1
|
Newmark J, Kounaves SP. Permeation of photochemically-generated gaseous chlorine dioxide on Mars as a significant factor in destroying subsurface organic compounds. Sci Rep 2024; 14:7682. [PMID: 38561442 PMCID: PMC10985076 DOI: 10.1038/s41598-024-57968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
It has been shown that ultraviolet (UV) irradiation is responsible for the destruction of organic compounds on the surface of Mars. When combined with the photochemically-driven production of oxychlorines (ClOx) it can generate highly reactive species that can alter or destroy organic compounds. However, it has been assumed that since UV only penetrates the top few millimeters of the martian regolith, reactive ClOx oxidants are only produced on the surface. Of all the oxychlorine intermediates produced, gaseous chlorine dioxide [ClO2(g)] is of particular interest, being a highly reactive gas with the ability to oxidize organic compounds. Here we report on a set of experiments under Mars ambient conditions showing the production and permeation of ClO2(g) and its reaction with alanine as a test compound. Contrary to the accepted paradigm that UV irradiation on Mars only interacts with a thin layer of surface regolith, our results show that photochemically-generated ClO2(g) can permeate below the surface, depositing ClOx species (mainly Cl- and ClO 3 - ) and destroying organic compounds. With varying levels of humidity and abundant chloride and oxychlorines on Mars, our findings show that permeation of ClO2(g) must be considered as a significant contributing factor in altering, fragmenting, or potentially destroying buried organic compounds on Mars.
Collapse
Affiliation(s)
- Jacob Newmark
- Department of Chemistry, Tufts University, Medford, MA, USA
| | | |
Collapse
|
2
|
Mráziková K, Knížek A, Saeidfirozeh H, Petera L, Civiš S, Saija F, Cassone G, Rimmer PB, Ferus M. A Novel Abiotic Pathway for Phosphine Synthesis over Acidic Dust in Venus' Atmosphere. ASTROBIOLOGY 2024; 24:407-422. [PMID: 38603526 DOI: 10.1089/ast.2023.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Recent ground-based observations of Venus have detected a single spectral feature consistent with phosphine (PH3) in the middle atmosphere, a gas which has been suggested as a biosignature on rocky planets. The presence of PH3 in the oxidized atmosphere of Venus has not yet been explained by any abiotic process. However, state-of-the-art experimental and theoretical research published in previous works demonstrated a photochemical origin of another potential biosignature-the hydride methane-from carbon dioxide over acidic mineral surfaces on Mars. The production of methane includes formation of the HC · O radical. Our density functional theory (DFT) calculations predict an energetically plausible reaction network leading to PH3, involving either HC · O or H· radicals. We suggest that, similarly to the photochemical formation of methane over acidic minerals already discussed for Mars, the origin of PH3 in Venus' atmosphere could be explained by radical chemistry starting with the reaction of ·PO with HC·O, the latter being produced by reduction of CO2 over acidic dust in upper atmospheric layers of Venus by ultraviolet radiation. HPO, H2P·O, and H3P·OH have been identified as key intermediate species in our model pathway for phosphine synthesis.
Collapse
Affiliation(s)
- Klaudia Mráziková
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Antonín Knížek
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
| | - Homa Saeidfirozeh
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Lukáš Petera
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Prague, Czechia
| | - Svatopluk Civiš
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Franz Saija
- Institute for Physical-Chemical Processes, National Research Council of Italy (IPCF-CNR), Messina, Italy
| | - Giuseppe Cassone
- Institute for Physical-Chemical Processes, National Research Council of Italy (IPCF-CNR), Messina, Italy
| | - Paul B Rimmer
- University of Cambridge, Cavendish Astrophysics, Cambridge, United Kingdom
| | - Martin Ferus
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Liu D, Kounaves SP. Degradation of Amino Acids on Mars by UV Irradiation in the Presence of Chloride and Oxychlorine Salts. ASTROBIOLOGY 2021; 21:793-801. [PMID: 33787313 DOI: 10.1089/ast.2020.2328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The degradation of glycine (Gly), proline (Pro), and tryptophan (Trp) was studied under simulated Mars conditions during UV-driven production of oxychlorines and compared under Mars ambient and humid conditions, as films, and with addition of sodium chloride (NaCl), sodium chlorate (NaClO3), and sodium perchlorate (NaClO4) salts. It was shown that glycine sustained no significant destruction in either of the non-salt samples under Mars ambient or humid conditions. However, its degradation increased in the presence of any of the three salts and under both conditions though more under humid conditions. Proline degradation followed the order No Salt > NaCl > NaClO3 > NaClO4 under Mars ambient conditions but the reverse order under Mars humid conditions. A mechanism is proposed to explain how water and silica participate in these degradation reactions and how it is strongly influenced by the identity of the salt and its ability to promote deliquescence. No difference was observed for tryptophan between Mars ambient and humid conditions, or for the different salts, suggesting its degradation mechanism is different compared to glycine and proline. The results reported here will help to better understand the survival of amino acids in the presence of oxychlorines and UV on Mars and thus provide new insights for the detection of organic compounds on future Mars missions.
