new language for commanding informed robotic decision making in physically grounded terms. We apply these models to quantify the information content of different rover traverses providing profiling spectroscopy of Cuprite Hills, Nevada. We also develop two methods of representing spatial correlations using human-defined maps and remote sensing data. Model unit classifications are broadly consistent with prior maps of the site's alteration mineralogy, indicating that the model has successfully represented critical spatial and mineralogical relationships at Cuprite. Key Words: Autonomous science-Imaging spectroscopy-Alteration mineralogy-Field geology-Cuprite-AVIRIS-NG-Robotic exploration. Astrobiology 18, 934-954.
Collapse
Affiliation(s)
- David R Thompson
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Alberto Candela
- 2 The Robotics Institute, Carnegie Mellon University , Pittsburgh, Pennsylvania
| | - David S Wettergreen
- 2 The Robotics Institute, Carnegie Mellon University , Pittsburgh, Pennsylvania
| | | | | | | | | |
Collapse
|
9
|
Haltigin T, Lange C, Mugnuolo R, Smith C. iMARS Phase 2 A Draft Mission Architecture and Science Management Plan for the Return of Samples from Mars Phase 2 Report of the International Mars Architecture for the Return of Samples (iMARS) Working Group. ASTROBIOLOGY 2018; 18:S1-S131. [PMID: 29683336 PMCID: PMC5926204 DOI: 10.1089/ast.2018.29027.mars] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
10
|
Summons RE, Sessions AL, Allwood AC, Barton HA, Beaty DW, Blakkolb B, Canham J, Clark BC, Dworkin JP, Lin Y, Mathies R, Milkovich SM, Steele A. Planning considerations related to the organic contamination of Martian samples and implications for the Mars 2020 Rover. ASTROBIOLOGY 2014; 14:969-1027. [PMID: 25495496 DOI: 10.1089/ast.2014.1244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- R E Summons
- 1 Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Planning for Mars returned sample science: final report of the MSR End-to-End International Science Analysis Group (E2E-iSAG). ASTROBIOLOGY 2012; 12:175-230. [PMID: 22468886 DOI: 10.1089/ast.2011.0805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
12
|
Two rovers to the same site on Mars, 2018: possibilities for cooperative science. ASTROBIOLOGY 2010; 10:663-685. [PMID: 20932131 DOI: 10.1089/ast.2010.0526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
13
|
The Mars Astrobiology Explorer-Cacher (MAX-C): a potential rover mission for 2018. Final report of the Mars Mid-Range Rover Science Analysis Group (MRR-SAG) October 14, 2009. ASTROBIOLOGY 2010; 10:127-163. [PMID: 20298148 DOI: 10.1089/ast.2010.0462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission.
Collapse
|
14
|
Catling DC, Claire MW, Zahnle KJ, Quinn RC, Clark BC, Hecht MH, Kounaves S. Atmospheric origins of perchlorate on Mars and in the Atacama. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003425] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Beaty DW, Allen CC, Bass DS, Buxbaum KL, Campbell JK, Lindstrom DJ, Miller SL, Papanastassiou DA. Planning considerations for a Mars Sample Receiving Facility: summary and interpretation of three design studies. ASTROBIOLOGY 2009; 9:745-758. [PMID: 19845446 DOI: 10.1089/ast.2009.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
It has been widely understood for many years that an essential component of a Mars Sample Return mission is a Sample Receiving Facility (SRF). The purpose of such a facility would be to take delivery of the flight hardware that lands on Earth, open the spacecraft and extract the sample container and samples, and conduct an agreed-upon test protocol, while ensuring strict containment and contamination control of the samples while in the SRF. Any samples that are found to be non-hazardous (or are rendered non-hazardous by sterilization) would then be transferred to long-term curation. Although the general concept of an SRF is relatively straightforward, there has been considerable discussion about implementation planning. The Mars Exploration Program carried out an analysis of the attributes of an SRF to establish its scope, including minimum size and functionality, budgetary requirements (capital cost, operating costs, cost profile), and development schedule. The approach was to arrange for three independent design studies, each led by an architectural design firm, and compare the results. While there were many design elements in common identified by each study team, there were significant differences in the way human operators were to interact with the systems. In aggregate, the design studies provided insight into the attributes of a future SRF and the complex factors to consider for future programmatic planning.
Collapse
Affiliation(s)
- David W Beaty
- Mars Program Office, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099, USA
| | | | | | | | | | | | | | | |
Collapse
|