Collapse
Affiliation(s)
- Dongyu Liu
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Samuel P Kounaves
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
4
|
Royle SH, Tan JSW, Watson JS, Sephton MA. Pyrolysis of Carboxylic Acids in the Presence of Iron Oxides: Implications for Life Detection on Missions to Mars. ASTROBIOLOGY 2021; 21:673-691. [PMID: 33635150 DOI: 10.1089/ast.2020.2226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The search for, and characterization of, organic matter on Mars is central to efforts in identifying habitable environments and detecting evidence of life in the martian surface and near surface. Iron oxides are ubiquitous in the martian regolith and are known to be associated with the deposition and preservation of organic matter in certain terrestrial environments, thus iron oxide-rich sediments are potential targets for life-detection missions. The most frequently used protocol for martian organic matter characterization (also planned for use on ExoMars) has been thermal extraction for the transfer of organic matter to gas chromatography-mass spectrometry (GC-MS) detectors. For the effective use of thermal extraction for martian samples, it is necessary to explore how potential biomarker organic molecules evolve during this process in the presence of iron oxides. We have thermally decomposed iron oxides simultaneously with (z)-octadec-9-enoic and n-octadecanoic acids and analyzed the products through pyrolysis-GC-MS. We found that the thermally driven dehydration, reduction, and recrystallization of iron oxides transformed fatty acids. Overall detectability of products greatly reduced, molecular diversity decreased, unsaturated products decreased, and aromatization increased. The severity of this effect increased as reduction potential of the iron oxide and inferred free radical formation increased. Of the iron oxides tested hematite showed the least transformative effects, followed by magnetite, goethite, then ferrihydrite. It was possible to identify the saturation state of the parent carboxylic acid at high (0.5 wt %) concentrations by the distribution of n-alkylbenzenes in the pyrolysis products. When selecting life-detection targets on Mars, localities where hematite is the dominant iron oxide could be targeted preferentially, otherwise thermal analysis of carboxylic acids, or similar biomarker molecules, will lead to enhanced polymerization, aromatization, and breakdown, which will in turn reduce the fidelity of the original biomarker, similar to changes normally observed during thermal maturation.
Collapse
Affiliation(s)
- Samuel H Royle
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| | - Jonathan S W Tan
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| | - Jonathan S Watson
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| | - Mark A Sephton
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Megevand V, Viennet JC, Balan E, Gauthier M, Rosier P, Morand M, Garino Y, Guillaumet M, Pont S, Beyssac O, Bernard S. Impact of UV Radiation on the Raman Signal of Cystine: Implications for the Detection of S-rich Organics on Mars. ASTROBIOLOGY 2021; 21:566-574. [PMID: 33691484 DOI: 10.1089/ast.2020.2340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Traces of life may have been preserved in ancient martian rocks in the form of molecular fossils. Yet the surface of Mars is continuously exposed to intense UV radiation detrimental to the preservation of organics. Because the payload of the next rovers going to Mars to seek traces of life will comprise Raman spectroscopy tools, laboratory simulations that document the effect of UV radiation on the Raman signal of organics appear critically needed. The experiments conducted here evidence that UV radiation is directly responsible for the increase of disorder and for the creation of electronic defects and radicals within the molecular structure of S-rich organics such as cystine, enhancing the contribution of light diffusion processes to the Raman signal. The present results suggest that long exposure to UV radiation would ultimately be responsible for the total degradation of the Raman signal of cystine. Yet because the degradation induced by UV is not instantaneous, it should be possible to detect freshly excavated S-rich organics with the Raman instruments on board the rovers. Alternatively, given the very short lifetime of organic fluorescence (nanoseconds) compared to most mineral luminescence (micro- to milliseconds), exploiting fluorescence signals might allow the detection of S-rich organics on Mars. In any case, as illustrated here, we should not expect to detect pristine S-rich organic compounds on Mars, but rather by-products of their degradation.
Collapse
Affiliation(s)
- V Megevand
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
- Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - J C Viennet
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - E Balan
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - M Gauthier
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - P Rosier
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - M Morand
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - Y Garino
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - M Guillaumet
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - S Pont
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - O Beyssac
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - S Bernard
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| |
Collapse
|
6
|
Mißbach H, Steininger H, Thiel V, Goetz W. Investigating the Effect of Perchlorate on Flight-like Gas Chromatography-Mass Spectrometry as Performed by MOMA on board the ExoMars 2020 Rover. ASTROBIOLOGY 2019; 19:1339-1352. [PMID: 31532228 DOI: 10.1089/ast.2018.1997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Mars Organic Molecule Analyzer (MOMA) instrument on board ESA's ExoMars 2020 rover will be essential in the search for organic matter. MOMA applies gas chromatography-mass spectrometry (GC-MS) techniques that rely on thermal volatilization. Problematically, perchlorates and chlorates in martian soils and rocks become highly reactive during heating (>200°C) and can lead to oxidation and chlorination of organic compounds, potentially rendering them unidentifiable. Here, we analyzed a synthetic sample (alkanols and alkanoic acids on silica gel) and a Silurian chert with and without Mg-perchlorate to evaluate the applicability of MOMA-like GC-MS techniques to different sample types and assess the impact of perchlorate. We used a MOMA flight analog system coupled to a commercial GC-MS to perform MOMA-like pyrolysis, in situ derivatization, and in situ thermochemolysis. We show that pyrolysis can provide a sufficient overview of the organic inventory but is strongly affected by the presence of perchlorates. In situ derivatization facilitates the identification of functionalized organics but showed low efficiency for n-alkanoic acids. Thermochemolysis is shown to be an effective technique for the identification of both refractory and functional compounds. Most importantly, this technique was barely affected by perchlorates. Therefore, MOMA GC-MS analyses of martian surface/subsurface material may be less affected by perchlorates than commonly thought, in particular when applying the full range of available MOMA GC-MS techniques.
Collapse
Affiliation(s)
- Helge Mißbach
- Geobiology, Geoscience Centre, University of Goettingen, Goettingen, Germany
- Max Planck Institute for Solar System Research, Goettingen, Germany
| | - Harald Steininger
- Max Planck Institute for Solar System Research, Goettingen, Germany
- OHB System AG, Weßling-Oberpfaffenhofen, Germany
| | - Volker Thiel
- Geobiology, Geoscience Centre, University of Goettingen, Goettingen, Germany
| | - Walter Goetz
- Max Planck Institute for Solar System Research, Goettingen, Germany
| |
Collapse
|
7
|
Bak EN, Larsen MG, Jensen SK, Nørnberg P, Moeller R, Finster K. Wind-Driven Saltation: An Overlooked Challenge for Life on Mars. ASTROBIOLOGY 2019; 19:497-505. [PMID: 30407074 DOI: 10.1089/ast.2018.1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Numerous studies have demonstrated that the martian surface environment is hostile to life because of its rough radiation climate and the reactive chemistry of the regolith. Physical processes such as erosion and transport of mineral particles by wind-driven saltation have hitherto not been considered as a life hazard. We report a series of experiments where bacterial endospores (spores of Bacillus subtilis) were exposed to a simulated saltating martian environment. We observed that 50% of the spores that are known to be highly resistant to radiation and oxidizing chemicals were destroyed by saltation-mediated abrasion within one minute. Scanning electron micrographs show that the spores were not only damaged by abrasion but were eradicated during the saltation process. We suggest that abrasion mediated by wind-driven saltation should be included as a factor that defines the habitability of the martian surface environment. The process may efficiently protect the martian surface from forward contamination with terrestrial microbial life-forms. Abrasion mediated by wind-driven saltation should also be considered as a major challenge to indigenous martian surface life if it exists/existed.
Collapse
Affiliation(s)
- E N Bak
- 1 Department of Bioscience, Aarhus University , Aarhus, Denmark
| | - M G Larsen
- 1 Department of Bioscience, Aarhus University , Aarhus, Denmark
| | - S K Jensen
- 2 Department of Chemistry, Aarhus University , Aarhus, Denmark
| | - P Nørnberg
- 1 Department of Bioscience, Aarhus University , Aarhus, Denmark
| | - R Moeller
- 3 Institute of Aerospace Medicine , Radiation Biology Department, Space Microbiology Research Group, German Aerospace Center (DLR e.V.), Cologne (Köln), Germany
| | - K Finster
- 1 Department of Bioscience, Aarhus University , Aarhus, Denmark
- 4 Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University , Aarhus, Denmark
| |
Collapse
|
8
|
Fornaro T, Steele A, Brucato JR. Catalytic/Protective Properties of Martian Minerals and Implications for Possible Origin of Life on Mars. Life (Basel) 2018; 8:life8040056. [PMID: 30400661 PMCID: PMC6315534 DOI: 10.3390/life8040056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 11/16/2022] Open
Abstract
Minerals might have played critical roles for the origin and evolution of possible life forms on Mars. The study of the interactions between the "building blocks of life" and minerals relevant to Mars mineralogy under conditions mimicking the harsh Martian environment may provide key insight into possible prebiotic processes. Therefore, this contribution aims at reviewing the most important investigations carried out so far about the catalytic/protective properties of Martian minerals toward molecular biosignatures under Martian-like conditions. Overall, it turns out that the fate of molecular biosignatures on Mars depends on a delicate balance between multiple preservation and degradation mechanisms, often regulated by minerals, which may take place simultaneously. Such a complexity requires more efforts in simulating realistically the Martian environment in order to better inspect plausible prebiotic pathways and shed light on the nature of the organic compounds detected both in meteorites and on the surface of Mars through in situ analysis.
Collapse
Affiliation(s)
- Teresa Fornaro
- Geophysical Laboratory of the Carnegie Institution for Science, 5251 Broad Branch Rd. NW, Washington, DC 20015, USA.
| | - Andrew Steele
- Geophysical Laboratory of the Carnegie Institution for Science, 5251 Broad Branch Rd. NW, Washington, DC 20015, USA.
| | - John Robert Brucato
- INAF-Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125 Firenze, Italy.
| |
Collapse
|
9
|
Neveu M, Hays LE, Voytek MA, New MH, Schulte MD. The Ladder of Life Detection. ASTROBIOLOGY 2018; 18:1375-1402. [PMID: 29862836 PMCID: PMC6211372 DOI: 10.1089/ast.2017.1773] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/23/2018] [Indexed: 05/04/2023]
Abstract
We describe the history and features of the Ladder of Life Detection, a tool intended to guide the design of investigations to detect microbial life within the practical constraints of robotic space missions. To build the Ladder, we have drawn from lessons learned from previous attempts at detecting life and derived criteria for a measurement (or suite of measurements) to constitute convincing evidence for indigenous life. We summarize features of life as we know it, how specific they are to life, and how they can be measured, and sort these features in a general sense based on their likelihood of indicating life. Because indigenous life is the hypothesis of last resort in interpreting life-detection measurements, we propose a small but expandable set of decision rules determining whether the abiotic hypothesis is disproved. In light of these rules, we evaluate past and upcoming attempts at life detection. The Ladder of Life Detection is not intended to endorse specific biosignatures or instruments for life-detection measurements, and is by no means a definitive, final product. It is intended as a starting point to stimulate discussion, debate, and further research on the characteristics of life, what constitutes a biosignature, and the means to measure them.
Collapse
Affiliation(s)
- Marc Neveu
- NASA Postdoctoral Management Program Fellow, Universities Space Research Association, Columbia, Maryland
- NASA Headquarters, Washington, DC
| | - Lindsay E. Hays
- NASA Headquarters, Washington, DC
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | | |
Collapse
|
10
|
|
11
|
|
12
|
Rizzo V, Cantasano N. Structural parallels between terrestrial microbialites and Martian sediments: are all cases of ‘Pareidolia’? INTERNATIONAL JOURNAL OF ASTROBIOLOGY 2017; 16:297-316. [DOI: 10.1017/s1473550416000355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
AbstractThe study analyses possible parallels of the microbialite-known structures with a set of similar settings selected by a systematic investigation from the wide record and data set of images shot by NASA rovers. Terrestrial cases involve structures both due to bio-mineralization processes and those induced by bacterial metabolism, that occur in a dimensional field longer than 0.1 mm, at micro, meso and macro scales. The study highlights occurrence on Martian sediments of widespread structures like microspherules, often organized into some higher-order settings. Such structures also occur on terrestrial stromatolites in a great variety of ‘Microscopic Induced Sedimentary Structures’, such as voids, gas domes and layer deformations of microbial mats. We present a suite of analogies so compelling (i.e. different scales of morphological, structural and conceptual relevance), to make the case that similarities between Martian sediment structures and terrestrial microbialites are not all cases of ‘Pareidolia’.
Collapse
|
13
|
Abstract
The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror. Key Words: Mars—ExoMars—Instrumentation—Geology—Atmosphere—Exobiology—Context. Astrobiology 17, 511–541.
Collapse
|
14
|
Kong X, Squire K, Li E, LeDuff P, Rorrer GL, Tang S, Chen B, McKay CP, Navarro-Gonzalez R, Wang AX. Chemical and Biological Sensing Using Diatom Photonic Crystal Biosilica With In-Situ Growth Plasmonic Nanoparticles. IEEE Trans Nanobioscience 2016; 15:828-834. [PMID: 27959817 DOI: 10.1109/tnb.2016.2636869] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this paper, we described a new type of bioenabled nano-plasmonic sensors based on diatom photonic crystal biosilica with in-situ growth silver nanoparticles and demonstrated label-free chemical and biological sensing based on surface-enhanced Raman scattering (SERs) from complex samples. Diatoms are photosynthetic marine micro-organisms that create their own skeletal shells of hydrated amorphous silica, called frustules, which possess photonic crystal-like hierarchical micro- & nanoscale periodic pores. Our research shows that such hybrid plasmonic-biosilica nanostructures formed by cost-effective and eco-friendly bottom-up processes can achieve ultra-high limit of detection for medical applications, food sensing, water/air quality monitoring and geological/space research. The enhanced sensitivity comes from the optical coupling of the guided-mode resonance of the diatom frustules and the localized surface plasmons of the silver nanoparticles. Additionally, the nanoporous, ultra-hydrophilic diatom biosilica with large surface-to-volume ratio can concentrate more analyte molecules to the surface of the SERS substrates, which can help to detect biomolecules that cannot be easily adsorbed by metallic nanoparticles.
Collapse
|
15
|
Domagal-Goldman SD, Wright KE, Adamala K, Arina de la Rubia L, Bond J, Dartnell LR, Goldman AD, Lynch K, Naud ME, Paulino-Lima IG, Singer K, Walther-Antonio M, Abrevaya XC, Anderson R, Arney G, Atri D, Azúa-Bustos A, Bowman JS, Brazelton WJ, Brennecka GA, Carns R, Chopra A, Colangelo-Lillis J, Crockett CJ, DeMarines J, Frank EA, Frantz C, de la Fuente E, Galante D, Glass J, Gleeson D, Glein CR, Goldblatt C, Horak R, Horodyskyj L, Kaçar B, Kereszturi A, Knowles E, Mayeur P, McGlynn S, Miguel Y, Montgomery M, Neish C, Noack L, Rugheimer S, Stüeken EE, Tamez-Hidalgo P, Imari Walker S, Wong T. The Astrobiology Primer v2.0. ASTROBIOLOGY 2016; 16:561-653. [PMID: 27532777 PMCID: PMC5008114 DOI: 10.1089/ast.2015.1460] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/06/2016] [Indexed: 05/09/2023]
Affiliation(s)
- Shawn D Domagal-Goldman
- 1 NASA Goddard Space Flight Center , Greenbelt, Maryland, USA
- 2 Virtual Planetary Laboratory , Seattle, Washington, USA
| | - Katherine E Wright
- 3 University of Colorado at Boulder , Colorado, USA
- 4 Present address: UK Space Agency, UK
| | - Katarzyna Adamala
- 5 Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis, Minnesota, USA
| | | | - Jade Bond
- 7 Department of Physics, University of New South Wales , Sydney, Australia
| | | | | | - Kennda Lynch
- 10 Division of Biological Sciences, University of Montana , Missoula, Montana, USA
| | - Marie-Eve Naud
- 11 Institute for research on exoplanets (iREx) , Université de Montréal, Montréal, Canada
| | - Ivan G Paulino-Lima
- 12 Universities Space Research Association , Mountain View, California, USA
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | - Kelsi Singer
- 14 Southwest Research Institute , Boulder, Colorado, USA
| | | | - Ximena C Abrevaya
- 16 Instituto de Astronomía y Física del Espacio (IAFE) , UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rika Anderson
- 17 Department of Biology, Carleton College , Northfield, Minnesota, USA
| | - Giada Arney
- 18 University of Washington Astronomy Department and Astrobiology Program , Seattle, Washington, USA
| | - Dimitra Atri
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | | | - Jeff S Bowman
- 19 Lamont-Doherty Earth Observatory, Columbia University , Palisades, New York, USA
| | | | | | - Regina Carns
- 22 Polar Science Center, Applied Physics Laboratory, University of Washington , Seattle, Washington, USA
| | - Aditya Chopra
- 23 Planetary Science Institute, Research School of Earth Sciences, Research School of Astronomy and Astrophysics, The Australian National University , Canberra, Australia
| | - Jesse Colangelo-Lillis
- 24 Earth and Planetary Science, McGill University , and the McGill Space Institute, Montréal, Canada
| | | | - Julia DeMarines
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | | | - Carie Frantz
- 27 Department of Geosciences, Weber State University , Ogden, Utah, USA
| | - Eduardo de la Fuente
- 28 IAM-Departamento de Fisica, CUCEI , Universidad de Guadalajara, Guadalajara, México
| | - Douglas Galante
- 29 Brazilian Synchrotron Light Laboratory , Campinas, Brazil
| | - Jennifer Glass
- 30 School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia , USA
| | | | | | - Colin Goldblatt
- 33 School of Earth and Ocean Sciences, University of Victoria , Victoria, Canada
| | - Rachel Horak
- 34 American Society for Microbiology , Washington, DC, USA
| | | | - Betül Kaçar
- 36 Harvard University , Organismic and Evolutionary Biology, Cambridge, Massachusetts, USA
| | - Akos Kereszturi
- 37 Research Centre for Astronomy and Earth Sciences , Hungarian Academy of Sciences, Budapest, Hungary
| | - Emily Knowles
- 38 Johnson & Wales University , Denver, Colorado, USA
| | - Paul Mayeur
- 39 Rensselaer Polytechnic Institute , Troy, New York, USA
| | - Shawn McGlynn
- 40 Earth Life Science Institute, Tokyo Institute of Technology , Tokyo, Japan
| | - Yamila Miguel
- 41 Laboratoire Lagrange, UMR 7293, Université Nice Sophia Antipolis , CNRS, Observatoire de la Côte d'Azur, Nice, France
| | | | - Catherine Neish
- 43 Department of Earth Sciences, The University of Western Ontario , London, Canada
| | - Lena Noack
- 44 Royal Observatory of Belgium , Brussels, Belgium
| | - Sarah Rugheimer
- 45 Department of Astronomy, Harvard University , Cambridge, Massachusetts, USA
- 46 University of St. Andrews , St. Andrews, UK
| | - Eva E Stüeken
- 47 University of Washington , Seattle, Washington, USA
- 48 University of California , Riverside, California, USA
| | | | - Sara Imari Walker
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
- 50 School of Earth and Space Exploration and Beyond Center for Fundamental Concepts in Science, Arizona State University , Tempe, Arizona, USA
| | - Teresa Wong
- 51 Department of Earth and Planetary Sciences, Washington University in St. Louis , St. Louis, Missouri, USA
| |
Collapse
|
16
|
Abstract
The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.
Collapse
|
17
|
Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings. Sci Rep 2014; 4:7010. [PMID: 25394222 PMCID: PMC4230006 DOI: 10.1038/srep07010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/13/2014] [Indexed: 11/08/2022] Open
Abstract
Controversy continues as to whether chloromethane (CH3Cl) detected during pyrolysis of Martian soils by the Viking and Curiosity Mars landers is indicative of organic matter indigenous to Mars. Here we demonstrate CH3Cl release (up to 8 μg/g) during low temperature (150–400°C) pyrolysis of the carbonaceous chondrite Murchison with chloride or perchlorate as chlorine source and confirm unequivocally by stable isotope analysis the extraterrestrial origin of the methyl group (δ2H +800 to +1100‰, δ13C −19.2 to +10‰,). In the terrestrial environment CH3Cl released during pyrolysis of organic matter derives from the methoxyl pool. The methoxyl pool in Murchison is consistent both in magnitude (0.044%) and isotope signature (δ2H +1054 ± 626‰, δ13C +43.2 ± 38.8‰,) with that of the CH3Cl released on pyrolysis. Thus CH3Cl emissions recorded by Mars lander experiments may be attributed to methoxyl groups in undegraded organic matter in meteoritic debris reaching the Martian surface being converted to CH3Cl with perchlorate or chloride in Martian soil. However we cannot discount emissions arising additionally from organic matter of indigenous origin. The stable isotope signatures of CH3Cl detected on Mars could potentially be utilized to determine its origin by distinguishing between terrestrial contamination, meteoritic infall and indigenous Martian sources.
Collapse
|
18
|
Quinn RC, Martucci HFH, Miller SR, Bryson CE, Grunthaner FJ, Grunthaner PJ. Perchlorate radiolysis on Mars and the origin of martian soil reactivity. ASTROBIOLOGY 2013; 13:515-20. [PMID: 23746165 PMCID: PMC3691774 DOI: 10.1089/ast.2013.0999] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 03/28/2013] [Indexed: 05/02/2023]
Abstract
Results from the Viking biology experiments indicate the presence of reactive oxidants in martian soils that have previously been attributed to peroxide and superoxide. Instruments on the Mars Phoenix Lander and the Mars Science Laboratory detected perchlorate in martian soil, which is nonreactive under the conditions of the Viking biology experiments. We show that calcium perchlorate exposed to gamma rays decomposes in a CO2 atmosphere to form hypochlorite (ClO(-)), trapped oxygen (O2), and chlorine dioxide (ClO2). Our results show that the release of trapped O2 (g) from radiation-damaged perchlorate salts and the reaction of ClO(-) with amino acids that were added to the martian soils can explain the results of the Viking biology experiments. We conclude that neither hydrogen peroxide nor superoxide is required to explain the results of the Viking biology experiments.
Collapse
Affiliation(s)
- Richard C Quinn
- Carl Sagan Center, SETI Institute, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere. Nature 2012; 486:93-6. [PMID: 22678286 DOI: 10.1038/nature11203] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 04/27/2012] [Indexed: 11/08/2022]
Abstract
Almost a decade after methane was first reported in the atmosphere of Mars there is an intensive discussion about both the reliability of the observations--particularly the suggested seasonal and latitudinal variations--and the sources of methane on Mars. Given that the lifetime of methane in the Martian atmosphere is limited, a process on or below the planet's surface would need to be continuously producing methane. A biological source would provide support for the potential existence of life on Mars, whereas a chemical origin would imply that there are unexpected geological processes. Methane release from carbonaceous meteorites associated with ablation during atmospheric entry is considered negligible. Here we show that methane is produced in much larger quantities from the Murchison meteorite (a type CM2 carbonaceous chondrite) when exposed to ultraviolet radiation under conditions similar to those expected at the Martian surface. Meteorites containing several per cent of intact organic matter reach the Martian surface at high rates, and our experiments suggest that a significant fraction of the organic matter accessible to ultraviolet radiation is converted to methane. Ultraviolet-radiation-induced methane formation from meteorites could explain a substantial fraction of the most recently estimated atmospheric methane mixing ratios. Stable hydrogen isotope analysis unambiguously confirms that the methane released from Murchison is of extraterrestrial origin. The stable carbon isotope composition, in contrast, is similar to that of terrestrial microbial origin; hence, measurements of this signature in future Mars missions may not enable an unambiguous identification of biogenic methane.
Collapse
|
20
|
Cottin H, Guan YY, Noblet A, Poch O, Saiagh K, Cloix M, Macari F, Jérome M, Coll P, Raulin F, Stalport F, Szopa C, Bertrand M, Chabin A, Westall F, Chaput D, Demets R, Brack A. The PROCESS experiment: an astrochemistry laboratory for solid and gaseous organic samples in low-earth orbit. ASTROBIOLOGY 2012; 12:412-425. [PMID: 22680688 DOI: 10.1089/ast.2011.0773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations.
Collapse
Affiliation(s)
- Hervé Cottin
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Créteil, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rix CS, Sims MR, Cullen DC. Immunological detection of small organic molecules in the presence of perchlorates: relevance to the life marker chip and life detection on Mars. ASTROBIOLOGY 2011; 11:839-846. [PMID: 22011057 DOI: 10.1089/ast.2011.0662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The proposed ExoMars mission, due to launch in 2018, aims to look for evidence of extant and extinct life in martian rocks and regolith. Previous attempts to detect organic molecules of biological or abiotic origin on Mars have been unsuccessful, which may be attributable to destruction of these molecules by perchlorate salts during pyrolysis sample extraction techniques. Organic molecules can also be extracted and measured with solvent-based systems. The ExoMars payload includes the Life Marker Chip (LMC) instrument, capable of detecting biomarker molecules of extant and extinct Earth-like life in liquid extracts of martian samples with an antibody microarray assay. The aim of the work reported here was to investigate whether the presence of perchlorate salts, at levels similar to those at the NASA Phoenix landing site, would compromise the LMC extraction and detection method. To test this, we implemented an LMC-representative sample extraction process with an LMC-representative antibody assay and used these to extract and analyze a model sample that consisted of a Mars analog sample matrix (JSC Mars-1) spiked with a representative organic molecular target (pyrene, an example of abiotic meteoritic infall targets) in the presence of perchlorate salts. We found no significant change in immunoassay function when using pyrene standards with added perchlorate salts. When model samples spiked with perchlorate salts were subjected to an LMC-representative liquid extraction, immunoassays functioned in a liquid extract and detected extracted pyrene. For the same model sample matrix without perchlorate salts, we observed anomalous assay signals that coincided with yellow coloration of the extracts. This unexpected observation is being studied further. This initial study indicates that the presence of perchlorate salts, at levels similar to those detected at the NASA Phoenix landing site, is unlikely to prevent the LMC from extracting and detecting organic molecules from martian samples.
Collapse
|
22
|
Saladino R, Brucato JR, De Sio A, Botta G, Pace E, Gambicorti L. Photochemical synthesis of citric acid cycle intermediates based on titanium dioxide. ASTROBIOLOGY 2011; 11:815-824. [PMID: 22007741 DOI: 10.1089/ast.2011.0652] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The emergence of the citric acid cycle is one of the most remarkable occurrences with regard to understanding the origin and evolution of metabolic pathways. Although the chemical steps of the cycle are preserved intact throughout nature, diverse organisms make wide use of its chemistry, and in some cases organisms use only a selected portion of the cycle. However, the origins of this cycle would have arisen in the more primitive anaerobic organism or even back in the proto-metabolism, which likely arose spontaneously under favorable prebiotic chemical conditions. In this context, we report that UV irradiation of formamide in the presence of titanium dioxide afforded 6 of the 11 carboxylic acid intermediates of the reductive version of the citric acid cycle. Since this cycle is the central metabolic pathway of contemporary biology, this report highlights the role of photochemical processes in the origin of the metabolic apparatus.
Collapse
Affiliation(s)
- Raffaele Saladino
- Department of Agrobiology and Agrochemistry, University of Tuscia, Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Neubeck A, Duc NT, Bastviken D, Crill P, Holm NG. Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70°C. GEOCHEMICAL TRANSACTIONS 2011; 12:6. [PMID: 21707970 PMCID: PMC3157414 DOI: 10.1186/1467-4866-12-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 06/27/2011] [Indexed: 05/05/2023]
Abstract
Hydrocarbons such as CH4 are known to be formed through the Fischer-Tropsch or Sabatier type reactions in hydrothermal systems usually at temperatures above 100°C. Weathering of olivine is sometimes suggested to account for abiotic formation of CH4 through its redox lowering and water splitting properties. Knowledge about the CH4 and H2 formation processes at low temperatures is important for the research about the origin and cause of early Earth and Martian CH4 and for CO2 sequestration. We have conducted a series of low temperature, long-term weathering experiments in which we have tested the CH4 and H2 formation potential of forsteritic olivine.The results show low temperature CH4 production that is probably influenced by chromite and magnetite as catalysts. Extensive analyses of a potential CH4 source trapped in the crystal structure of the olivine showed no signs of incorporated CH4. Also, the available sources of organic carbon were not enough to support the total amount of CH4 detected in our experiments. There was also a linear relationship between silica release into solution and the net CH4 accumulation into the incubation bottle headspaces suggesting that CH4 formation under these conditions could be a qualitative indicator of olivine dissolution.It is likely that minerals such as magnetite, chromite and other metal-rich minerals found on the olivine surface catalyze the formation of CH4, because of the low temperature of the system. This may expand the range of environments plausible for abiotic CH4 formation both on Earth and on other terrestrial bodies.
Collapse
Affiliation(s)
- Anna Neubeck
- Department of Geological Sciences, Stockholm University, Sweden
| | | | - David Bastviken
- Department of Thematic Studies-Water and Environmental Studies, Linköping University, Sweden
| | - Patrick Crill
- Department of Geological Sciences, Stockholm University, Sweden
| | - Nils G Holm
- Department of Geological Sciences, Stockholm University, Sweden
| |
Collapse
|
24
|
Shkrob IA, Marin TM, Chemerisov SD, Sevilla MD. Mechanistic aspects of photooxidation of polyhydroxylated molecules on metal oxides. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2011; 115:4642-4648. [PMID: 21532934 PMCID: PMC3083075 DOI: 10.1021/jp110612s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Polyhydroxylated molecules, including natural carbohydrates, are known to undergo photooxidation on wide-gap transition metal oxides irradiated by ultraviolet light. In this study, we examine mechanistic aspects of this photoreaction on aqueous TiO(2), α-FeOOH, and α-Fe(2)O(3) particles using electron paramagnetic resonance (EPR) spectroscopy and site-selective deuteration. We demonstrate that the carbohydrates are oxidized at sites involved in the formation of oxo-bridges between the chemisorbed carbohydrate molecule and metal ions at the oxide surface. This bridging inhibits the loss of water (which is the typical reaction of the analogous free radicals in bulk solvent) promoting instead a rearrangement that leads to elimination of the formyl radical. For natural carbohydrates, the latter reaction mainly involves carbon-1, whereas the main radical products of the oxidation are radical arising from H atom loss centered on carbon-1, -2, and -3 sites. Photoexcited TiO(2) oxidizes all of the carbohydrates and polyols, whereas α-FeOOH oxidizes some of the carbohydrates, and α-Fe(2)O(3) is unreactive. These results serve as a stepping stone for understanding the photochemistry on mineral surfaces of more complex biomolecules such as nucleic acids.
Collapse
Affiliation(s)
- Ilya A. Shkrob
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439
| | - Timothy M. Marin
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439
- Chemistry Department, Benedictine University, 5700 College Road, Lisle, IL 60532
| | - Sergey D. Chemerisov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439
| | | |
Collapse
|
25
|
Shkrob IA, Marin TM, Adhikary A, Sevilla MD. Photooxidation of nucleic acids on metal oxides: physico-chemical and astrobiological perspectives. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2011; 115:3393-3403. [PMID: 21399705 PMCID: PMC3049938 DOI: 10.1021/jp110682c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photocatalytic oxidation of nucleic acid components on aqueous metal oxides (TiO(2), α-FeOOH, and α-Fe(2)O(3)) has been studied. The oxidation of purine nucleotides results in the formation of the purine radical cations and sugar-phosphate radicals, whereas the oxidation of pyrimidine nucleotides other than thymine results in the oxidation of only the sugar-phosphate. The oxidation of the thymine (and to a far less extent for the 5-methylcytosine) derivatives results in deprotonation from the methyl group of the base. Some single stranded (ss) oligoribonucleotides and wild-type ss RNA were oxidized at purine sites. In contrast, double stranded (ds) oligoribonucleotides and DNA were not oxidized. These results account for observations suggesting that cellular ds DNA is not damaged by exposure to photoirradiated TiO(2) nanoparticles inserted into the cell, whereas ss RNA is extensively damaged. The astrobiological import of our observations is that the rapid degradation of monomer nucleotides make them poor targets as biosignatures, whereas duplex DNA is a better target as it is resilient to oxidative diagenesis. Another import of our studies is that ds DNA (as opposed to ss RNA) appears to be optimized to withstand oxidative stress both due to the advantageous polymer morphology and the subtle details of its radical chemistry. This peculiarity may account for the preference for DNA over RNA as a "molecule of life" provided that metal oxides served as the template for synthesis of polynucleotides, as suggested by Orgel and others.
Collapse
Affiliation(s)
- Ilya A. Shkrob
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439
| | - Timothy M. Marin
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439
- Chemistry Department, Benedictine University, 5700 College Road, Lisle, IL 60532
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, Michigan 48309
| | | |
Collapse
|